首页 > 最新文献

Microfluidics and Nanofluidics最新文献

英文 中文
Parametric study on the influence of varying angled inlet channels on mixing performance in simple T micromixers and vortex T micromixers across a wide range of Reynolds numbers 关于不同角度的入口通道对简单 T 型微搅拌器和涡旋 T 型微搅拌器在宽雷诺数范围内的搅拌性能影响的参数研究
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-07-08 DOI: 10.1007/s10404-024-02746-8
Kamran Rasheed, Mubashshir Ahmad Ansari, Shahnwaz Alam, Mohammad Nawaz Khan, Mahmood Alam

Micromixers become the core elements of lab-on-chip (LOC) devices used for mixing fluid samples at a very small scale. For modest Reynolds numbers, the nature of fluid movement is laminar across the microchannel hence mixing is challenging. Numerous designs of micromixers for mixing enhancement inside microfluidic devices have been developed to solve this issue. The current investigation looks at the performance of two distinct versions of passive micromixers i.e. simple T micromixer (STMM) and vortex T micromixer (VTMM), employing different angular configurations (i.e. 30°, 60°, 90°, 120° and 150°) on their inlet channel to monitor the consistency of blending for the Reynolds number in a range of 10–150. Numerical investigations were done by performing simulations on these geometrical arrangements to evaluate the level of mixing, pressure gradient and cost of mixing. The outcome indicates the performance of mixing is dependent on the angular arrangement of inlet channels. For STMM, the layout with inlet channels at 120° performs most effectively, whereas, for VTMM, the configuration with inlets at 90° performs best.

微搅拌器是用于在极小范围内混合流体样品的片上实验室(LOC)设备的核心部件。在雷诺数不大的情况下,流体在微通道内的运动是层状的,因此混合具有挑战性。为了解决这个问题,人们开发了许多用于增强微流体设备内部混合效果的微型搅拌器。目前的研究考察了两种不同型号的被动式微搅拌器(即简单 T 型微搅拌器 (STMM) 和涡旋 T 型微搅拌器 (VTMM))的性能,在其入口通道上采用了不同的角度配置(即 30°、60°、90°、120° 和 150°),以监测雷诺数在 10-150 范围内的混合一致性。通过对这些几何排列进行模拟,对混合程度、压力梯度和混合成本进行了评估。结果表明,混合效果取决于入口通道的角度布置。对于 STMM 而言,入口通道呈 120° 的布局最有效,而对于 VTMM 而言,入口通道呈 90° 的配置最有效。
{"title":"Parametric study on the influence of varying angled inlet channels on mixing performance in simple T micromixers and vortex T micromixers across a wide range of Reynolds numbers","authors":"Kamran Rasheed,&nbsp;Mubashshir Ahmad Ansari,&nbsp;Shahnwaz Alam,&nbsp;Mohammad Nawaz Khan,&nbsp;Mahmood Alam","doi":"10.1007/s10404-024-02746-8","DOIUrl":"10.1007/s10404-024-02746-8","url":null,"abstract":"<div><p>Micromixers become the core elements of lab-on-chip (LOC) devices used for mixing fluid samples at a very small scale. For modest Reynolds numbers, the nature of fluid movement is laminar across the microchannel hence mixing is challenging. Numerous designs of micromixers for mixing enhancement inside microfluidic devices have been developed to solve this issue. The current investigation looks at the performance of two distinct versions of passive micromixers i.e. simple T micromixer (STMM) and vortex T micromixer (VTMM), employing different angular configurations (i.e. 30°, 60°, 90°, 120° and 150°) on their inlet channel to monitor the consistency of blending for the Reynolds number in a range of 10–150. Numerical investigations were done by performing simulations on these geometrical arrangements to evaluate the level of mixing, pressure gradient and cost of mixing. The outcome indicates the performance of mixing is dependent on the angular arrangement of inlet channels. For STMM, the layout with inlet channels at 120° performs most effectively, whereas, for VTMM, the configuration with inlets at 90° performs best.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141576014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrically actuated peristaltic transport of viscoelastic fluid: a theoretical analysis 粘弹性流体的电动蠕动输送:理论分析
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-07-08 DOI: 10.1007/s10404-024-02742-y
Mahesh Kumar, Pranab Kumar Mondal

In this article, we discuss the bioinspired peristaltic pumping mechanism of an elastic non-Newtonian fluid whose rheology is characterized by the Phan-Thien-Tanner model in a microfluidic configuration. We consider the effect of an electroosmotic body force originating from electrical double layer phenomena formed in the wall of the fluidic channel of finite length. The considered configuration is consistent with the natural contraction of the oesophagus wall that does not involve expansion beyond the stationary boundary. Employing lubrication theory and assuming the underlying flow to be in the creeping flow regime, we outline the transport equations pertaining to the chosen peristaltic set up. The transport equations are then solved using a well-established method consistent with perturbation technique. By depicting the pressure variation and wall shear stress graphically for a continuous wave train, we aptly discuss the time-averaged net throughput and flow developed at channel inlet of the chosen pathway and demonstrate the eventual consequences of these flow patterns for a window of viscoelastic and electrokinetic parameters. The outcomes obtained from this model establishes that the underlying flow owing to the peristaltic pumping mechanism strongly relies on the rheological parameter (varepsilon W{e}^{2}). These inferences are expected to be of extensive importance in designing peristalsis pump, mimicking features of the physiological system, for achieving unidirectional flow of complex fluids with improved efficiency, frequently used in biochemical/biomicrofluidic applications.

在这篇文章中,我们讨论了微流体结构中流变学以 Phan-Thien-Tanner 模型为特征的弹性非牛顿流体的生物启发蠕动泵机制。我们考虑了有限长度流体通道壁上形成的电双层现象所产生的电渗体力的影响。所考虑的配置与食道壁的自然收缩一致,不涉及超出静止边界的扩张。利用润滑理论并假设基本流动为蠕动流动,我们概述了与所选蠕动装置有关的传输方程。然后,使用与扰动技术相一致的成熟方法求解输运方程。通过对连续波列的压力变化和壁面剪应力进行图形化描述,我们恰如其分地讨论了所选通道入口处的时均净吞吐量和流量,并展示了这些流动模式对粘弹性和电动参数窗口的最终影响。该模型得出的结果表明,蠕动泵机制导致的基本流动在很大程度上依赖于流变参数(varepsilon W{e}^{2})。这些推论对于设计蠕动泵、模仿生理系统的特征、实现复杂流体的单向流动并提高其效率具有广泛的意义,这些应用经常被用于生化/生物微流体领域。
{"title":"Electrically actuated peristaltic transport of viscoelastic fluid: a theoretical analysis","authors":"Mahesh Kumar,&nbsp;Pranab Kumar Mondal","doi":"10.1007/s10404-024-02742-y","DOIUrl":"10.1007/s10404-024-02742-y","url":null,"abstract":"<div><p>In this article, we discuss the bioinspired peristaltic pumping mechanism of an elastic non-Newtonian fluid whose rheology is characterized by the Phan-Thien-Tanner model in a microfluidic configuration. We consider the effect of an electroosmotic body force originating from electrical double layer phenomena formed in the wall of the fluidic channel of finite length. The considered configuration is consistent with the natural contraction of the oesophagus wall that does not involve expansion beyond the stationary boundary. Employing lubrication theory and assuming the underlying flow to be in the creeping flow regime, we outline the transport equations pertaining to the chosen peristaltic set up. The transport equations are then solved using a well-established method consistent with perturbation technique. By depicting the pressure variation and wall shear stress graphically for a continuous wave train, we aptly discuss the time-averaged net throughput and flow developed at channel inlet of the chosen pathway and demonstrate the eventual consequences of these flow patterns for a window of viscoelastic and electrokinetic parameters. The outcomes obtained from this model establishes that the underlying flow owing to the peristaltic pumping mechanism strongly relies on the rheological parameter <span>(varepsilon W{e}^{2})</span>. These inferences are expected to be of extensive importance in designing peristalsis pump, mimicking features of the physiological system, for achieving unidirectional flow of complex fluids with improved efficiency, frequently used in biochemical/biomicrofluidic applications.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141576013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning-based bead enumeration in microfluidics droplets enhances the reliability of monitoring bead encapsulation toward single-cell sorting applications 微流控液滴中基于机器学习的微珠计数提高了单细胞分拣应用中监测微珠封装的可靠性
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-07-06 DOI: 10.1007/s10404-024-02748-6
Hoang Anh Phan, Nguyen Dang Pham, Loc Quang Do, Tung Thanh Bui, Hai Hoang Nguyen, Trinh Duc Chu

The encapsulation of cells within droplets is a crucial aspect of various cell analysis applications. Current research has focused on accurately detecting and identifying cell types or cell counts within droplets using object detection in bright-field images. However, there are only a few in-depth investigations into the impact of the image data quality acquired from optical systems on computer vision models. This study examines several popular machine learning object detection models to analyze scenarios complicating the identification of bead locations within a droplet, posing challenges for computer vision models. A microfluidic droplet generation system was developed and implemented, coupled with optical devices to capture images of encapsulated beads within the droplet. To identify the most efficient model, a specific dataset was meticulously selected from the overall data, encompassing images depicting overlapping beads and edge-drifting scenarios. The proposed method achieved up to 98.2% accuracy on the testing dataset and 95% in real-time testing with the YOLOv8 model, enhancing bead count precision within droplets and clarifying the correlation between accuracy and frame recognition thresholds. This work holds particular importance in single-cell sorting, where precision is critical in ensuring meaningful outcomes, particularly concerning rare cell types such as cancer cells.

将细胞包裹在液滴中是各种细胞分析应用的一个重要方面。目前的研究主要集中在利用明视野图像中的目标检测功能准确检测和识别液滴内的细胞类型或细胞数量。然而,对于从光学系统获取的图像数据质量对计算机视觉模型的影响,目前只有少数几项深入研究。本研究考察了几种流行的机器学习对象检测模型,分析了液滴内珠子位置识别复杂化的情况,这对计算机视觉模型提出了挑战。研究人员开发并实施了一种微流控液滴生成系统,并结合光学设备捕捉液滴内封装珠子的图像。为了确定最有效的模型,从整体数据中精心挑选了一个特定的数据集,其中包括描绘珠子重叠和边缘漂移情况的图像。所提出的方法在测试数据集上达到了 98.2% 的准确率,在使用 YOLOv8 模型进行实时测试时达到了 95% 的准确率,提高了液滴内珠子计数的精确度,并明确了准确率与帧识别阈值之间的相关性。这项工作对单细胞分拣具有特别重要的意义,因为单细胞分拣的精确度对确保获得有意义的结果至关重要,尤其是对癌细胞等稀有细胞类型。
{"title":"Machine learning-based bead enumeration in microfluidics droplets enhances the reliability of monitoring bead encapsulation toward single-cell sorting applications","authors":"Hoang Anh Phan,&nbsp;Nguyen Dang Pham,&nbsp;Loc Quang Do,&nbsp;Tung Thanh Bui,&nbsp;Hai Hoang Nguyen,&nbsp;Trinh Duc Chu","doi":"10.1007/s10404-024-02748-6","DOIUrl":"10.1007/s10404-024-02748-6","url":null,"abstract":"<div><p>The encapsulation of cells within droplets is a crucial aspect of various cell analysis applications. Current research has focused on accurately detecting and identifying cell types or cell counts within droplets using object detection in bright-field images. However, there are only a few in-depth investigations into the impact of the image data quality acquired from optical systems on computer vision models. This study examines several popular machine learning object detection models to analyze scenarios complicating the identification of bead locations within a droplet, posing challenges for computer vision models. A microfluidic droplet generation system was developed and implemented, coupled with optical devices to capture images of encapsulated beads within the droplet. To identify the most efficient model, a specific dataset was meticulously selected from the overall data, encompassing images depicting overlapping beads and edge-drifting scenarios. The proposed method achieved up to 98.2% accuracy on the testing dataset and 95% in real-time testing with the YOLOv8 model, enhancing bead count precision within droplets and clarifying the correlation between accuracy and frame recognition thresholds. This work holds particular importance in single-cell sorting, where precision is critical in ensuring meaningful outcomes, particularly concerning rare cell types such as cancer cells.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141546533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reversible, stable and uniform SERS in a Y-shaped microfluidic chip: chemical imaging of concentration gradients Y 形微流体芯片中可逆、稳定和均匀的 SERS:浓度梯度的化学成像
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-07-03 DOI: 10.1007/s10404-024-02740-0
Fabien Chauvet

Imaging of chemical composition in microfluidic chips is addressed using Surface Enhanced Raman Spectroscopy (SERS). The Y-shaped SERS microfluidic chip used is fabricated by xurography and an electrodeposition method is employed to form a thin nanostructured silver layer over the bottom glass wall of the main microchannel. Used as an immobilized SERS substrate, this layer of silver nanocrystals exhibits an analytical enhancement factor of 5.10(^4) uniformly distributed over its surface (RSD < 7%). These good performances allow the quantitative imaging of transverse diffusion profiles of Crystal Violet (CV) at low concentrations ((10^{-8}-10^{-6}) mol/L). The SERS measurement turns out to be reversible at high laser power and this is explained by the thermal desorption of adsorbed CV (photothermal effect). However, too high heating leads to a low amount of adsorbed species and a low SERS signal. This effect is limited by using a fast enough flow inducing a cooling effect. A compromise must be found between laser power and liquid flow rate to enable a reversible and sensitive SERS measurement in the chip. These findings should contribute to the development of imaging, in microfluidic conditions, of the spatiotemporal dynamics of weakly concentrated key molecules involved in chemical, biochemical or biological processes.

利用表面增强拉曼光谱(SERS)技术对微流控芯片中的化学成分进行成像。所使用的 Y 型 SERS 微流控芯片是通过 Xurography 技术制造的,并采用电沉积方法在主微通道的底部玻璃壁上形成了一层薄薄的纳米结构银层。作为固定的 SERS 基底,这层纳米银晶体在其表面均匀分布,显示出 5.10(^4) 的分析增强因子(RSD <7%)。这些良好的性能允许在低浓度((10^{-8}-10^{-6}) mol/L)下对水晶紫(CV)的横向扩散曲线进行定量成像。在高激光功率下,SERS 测量结果是可逆的,这可以用吸附的 CV 的热解吸(光热效应)来解释。然而,过高的加热会导致吸附物种的数量减少和 SERS 信号降低。通过使用足够快的流速来产生冷却效应,可以限制这种效应。必须在激光功率和液体流速之间找到一个折衷方案,才能在芯片中进行可逆和灵敏的 SERS 测量。这些发现将有助于在微流控条件下对化学、生化或生物过程中涉及的弱浓缩关键分子的时空动态进行成像。
{"title":"Reversible, stable and uniform SERS in a Y-shaped microfluidic chip: chemical imaging of concentration gradients","authors":"Fabien Chauvet","doi":"10.1007/s10404-024-02740-0","DOIUrl":"10.1007/s10404-024-02740-0","url":null,"abstract":"<div><p>Imaging of chemical composition in microfluidic chips is addressed using Surface Enhanced Raman Spectroscopy (SERS). The Y-shaped SERS microfluidic chip used is fabricated by xurography and an electrodeposition method is employed to form a thin nanostructured silver layer over the bottom glass wall of the main microchannel. Used as an immobilized SERS substrate, this layer of silver nanocrystals exhibits an analytical enhancement factor of 5.10<span>(^4)</span> uniformly distributed over its surface (RSD &lt; 7%). These good performances allow the quantitative imaging of transverse diffusion profiles of Crystal Violet (CV) at low concentrations (<span>(10^{-8}-10^{-6})</span> mol/L). The SERS measurement turns out to be reversible at high laser power and this is explained by the thermal desorption of adsorbed CV (photothermal effect). However, too high heating leads to a low amount of adsorbed species and a low SERS signal. This effect is limited by using a fast enough flow inducing a cooling effect. A compromise must be found between laser power and liquid flow rate to enable a reversible and sensitive SERS measurement in the chip. These findings should contribute to the development of imaging, in microfluidic conditions, of the spatiotemporal dynamics of weakly concentrated key molecules involved in chemical, biochemical or biological processes.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141531413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A low-cost method of fabricating Parylene-SU-8 micro-nanofluidic chip by thermal nanoimprint and multilayer compositing 利用热纳米压印和多层复合技术制造聚对二甲苯-SU-8 微纳流体芯片的低成本方法
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-06-28 DOI: 10.1007/s10404-024-02743-x
Lei Sun, Zhifu Yin, Ran Guo

A new fabrication of micro-nano fluidic chips by thermal nanoimprint and multilayer compositing is proposed. The nano-channels with different aspect ratios were first manufactured by thermal nanoimprinting and Parylene layer coating, and the effect of parylene layer thickness on aspect ratio is studied. Then SU-8 layers with the micro channels and liquid reservoirs were superposed by ultraviolet exposure and secondary bonding to form a multilayer micro-nano fluidic chip. By optimizing the bonding parameters, a Parylene-SU-8 micro-nano fluidic chip with 200 μm wide and 8 μm deep micro-channels, cross-linked with 78 nm wide and 288 nm deep nano-channels was constructed, of which the maximum bonding strength is 0.92 MPa. This method has the advantages of simple process and low cost, which is suitable for mass manufacturing of micro-nano fluidic chips.

本文提出了一种利用热纳米压印和多层复合技术制造微纳流体芯片的新方法。首先通过热纳米压印和聚对二甲苯层涂层制造出不同长径比的纳米通道,并研究了聚对二甲苯层厚度对长径比的影响。然后,通过紫外曝光和二次键合将带有微通道和储液器的 SU-8 层叠加在一起,形成多层微纳流体芯片。通过优化键合参数,构建了宽 200 μm、深 8 μm、交联有 78 nm 宽、288 nm 深纳米通道的对二甲苯-SU-8 微纳流体芯片,其最大键合强度为 0.92 MPa。该方法具有工艺简单、成本低廉等优点,适用于微纳流体芯片的大规模制造。
{"title":"A low-cost method of fabricating Parylene-SU-8 micro-nanofluidic chip by thermal nanoimprint and multilayer compositing","authors":"Lei Sun,&nbsp;Zhifu Yin,&nbsp;Ran Guo","doi":"10.1007/s10404-024-02743-x","DOIUrl":"10.1007/s10404-024-02743-x","url":null,"abstract":"<div><p>A new fabrication of micro-nano fluidic chips by thermal nanoimprint and multilayer compositing is proposed. The nano-channels with different aspect ratios were first manufactured by thermal nanoimprinting and Parylene layer coating, and the effect of parylene layer thickness on aspect ratio is studied. Then SU-8 layers with the micro channels and liquid reservoirs were superposed by ultraviolet exposure and secondary bonding to form a multilayer micro-nano fluidic chip. By optimizing the bonding parameters, a Parylene-SU-8 micro-nano fluidic chip with 200 μm wide and 8 μm deep micro-channels, cross-linked with 78 nm wide and 288 nm deep nano-channels was constructed, of which the maximum bonding strength is 0.92 MPa. This method has the advantages of simple process and low cost, which is suitable for mass manufacturing of micro-nano fluidic chips.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 7","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lung-on-a-chip composed of styrene-butadiene-styrene nano-fiber/porous PDMS composite membranes with cyclic triaxial stimulation 由苯乙烯-丁二烯-苯乙烯纳米纤维/多孔 PDMS 复合膜组成的肺芯片受到循环三轴刺激
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-06-24 DOI: 10.1007/s10404-024-02739-7
Yuru You, Changling Zhang, Zhixiang Guo, Feng Xu, Daoheng Sun, Junjie Xia, Songyue Chen

The physiological function of lung is strongly correlated with its unique structural microenvironment and mechanical stimulation. Most existing lung-on-a-chips (LOCs) do not replicate the key physiological structure and stimulation of human lung, reducing their reliability in application. In this study, a scaffold structure of a styrene-butadiene-styrene (SBS) nanofiber and porous honeycomb polydime-thylsiloxane (PDMS) composite membrane was developed to construct an alveolar air-blood barrier that mimics the alveolar characteristics of flexibility, cross-scale structure, and triaxial mechanical stimulation. By combining micro-fluidic and electrospinning technology, a biomimetic LOC with dynamic triaxial cyclic strain was realized. The composite membrane had a Young’s modulus of 0.54 ± 0.05 MPa and was capable of 8–12% strain at 1 kPa air pressure. We monocultured and co-cultured human non-small cell lung cancer cells stably expressing red fluorescent protein (A549-RFP) with human umbilical vein endothelial cell stably expressing green fluorescent protein (HUVECs-GFP) within the chip. A multi-layered structure of epithelial cell layer-basal layer-endothelial cell layer, similar to the air-blood barrier in vivo, was constructed. The LOC was proved to be an initial foundation for creating in vitro alveolar physiological models, and could be a potential platform for application in physiology, pathology, toxicology, drug screening, and customized medicine.

肺的生理功能与其独特的微环境结构和机械刺激密切相关。现有的肺芯片(LOCs)大多无法复制人体肺部的关键生理结构和刺激,降低了其应用的可靠性。本研究开发了一种由苯乙烯-丁二烯-苯乙烯(SBS)纳米纤维和多孔蜂窝状聚二甲基硅氧烷(PDMS)复合膜组成的支架结构,用于构建肺泡气血屏障,以模拟肺泡的柔韧性、跨尺度结构和三轴机械刺激特性。通过结合微流体和电纺丝技术,实现了具有动态三轴循环应变的仿生物 LOC。复合膜的杨氏模量为 0.54 ± 0.05 兆帕,在 1 千帕气压下可承受 8-12% 的应变。我们将稳定表达红色荧光蛋白(A549-RFP)的人非小细胞肺癌细胞与稳定表达绿色荧光蛋白(HUVECs-GFP)的人脐静脉内皮细胞分别单培养和共培养在芯片中。这样就构建了一个类似于体内气血屏障的上皮细胞层-基底层-内皮细胞层的多层结构。事实证明,LOC 是创建体外肺泡生理模型的初步基础,可作为生理学、病理学、毒理学、药物筛选和定制医学的潜在应用平台。
{"title":"Lung-on-a-chip composed of styrene-butadiene-styrene nano-fiber/porous PDMS composite membranes with cyclic triaxial stimulation","authors":"Yuru You,&nbsp;Changling Zhang,&nbsp;Zhixiang Guo,&nbsp;Feng Xu,&nbsp;Daoheng Sun,&nbsp;Junjie Xia,&nbsp;Songyue Chen","doi":"10.1007/s10404-024-02739-7","DOIUrl":"10.1007/s10404-024-02739-7","url":null,"abstract":"<div><p>The physiological function of lung is strongly correlated with its unique structural microenvironment and mechanical stimulation. Most existing lung-on-a-chips (LOCs) do not replicate the key physiological structure and stimulation of human lung, reducing their reliability in application. In this study, a scaffold structure of a styrene-butadiene-styrene (SBS) nanofiber and porous honeycomb polydime-thylsiloxane (PDMS) composite membrane was developed to construct an alveolar air-blood barrier that mimics the alveolar characteristics of flexibility, cross-scale structure, and triaxial mechanical stimulation. By combining micro-fluidic and electrospinning technology, a biomimetic LOC with dynamic triaxial cyclic strain was realized. The composite membrane had a Young’s modulus of 0.54 ± 0.05 MPa and was capable of 8–12% strain at 1 kPa air pressure. We monocultured and co-cultured human non-small cell lung cancer cells stably expressing red fluorescent protein (A549-RFP) with human umbilical vein endothelial cell stably expressing green fluorescent protein (HUVECs-GFP) within the chip. A multi-layered structure of epithelial cell layer-basal layer-endothelial cell layer, similar to the air-blood barrier in vivo, was constructed. The LOC was proved to be an initial foundation for creating in vitro alveolar physiological models, and could be a potential platform for application in physiology, pathology, toxicology, drug screening, and customized medicine.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 7","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in modeling permeability and selectivity of the blood-brain barrier using microfluidics 利用微流体技术建立血脑屏障渗透性和选择性模型的进展
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-06-23 DOI: 10.1007/s10404-024-02741-z
Jindi Sun, Shang Song

The blood-brain barrier (BBB) protects the brain by actively allowing the entry of ions and nutrients while limiting the passage of from toxins and pathogens. A healthy BBB has low permeability and high selectivity to maintain normal brain functions. Increased BBB permeability can result from neurological diseases and traumatic injuries. Modern engineering technologies such as microfluidics and fabrication techniques have advanced the development of BBB models to simulate the basic functions of BBB. However, the intrinsic BBB properties are difficult to replicate. Existing in vitro BBB models demonstrate inconsistent BBB permeability and selectivity due to variations in microfluidic design, cell types and arrangement, expression of tight junction (TJ) proteins, and use of shear stress. Specifically, microfluidic designs have flow channels of different sizes, complexity, topology, and modular structure. Different cell types are selected to mimic various physiological conditions. These factors make it challenging to compare results obtained using different experimental setups. This paper highlights key factors that play important roles in influencing microfluidic models and discusses how these factors contribute to permeability and selectivity of the BBB models.

血脑屏障(BBB)通过积极允许离子和营养物质的进入,同时限制毒素和病原体的通过来保护大脑。健康的血脑屏障具有低渗透性和高选择性,以维持正常的大脑功能。神经系统疾病和外伤会导致 BBB 渗透性增加。微流控和制造技术等现代工程技术推动了 BBB 模型的发展,以模拟 BBB 的基本功能。然而,BBB 的内在特性很难复制。由于微流控设计、细胞类型和排列、紧密连接(TJ)蛋白的表达以及剪切应力的使用存在差异,现有的体外 BBB 模型显示出不一致的 BBB 通透性和选择性。具体来说,微流体设计有不同大小、复杂程度、拓扑结构和模块结构的流道。选择不同的细胞类型是为了模拟各种生理条件。这些因素使得比较使用不同实验装置获得的结果具有挑战性。本文强调了影响微流控模型的关键因素,并讨论了这些因素如何影响 BBB 模型的渗透性和选择性。
{"title":"Advances in modeling permeability and selectivity of the blood-brain barrier using microfluidics","authors":"Jindi Sun,&nbsp;Shang Song","doi":"10.1007/s10404-024-02741-z","DOIUrl":"10.1007/s10404-024-02741-z","url":null,"abstract":"<div><p>The blood-brain barrier (BBB) protects the brain by actively allowing the entry of ions and nutrients while limiting the passage of from toxins and pathogens. A healthy BBB has low permeability and high selectivity to maintain normal brain functions. Increased BBB permeability can result from neurological diseases and traumatic injuries. Modern engineering technologies such as microfluidics and fabrication techniques have advanced the development of BBB models to simulate the basic functions of BBB. However, the intrinsic BBB properties are difficult to replicate. Existing <i>in vitro</i> BBB models demonstrate inconsistent BBB permeability and selectivity due to variations in microfluidic design, cell types and arrangement, expression of tight junction (TJ) proteins, and use of shear stress. Specifically, microfluidic designs have flow channels of different sizes, complexity, topology, and modular structure. Different cell types are selected to mimic various physiological conditions. These factors make it challenging to compare results obtained using different experimental setups. This paper highlights key factors that play important roles in influencing microfluidic models and discusses how these factors contribute to permeability and selectivity of the BBB models.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 7","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finger-operated pumping platform for microfluidic preparation of nanoparticles 用于微流控制备纳米粒子的指控泵平台
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-06-14 DOI: 10.1007/s10404-024-02738-8
Ahmed Azmeer, Ibraheem Kanan, Ghaleb A. Husseini, Mohamed Abdelgawad

Microfluidic preparation of nanoparticles (NPs) offers many advantages over traditional bench-top preparation techniques, including better control over particle size and higher uniformity. Although many studies have reported the use of low-cost microfluidic chips for nanoparticle synthesis, the technology is still expensive due to the high cost of the pumps needed to generate the required flows inside microchannels. Here, we present a low-cost finger-operated constant-pressure pumping platform capable of generating pressures as high as 120 kPa using finger-operated pumping caps that can be attached to any pop bottle. The platform costs around $208 and enables the generation of flow rate ratios (FRR) of up to 47:1 for the continuous flow synthesis of NPs. The pump has a resolution of 500 Pa per stroke and exhibits stable pressures for up to a few hours. To show the functionality of the proposed pump, we used it to prepare pegylated liposomes and poly lactic-co-glycolic acid (PLGA) nanoparticles with sizes ranging from 47 nm to 250 nm with an average polydispersity of 20% using commercially available micromixer chips and in-house made hydrodynamic flow focusing devices. We believe this platform will render microfluidic preparation of NPs accessible to any laboratory with minimal capabilities.

与传统的台式制备技术相比,微流体制备纳米粒子(NPs)具有许多优势,包括更好地控制粒度和更高的均匀性。尽管许多研究都报道了使用低成本微流控芯片合成纳米粒子的方法,但由于在微通道内产生所需流量所需的泵成本高昂,因此该技术的成本仍然很高。在这里,我们展示了一种低成本的手指操作恒压泵平台,利用可连接到任何汽水瓶上的手指操作泵盖,能够产生高达 120 kPa 的压力。该平台的成本约为 208 美元,能够产生高达 47:1 的流速比 (FRR),用于 NPs 的连续流合成。该泵每个冲程的分辨率为 500 Pa,压力稳定时间长达数小时。为了展示所建议的泵的功能,我们使用它制备了聚乙二醇化脂质体和聚乳酸-聚乙二醇酸(PLGA)纳米粒子,这些粒子的尺寸从 47 纳米到 250 纳米不等,平均多分散性为 20%,使用的是市售的微混合器芯片和内部制造的流体动力流聚焦装置。我们相信,这一平台将使任何实验室都能以最低限度的能力进行 NPs 的微流控制备。
{"title":"Finger-operated pumping platform for microfluidic preparation of nanoparticles","authors":"Ahmed Azmeer,&nbsp;Ibraheem Kanan,&nbsp;Ghaleb A. Husseini,&nbsp;Mohamed Abdelgawad","doi":"10.1007/s10404-024-02738-8","DOIUrl":"10.1007/s10404-024-02738-8","url":null,"abstract":"<div><p>Microfluidic preparation of nanoparticles (NPs) offers many advantages over traditional bench-top preparation techniques, including better control over particle size and higher uniformity. Although many studies have reported the use of low-cost microfluidic chips for nanoparticle synthesis, the technology is still expensive due to the high cost of the pumps needed to generate the required flows inside microchannels. Here, we present a low-cost finger-operated constant-pressure pumping platform capable of generating pressures as high as 120 kPa using finger-operated pumping caps that can be attached to any pop bottle. The platform costs around $208 and enables the generation of flow rate ratios (FRR) of up to 47:1 for the continuous flow synthesis of NPs. The pump has a resolution of 500 Pa per stroke and exhibits stable pressures for up to a few hours. To show the functionality of the proposed pump, we used it to prepare pegylated liposomes and poly lactic-co-glycolic acid (PLGA) nanoparticles with sizes ranging from 47 nm to 250 nm with an average polydispersity of 20% using commercially available micromixer chips and in-house made hydrodynamic flow focusing devices. We believe this platform will render microfluidic preparation of NPs accessible to any laboratory with minimal capabilities.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 7","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141341822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering free-standing electrospun PLLCL fibers on microfluidic platform for cell alignment 在微流体平台上设计用于细胞排列的独立电纺 PLLCL 纤维
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-06-07 DOI: 10.1007/s10404-024-02736-w
Özüm Yildirim-Semerci, Ahu Arslan-Yildiz

Here, a PLLCL-on-chip platform was developed by direct electrospinning of poly (L-lactide-co-ε-caprolactone) (PLLCL) on polymethyl methacrylate (PMMA) microfluidic chips. Designed microchip provides the electrospinning of free-standing aligned PLLCL fibers which eliminates limitations of conventional electrospinning. Besides, aligned fiber structure favors cell alignment through contactless manipulation. Average fiber diameter, and fiber alignment was evaluated by SEM analyses, then, leakage profile of microchip was investigated. 3D cell culture studies were conducted using HeLa and NIH-3T3 cells, and nearly 85% cell viability was observed in PLLCL-on-chip for 15 days, while cell viability of 2D control started to decrease after 7 days based on Live dead and Alamar Blue analyses. These findings emphasize biocompatibility of PLLCL-on-chip platform for 3D cell culture and its ability to mimic extracellular matrix (ECM). Immunostaining results prove that PLLCL-on-chip platform favors the secretion of ECM proteins compared to control groups, and cytoskeletons of cells were in aligned orientation in PLLCL-on-chip, while they were in random orientation in control groups. Overall, these results demonstrate that the developed platform is suitable for the formation of various 3D cell culture models and a potential candidate for cell alignment studies.

Graphical Abstract

本文通过在聚甲基丙烯酸甲酯(PMMA)微流体芯片上直接电纺聚(L-内酯-共ε-己内酯)(PLLCL),开发了一种 PLLCL 芯片平台。设计的微芯片可以电纺独立排列的 PLLCL 纤维,从而消除了传统电纺的局限性。此外,排列整齐的纤维结构有利于通过非接触式操作使细胞排列整齐。通过扫描电子显微镜分析评估了纤维的平均直径和纤维排列,然后研究了微芯片的泄漏曲线。使用 HeLa 和 NIH-3T3 细胞进行了三维细胞培养研究,结果表明,在 PLLCL 芯片上培养 15 天后,细胞存活率接近 85%,而根据活死细胞和阿拉玛蓝分析,二维对照组的细胞存活率在 7 天后开始下降。这些发现强调了用于三维细胞培养的片上 PLLCL 平台的生物相容性及其模拟细胞外基质(ECM)的能力。免疫染色结果证明,与对照组相比,芯片上 PLLCL 平台有利于 ECM 蛋白的分泌,而且芯片上 PLLCL 平台的细胞骨架排列整齐,而对照组的细胞骨架排列无序。总之,这些结果表明所开发的平台适用于形成各种三维细胞培养模型,是细胞排列研究的潜在候选者。
{"title":"Engineering free-standing electrospun PLLCL fibers on microfluidic platform for cell alignment","authors":"Özüm Yildirim-Semerci,&nbsp;Ahu Arslan-Yildiz","doi":"10.1007/s10404-024-02736-w","DOIUrl":"10.1007/s10404-024-02736-w","url":null,"abstract":"<div><p>Here, a PLLCL-on-chip platform was developed by direct electrospinning of poly (L-lactide-co-ε-caprolactone) (PLLCL) on polymethyl methacrylate (PMMA) microfluidic chips. Designed microchip provides the electrospinning of free-standing aligned PLLCL fibers which eliminates limitations of conventional electrospinning. Besides, aligned fiber structure favors cell alignment through contactless manipulation. Average fiber diameter, and fiber alignment was evaluated by SEM analyses, then, leakage profile of microchip was investigated. 3D cell culture studies were conducted using HeLa and NIH-3T3 cells, and nearly 85% cell viability was observed in PLLCL-on-chip for 15 days, while cell viability of 2D control started to decrease after 7 days based on Live dead and Alamar Blue analyses. These findings emphasize biocompatibility of PLLCL-on-chip platform for 3D cell culture and its ability to mimic extracellular matrix (ECM). Immunostaining results prove that PLLCL-on-chip platform favors the secretion of ECM proteins compared to control groups, and cytoskeletons of cells were in aligned orientation in PLLCL-on-chip, while they were in random orientation in control groups. Overall, these results demonstrate that the developed platform is suitable for the formation of various 3D cell culture models and a potential candidate for cell alignment studies.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 7","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-024-02736-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141371849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation analysis and experimental verification of thermodynamic characteristics of integrated droplet digital PCR chip 集成液滴数字 PCR 芯片热力学特性的仿真分析与实验验证
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-06-04 DOI: 10.1007/s10404-024-02737-9
Xiangkai Meng, Luyang Duanmu, Ping Gong

In order to reduce the influence of the thermal conductivity of the digital polymerase chain reaction (dPCR) chip material and the temperature distribution of the droplet collection chamber on the amplification effect, an optimized integrated dPCR chip was designed. The heat conduction of the designed dPCR gene chip was simulated by COMSOL finite element model, which provided theoretical basis for the design and fabrication of the chip. Three-dimensional ht models of dPCR microarray under steady state and transient conditions were established. The thermodynamic simulation of dPCR gene chip was carried out by changing the material, thickness, structure and width of droplet collection chamber. During the high temperature denaturation stage of amplification, the temperature characteristics were analyzed, and the surface temperature, heating curve, isotherm, thermal expansion and other results of the dPCR gene chip were obtained, and the structural parameters of the chip design were optimized to provide guidance for the subsequent chip design. The results showed that the internal temperature uniformity of the COC sample was higher than other materials. The chip has a thickness of 2 mm and the collection chamber has a width of 4 mm, which was better suited to meet the requirements of PCR reaction. The PCR amplification device was established, and the uniformity of temperature distribution of the fabricatedchip was verified by thermal imager. The results showed that the heat conduction speed was fast, the heat conduction was uniform, and the uniformity was less than ± 0.5 °C. Therefore, under the premise of meeting the quantity of microdroplet generation, the chip designed in this paper has excellent heat conduction performance.

为了减少数字聚合酶链式反应(dPCR)芯片材料的导热性和液滴收集腔的温度分布对扩增效果的影响,设计了一种优化的集成 dPCR 芯片。利用 COMSOL 有限元模型模拟了所设计的 dPCR 基因芯片的热传导过程,为芯片的设计和制造提供了理论依据。建立了稳态和瞬态条件下 dPCR 芯片的三维 ht 模型。通过改变液滴收集腔的材料、厚度、结构和宽度,对 dPCR 基因芯片进行了热力学模拟。分析了扩增高温变性阶段的温度特性,得到了 dPCR 基因芯片的表面温度、加热曲线、等温线、热膨胀等结果,优化了芯片设计的结构参数,为后续芯片设计提供了指导。结果表明,COC 样品的内部温度均匀性高于其他材料。芯片厚度为 2 毫米,收集腔宽度为 4 毫米,能较好地满足 PCR 反应的要求。建立了 PCR 扩增装置,并用热成像仪验证了所制芯片温度分布的均匀性。结果表明,热传导速度快,热传导均匀,均匀度小于±0.5 °C。因此,在满足微滴产生量的前提下,本文设计的芯片具有优异的热传导性能。
{"title":"Simulation analysis and experimental verification of thermodynamic characteristics of integrated droplet digital PCR chip","authors":"Xiangkai Meng,&nbsp;Luyang Duanmu,&nbsp;Ping Gong","doi":"10.1007/s10404-024-02737-9","DOIUrl":"10.1007/s10404-024-02737-9","url":null,"abstract":"<div><p>In order to reduce the influence of the thermal conductivity of the digital polymerase chain reaction (dPCR) chip material and the temperature distribution of the droplet collection chamber on the amplification effect, an optimized integrated dPCR chip was designed. The heat conduction of the designed dPCR gene chip was simulated by COMSOL finite element model, which provided theoretical basis for the design and fabrication of the chip. Three-dimensional ht models of dPCR microarray under steady state and transient conditions were established. The thermodynamic simulation of dPCR gene chip was carried out by changing the material, thickness, structure and width of droplet collection chamber. During the high temperature denaturation stage of amplification, the temperature characteristics were analyzed, and the surface temperature, heating curve, isotherm, thermal expansion and other results of the dPCR gene chip were obtained, and the structural parameters of the chip design were optimized to provide guidance for the subsequent chip design. The results showed that the internal temperature uniformity of the COC sample was higher than other materials. The chip has a thickness of 2 mm and the collection chamber has a width of 4 mm, which was better suited to meet the requirements of PCR reaction. The PCR amplification device was established, and the uniformity of temperature distribution of the fabricatedchip was verified by thermal imager. The results showed that the heat conduction speed was fast, the heat conduction was uniform, and the uniformity was less than ± 0.5 °C. Therefore, under the premise of meeting the quantity of microdroplet generation, the chip designed in this paper has excellent heat conduction performance.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 7","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microfluidics and Nanofluidics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1