首页 > 最新文献

Microfluidics and Nanofluidics最新文献

英文 中文
Experimental investigation of microparticle focusing in SiO2 nanofluids inside curvilinear microchannels 曲线微通道内 SiO2 纳米流体中微颗粒聚焦的实验研究
IF 2.8 4区 工程技术 Q2 Physics and Astronomy Pub Date : 2023-12-20 DOI: 10.1007/s10404-023-02700-0
Arsalan Nikdoost, Pouya Rezai

Curvilinear microchannels have enabled high throughput sized-based separation and manipulation of microparticles. Real life applications usually deal with fluid’s non-Newtonian behavior, where particles dynamics are altered compared to Newtonian mediums. Despite multiple reports on particle manipulation in shear-thinning fluids, no fundamental experimental investigation has been reported on microparticle focusing behavior inside shear-thickening fluids such as metallic oxide nanofluids in water (e.g., SiO2-water). These nanofluids pose unique thermal characteristics and exhibit a drastic increase in viscosity as the shear rate rises in the microchannel. Here, we investigate the particle focusing behavior of co-flows of SiO2 nanofluids inside curved microchannels with various channel widths and radii of curvature. We also report on the effect of nanofluid concentration, fluid axial velocity, and the particle size on particle migration. We observed a behavioral change in particle migration in SiO2 nanofluids, where the shear-dependent effect could enhance the particle focusing at lower flow rates. Moreover, the dominance of Dean drag at higher axial velocities would dominate the particle migration and transfer them towards two focusing peaks close to the sidewalls. A thorough investigation of particle behavior in nanofluids inside curved microchannels could enable future applications in heat exchangers, solar energy collectors, and nanoplastic detection.

曲线微通道实现了微颗粒的高通量大小分离和操作。现实生活中的应用通常涉及流体的非牛顿行为,与牛顿介质相比,粒子的动力学会发生改变。尽管有许多关于在剪切稀化流体中操纵微粒的报道,但还没有关于微粒在剪切增稠流体(如水中的金属氧化物纳米流体,如二氧化硅-水)中聚焦行为的基础实验研究报道。这些纳米流体具有独特的热特性,随着微通道中剪切速率的上升,粘度也会急剧增加。在此,我们研究了具有不同通道宽度和曲率半径的弯曲微通道内二氧化硅纳米流体共流的粒子聚焦行为。我们还报告了纳米流体浓度、流体轴向速度和颗粒大小对颗粒迁移的影响。我们观察到颗粒在二氧化硅纳米流体中的迁移行为发生了变化,其中剪切依赖效应可在较低流速下增强颗粒聚焦。此外,在较高的轴向速度下,迪安阻力将主导颗粒的迁移,并将颗粒向靠近侧壁的两个聚焦峰转移。对弯曲微通道内纳米流体中的粒子行为进行深入研究,有助于未来在热交换器、太阳能收集器和纳米塑料检测中的应用。
{"title":"Experimental investigation of microparticle focusing in SiO2 nanofluids inside curvilinear microchannels","authors":"Arsalan Nikdoost,&nbsp;Pouya Rezai","doi":"10.1007/s10404-023-02700-0","DOIUrl":"10.1007/s10404-023-02700-0","url":null,"abstract":"<div><p>Curvilinear microchannels have enabled high throughput sized-based separation and manipulation of microparticles. Real life applications usually deal with fluid’s non-Newtonian behavior, where particles dynamics are altered compared to Newtonian mediums. Despite multiple reports on particle manipulation in shear-thinning fluids, no fundamental experimental investigation has been reported on microparticle focusing behavior inside shear-thickening fluids such as metallic oxide nanofluids in water (e.g., SiO<sub>2</sub>-water). These nanofluids pose unique thermal characteristics and exhibit a drastic increase in viscosity as the shear rate rises in the microchannel. Here, we investigate the particle focusing behavior of co-flows of SiO<sub>2</sub> nanofluids inside curved microchannels with various channel widths and radii of curvature. We also report on the effect of nanofluid concentration, fluid axial velocity, and the particle size on particle migration. We observed a behavioral change in particle migration in SiO<sub>2</sub> nanofluids, where the shear-dependent effect could enhance the particle focusing at lower flow rates. Moreover, the dominance of Dean drag at higher axial velocities would dominate the particle migration and transfer them towards two focusing peaks close to the sidewalls. A thorough investigation of particle behavior in nanofluids inside curved microchannels could enable future applications in heat exchangers, solar energy collectors, and nanoplastic detection.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138822345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation of microfluidic intracellular delivery based on the synergy of cell squeezing and electrical field 基于细胞挤压和电场协同作用的微流体细胞内输送模拟
IF 2.8 4区 工程技术 Q2 Physics and Astronomy Pub Date : 2023-12-18 DOI: 10.1007/s10404-023-02701-z
Jianfeng Chen, Han Liu, Chuan Li, Xiaoxiao Chen, Yichuan Dai

In recent years, the microfluidic squeezing method for cell intracellular delivery has demonstrated high efficiency and generalizability. This approach, however, still faces difficulties in effectively transfecting large molecules. Integration of this method with other membrane disruption strategies can enhance intracellular delivery efficiency and cell viability. Notably, the combination of microchannel squeezing and electric fields emerges as the most crucial strategy. The cell membrane is rapidly perforated in a microfluidic device, and then an electric field is introduced to further improve the permeability of the plasma membrane, allowing transmembrane transit of impermeable molecules. Nevertheless, the underlying mechanism of the combined squeezing and electroporation method on cell membrane destabilization and material transport remains unclear. Thus, this paper aims to develop a computational model to investigate the intracellular delivery process influenced by various external stimuli and to examine the implications of mixing external stimuli as well as the distinct effects of electric and squeezing on intracellular delivery. Meanwhile, we modified the squeezing parameters (microchannel size and cell velocity) and the electric field parameters (pulse length, electric field strength, etc.) to optimize the cell’s absorption of foreign substances. The simulation results indicate that a decrease in the contraction width, an increase in the contraction length, and an increase in the average cell velocity could promote the squeezing deformation of the cell as well as the formation of pores on the cell membrane. And the joint action of cell squeezing and electric field enhances cellular absorption of substances. In addition, the change of electrical parameters also affects the results of cell squeezing in conjunction with the electric field. For example, the increased length of electric field pulses improves the cell membrane permeability. However, the electric field intensity must be set in a reasonable range (< several kV/cm) to prevent cell inactivation.

近年来,用于细胞内递送的微流体挤压法已显示出高效性和通用性。然而,这种方法在有效转染大分子方面仍面临困难。将这种方法与其他膜破坏策略相结合,可以提高细胞内递送效率和细胞活力。值得注意的是,微通道挤压和电场的结合是最关键的策略。细胞膜在微流体装置中迅速穿孔,然后引入电场,进一步提高质膜的通透性,使不通透的分子得以跨膜转运。然而,挤压和电穿孔相结合的方法对细胞膜失稳和物质转运的潜在机制仍不清楚。因此,本文旨在建立一个计算模型,研究各种外部刺激对细胞内输送过程的影响,并探讨混合外部刺激的影响以及电穿孔和挤压对细胞内输送的不同影响。同时,我们修改了挤压参数(微通道尺寸和细胞速度)和电场参数(脉冲长度、电场强度等),以优化细胞对外来物质的吸收。模拟结果表明,收缩宽度的减小、收缩长度的增加和细胞平均速度的提高可促进细胞的挤压变形以及细胞膜上孔隙的形成。细胞挤压和电场的共同作用增强了细胞对物质的吸收。此外,电参数的变化也会影响细胞挤压与电场共同作用的结果。例如,增加电场脉冲的长度可提高细胞膜的通透性。不过,电场强度必须设定在合理的范围内(几千伏/厘米),以防止细胞失活。
{"title":"Simulation of microfluidic intracellular delivery based on the synergy of cell squeezing and electrical field","authors":"Jianfeng Chen,&nbsp;Han Liu,&nbsp;Chuan Li,&nbsp;Xiaoxiao Chen,&nbsp;Yichuan Dai","doi":"10.1007/s10404-023-02701-z","DOIUrl":"10.1007/s10404-023-02701-z","url":null,"abstract":"<div><p>In recent years, the microfluidic squeezing method for cell intracellular delivery has demonstrated high efficiency and generalizability. This approach, however, still faces difficulties in effectively transfecting large molecules. Integration of this method with other membrane disruption strategies can enhance intracellular delivery efficiency and cell viability. Notably, the combination of microchannel squeezing and electric fields emerges as the most crucial strategy. The cell membrane is rapidly perforated in a microfluidic device, and then an electric field is introduced to further improve the permeability of the plasma membrane, allowing transmembrane transit of impermeable molecules. Nevertheless, the underlying mechanism of the combined squeezing and electroporation method on cell membrane destabilization and material transport remains unclear. Thus, this paper aims to develop a computational model to investigate the intracellular delivery process influenced by various external stimuli and to examine the implications of mixing external stimuli as well as the distinct effects of electric and squeezing on intracellular delivery. Meanwhile, we modified the squeezing parameters (microchannel size and cell velocity) and the electric field parameters (pulse length, electric field strength, etc.) to optimize the cell’s absorption of foreign substances. The simulation results indicate that a decrease in the contraction width, an increase in the contraction length, and an increase in the average cell velocity could promote the squeezing deformation of the cell as well as the formation of pores on the cell membrane. And the joint action of cell squeezing and electric field enhances cellular absorption of substances. In addition, the change of electrical parameters also affects the results of cell squeezing in conjunction with the electric field. For example, the increased length of electric field pulses improves the cell membrane permeability. However, the electric field intensity must be set in a reasonable range (&lt; several kV/cm) to prevent cell inactivation.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138739646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-printing of micro/nanostructures integrated with preconcentration to enhance protein detection 集成预浓缩功能的微/纳米结构共打印技术可提高蛋白质检测能力
IF 2.8 4区 工程技术 Q2 Physics and Astronomy Pub Date : 2023-12-09 DOI: 10.1007/s10404-023-02699-4
Yi-Jung Lu, Han-Yun Hsieh, Wen-Fai Yang, Kuang-Chong Wu, Hidetoshi Tahara, Pei-Kuen Wei, Horn-Jiunn Sheen, Yu-Jui Fan

This paper reports a fabrication method that can make microstructures such as microfluidic channels and nanostructures to generate surface plasmon resonance (SPR) signals in one-step using hot embossing. We first made a micro/nanostructural mold on a silicon substrate through sequential e-beam lithography, reactive ion etching (RIE), photolithography, and inductively coupled plasma RIE. The fabricated mold and cyclo-olefin polymer (COP) film were pressed between two flat, heated metal bases under optimal conditions, and the micro/nanostructures were complementarily transferred to the COP film. After depositing a thin aluminum film onto the nanostructure, the device was completed by patterning Nafion that crossed two channels and a nearby nanostructure, and by bonding the COP film to a flat polydimethylsiloxane (PDMS) substrate with holes punched for the inlets and outlets. SPR signals of the nanostructures of the microfluidic channel were calibrated using glycerol solutions of different percentages, and a wavelength sensitivity of 393 nm/refractive index unit was found for the Al-based nanoslit SPR sensing chip. To detect macromolecules, we first modified bovine serum albumin (BSA) onto the surface of the SPR chip and then allowed different concentrations of anti-BSA samples to flow into the device. A calibration curve for detecting anti-BSA was constructed, and anti-BSA detection levels with and without preconcentration were compared.

本文报告了一种制造方法,该方法可以利用热压印技术一步制成微流体通道等微结构和纳米结构,从而产生表面等离子体共振(SPR)信号。我们首先通过电子束光刻、活性离子刻蚀(RIE)、光刻和电感耦合等离子体 RIE 在硅基底上制作了微/纳米结构模具。在最佳条件下,将制作好的模具和环烯烃聚合物(COP)薄膜压在两个平整、加热的金属基座之间,然后将微/纳米结构互补地转移到 COP 薄膜上。在纳米结构上沉积一层薄铝膜后,对穿过两个通道和附近纳米结构的 Nafion 进行图案化,并将 COP 薄膜粘合到平面聚二甲基硅氧烷(PDMS)基底上,在入口和出口处打孔,从而完成了该装置。使用不同比例的甘油溶液对微流体通道纳米结构的 SPR 信号进行了校准,发现铝基纳米光 SPR 传感芯片的波长灵敏度为 393 nm/折射率单位。为了检测大分子,我们首先在 SPR 芯片表面修饰了牛血清白蛋白(BSA),然后让不同浓度的抗 BSA 样品流入该装置。我们构建了检测抗 BSA 的校准曲线,并比较了有无预浓缩的抗 BSA 检测水平。
{"title":"Co-printing of micro/nanostructures integrated with preconcentration to enhance protein detection","authors":"Yi-Jung Lu,&nbsp;Han-Yun Hsieh,&nbsp;Wen-Fai Yang,&nbsp;Kuang-Chong Wu,&nbsp;Hidetoshi Tahara,&nbsp;Pei-Kuen Wei,&nbsp;Horn-Jiunn Sheen,&nbsp;Yu-Jui Fan","doi":"10.1007/s10404-023-02699-4","DOIUrl":"10.1007/s10404-023-02699-4","url":null,"abstract":"<div><p>This paper reports a fabrication method that can make microstructures such as microfluidic channels and nanostructures to generate surface plasmon resonance (SPR) signals in one-step using hot embossing. We first made a micro/nanostructural mold on a silicon substrate through sequential e-beam lithography, reactive ion etching (RIE), photolithography, and inductively coupled plasma RIE. The fabricated mold and cyclo-olefin polymer (COP) film were pressed between two flat, heated metal bases under optimal conditions, and the micro/nanostructures were complementarily transferred to the COP film. After depositing a thin aluminum film onto the nanostructure, the device was completed by patterning Nafion that crossed two channels and a nearby nanostructure, and by bonding the COP film to a flat polydimethylsiloxane (PDMS) substrate with holes punched for the inlets and outlets. SPR signals of the nanostructures of the microfluidic channel were calibrated using glycerol solutions of different percentages, and a wavelength sensitivity of 393 nm/refractive index unit was found for the Al-based nanoslit SPR sensing chip. To detect macromolecules, we first modified bovine serum albumin (BSA) onto the surface of the SPR chip and then allowed different concentrations of anti-BSA samples to flow into the device. A calibration curve for detecting anti-BSA was constructed, and anti-BSA detection levels with and without preconcentration were compared.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138559062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-cost sheath-less microfluidic impedance cytometry for point-of-care applications 低成本的无护套微流控阻抗细胞术在护理点的应用
IF 2.8 4区 工程技术 Q2 Physics and Astronomy Pub Date : 2023-12-06 DOI: 10.1007/s10404-023-02697-6
Seied Ali Hosseini, Sanaz Bahrami, Leila Zolghadr, Nematollah Gheibi

The present study introduces a microfluidic device that employs impedance measurement to accurately enumerate cells in suspension. Prior to the development of this device, impedance cytometry microfluidic chips necessitated the use of planar electrodes and sheath fluids, which complicated the system, or utilized small constricted regions that impeded cell movement and reduced operational efficiency. This newly developed device is capable of sensitive and rapid cell enumeration without the need for sheath fluid or planar electrodes, making it suitable for point-of-care applications. Instead of thin-film electrodes, the same needles used for liquid injection were implemented for impedance measurement, thus simplifying the device. The physical parameters of the device were designed using analytical and computer-aided simulations to determine the maximum dimensions required for sensitive detection of human cells. Simulations were also employed to investigate the effects of flow rates, cell shape, and injection method on device performance, and results were compared with experimental findings. Finally, this novel device was tested for its ability to count MCF7 cells at various flow rates and concentrations, with a limit of detection of 32.3 cells per μL being achieved in 1 mL/hr flow rate.

本研究介绍了一种采用阻抗测量的微流控装置来精确计数悬浮细胞。在此设备开发之前,阻抗细胞术微流控芯片需要使用平面电极和鞘液,这使系统复杂化,或者使用阻碍细胞运动和降低操作效率的小收缩区域。这种新开发的设备能够灵敏和快速的细胞计数,而不需要鞘液或平面电极,使其适用于护理点应用。代替薄膜电极,使用与液体注射相同的针头进行阻抗测量,从而简化了设备。利用分析和计算机辅助模拟设计了该装置的物理参数,以确定灵敏检测人体细胞所需的最大尺寸。模拟研究了流速、电池形状和注射方式对器件性能的影响,并与实验结果进行了比较。最后,对该装置在不同流速和浓度下计数MCF7细胞的能力进行了测试,在1 mL/hr流速下,检测限为每μL 32.3个细胞。
{"title":"Low-cost sheath-less microfluidic impedance cytometry for point-of-care applications","authors":"Seied Ali Hosseini,&nbsp;Sanaz Bahrami,&nbsp;Leila Zolghadr,&nbsp;Nematollah Gheibi","doi":"10.1007/s10404-023-02697-6","DOIUrl":"10.1007/s10404-023-02697-6","url":null,"abstract":"<div><p>The present study introduces a microfluidic device that employs impedance measurement to accurately enumerate cells in suspension. Prior to the development of this device, impedance cytometry microfluidic chips necessitated the use of planar electrodes and sheath fluids, which complicated the system, or utilized small constricted regions that impeded cell movement and reduced operational efficiency. This newly developed device is capable of sensitive and rapid cell enumeration without the need for sheath fluid or planar electrodes, making it suitable for point-of-care applications. Instead of thin-film electrodes, the same needles used for liquid injection were implemented for impedance measurement, thus simplifying the device. The physical parameters of the device were designed using analytical and computer-aided simulations to determine the maximum dimensions required for sensitive detection of human cells. Simulations were also employed to investigate the effects of flow rates, cell shape, and injection method on device performance, and results were compared with experimental findings. Finally, this novel device was tested for its ability to count MCF7 cells at various flow rates and concentrations, with a limit of detection of 32.3 cells per μL being achieved in 1 mL/hr flow rate.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-023-02697-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138502329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative analysis for sweat-absorbing times of paper-based microfluidic chips 纸基微流控芯片吸汗次数的定量分析
IF 2.8 4区 工程技术 Q2 Physics and Astronomy Pub Date : 2023-12-02 DOI: 10.1007/s10404-023-02696-7
Heyue Huang, Chuanpei Xu, Peng Long, Yanzhang Chen, Xijun Huang, Zheng Liu, Hong Yang

Structures of paper-based microfluidic chips affect the sweat-absorbing time when they are used for sweat analysis. For the first time, we use COMSOL to establish two types of paper-based chip sweat-absorbing models that can quantitatively analyze this phenomenon. The standard model contains 1089 sweat glands, and the simplified model simplifies it according to the idea of finite element division, including 81 sweat glands. Sweat flows in from the bottom of the paper-based chip and out from the electrode contact surface (the upper surface of the central cylinder of the paper-based chip). Both models contain six paper-based chip structures, use Richards’ equation as the governing equation, set the outflow velocity to 0, and set the sweating rate of a sweat gland at 0.6 (mu)L/min. In the standard model, it takes only 46 s for the paper-based structure with the fastest sweat-absorbing speed to completely saturate the electrode contact surface with sweat (meaning the sweat-absorbing time is 46 s), which is 13.06(%) shorter than that of the slowest structure. In the simplified model, the top 3 structures of sweat-absorbing speed are consistent with the standard model. The simulation results show that the sweat-absorbing time is positively correlated with the H value of the bottom surface of the paper-based structure (defined as the area of the bottom surface /the area of sweat glands covered by the bottom surface), which can be proved by analytical and experimental methods. The analytical method proves that this conclusion can be generalized to other sweating rate conditions.

纸基微流控芯片在进行汗液分析时,其结构对吸汗时间有影响。我们首次使用COMSOL建立了两种纸基芯片吸汗模型,可以定量分析这一现象。标准模型包含1089个汗腺,简化模型根据有限元划分的思想进行简化,包括81个汗腺。汗液从纸基芯片的底部流入,从电极接触面(纸基芯片中心圆筒的上表面)流出。两种模型均包含6个基于纸张的芯片结构,采用Richards方程作为控制方程,将流出流速设为0,将汗腺排汗速率设为0.6 (mu) L/min。在标准模型中,吸汗速度最快的纸基结构将汗水完全浸透电极接触面只需要46 s(即吸汗时间为46 s),比吸汗速度最慢的纸基结构缩短了13.06 (%)。简化模型中吸汗速度的前3个结构与标准模型一致。仿真结果表明,吸汗时间与纸基结构底面的H值(定义为底面面积/底面覆盖的汗腺面积)呈正相关,可以通过分析和实验方法加以证明。分析方法证明,该结论可推广到其他出汗率条件。
{"title":"Quantitative analysis for sweat-absorbing times of paper-based microfluidic chips","authors":"Heyue Huang,&nbsp;Chuanpei Xu,&nbsp;Peng Long,&nbsp;Yanzhang Chen,&nbsp;Xijun Huang,&nbsp;Zheng Liu,&nbsp;Hong Yang","doi":"10.1007/s10404-023-02696-7","DOIUrl":"10.1007/s10404-023-02696-7","url":null,"abstract":"<div><p>Structures of paper-based microfluidic chips affect the sweat-absorbing time when they are used for sweat analysis. For the first time, we use COMSOL to establish two types of paper-based chip sweat-absorbing models that can quantitatively analyze this phenomenon. The standard model contains 1089 sweat glands, and the simplified model simplifies it according to the idea of finite element division, including 81 sweat glands. Sweat flows in from the bottom of the paper-based chip and out from the electrode contact surface (the upper surface of the central cylinder of the paper-based chip). Both models contain six paper-based chip structures, use Richards’ equation as the governing equation, set the outflow velocity to 0, and set the sweating rate of a sweat gland at 0.6 <span>(mu)</span>L/min. In the standard model, it takes only 46 s for the paper-based structure with the fastest sweat-absorbing speed to completely saturate the electrode contact surface with sweat (meaning the sweat-absorbing time is 46 s), which is 13.06<span>(%)</span> shorter than that of the slowest structure. In the simplified model, the top 3 structures of sweat-absorbing speed are consistent with the standard model. The simulation results show that the sweat-absorbing time is positively correlated with the H value of the bottom surface of the paper-based structure (defined as the area of the bottom surface /the area of sweat glands covered by the bottom surface), which can be proved by analytical and experimental methods. The analytical method proves that this conclusion can be generalized to other sweating rate conditions.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138480844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boundary slip moderated by interfacial hydrogen bond dynamics 界面氢键动力学缓和边界滑移
IF 2.8 4区 工程技术 Q2 Physics and Astronomy Pub Date : 2023-11-02 DOI: 10.1007/s10404-023-02695-8
JinChuan Li, KeLi Zhang, JingCun Fan, HengAn Wu, FengChao Wang

Understanding the slip behaviors on the graphene surfaces is crucial in the field of nanofluidics and nanofluids. The reported values of the slip length in the literature from both experimental measurements and simulations are quite scattered. The presence of low concentrations of functional groups may have a greater impact on the flow behavior than expected. Using non-equilibrium molecular dynamics simulations, we specifically investigated the influence of hydroxyl-functionalized graphene surfaces on the boundary slip, particularly the effects related to hydrogen bond dynamics. We observed that hydroxyl groups significantly hindered the sliding motion of neighboring water molecules. Hydrogen bonds can be found between hydroxyl groups and water molecules. During the flow process, these hydrogen bonds continuously form and break, resulting in the energy dissipation. We analyzed the energy balance under different driving forces and proposed a theoretical model to describe the slip length which also considers the influence of hydrogen bond dynamics. The effects of the driving force and the surface functional group concentration were also studied.

了解石墨烯表面的滑移行为在纳米流体和纳米流体领域至关重要。从实验测量和模拟的文献中报道的滑移长度值是相当分散的。低浓度官能团的存在可能对流动行为产生比预期更大的影响。利用非平衡分子动力学模拟,我们专门研究了羟基功能化石墨烯表面对边界滑移的影响,特别是与氢键动力学相关的影响。我们观察到羟基显著地阻碍了邻近水分子的滑动运动。氢键可以在羟基和水分子之间找到。在流动过程中,这些氢键不断形成和断裂,导致能量耗散。分析了不同驱动力下的能量平衡,提出了考虑氢键动力学影响的滑移长度的理论模型。研究了驱动力和表面官能团浓度的影响。
{"title":"Boundary slip moderated by interfacial hydrogen bond dynamics","authors":"JinChuan Li,&nbsp;KeLi Zhang,&nbsp;JingCun Fan,&nbsp;HengAn Wu,&nbsp;FengChao Wang","doi":"10.1007/s10404-023-02695-8","DOIUrl":"10.1007/s10404-023-02695-8","url":null,"abstract":"<div><p>Understanding the slip behaviors on the graphene surfaces is crucial in the field of nanofluidics and nanofluids. The reported values of the slip length in the literature from both experimental measurements and simulations are quite scattered. The presence of low concentrations of functional groups may have a greater impact on the flow behavior than expected. Using non-equilibrium molecular dynamics simulations, we specifically investigated the influence of hydroxyl-functionalized graphene surfaces on the boundary slip, particularly the effects related to hydrogen bond dynamics. We observed that hydroxyl groups significantly hindered the sliding motion of neighboring water molecules. Hydrogen bonds can be found between hydroxyl groups and water molecules. During the flow process, these hydrogen bonds continuously form and break, resulting in the energy dissipation. We analyzed the energy balance under different driving forces and proposed a theoretical model to describe the slip length which also considers the influence of hydrogen bond dynamics. The effects of the driving force and the surface functional group concentration were also studied.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134795434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lab on a chip for detecting Clara cell protein 16 (CC16) for potential screening of the workers exposed to respirable silica aerosol. 用于检测克拉拉细胞蛋白 16(CC16)的芯片实验室,可用于筛查暴露于可吸入二氧化硅气溶胶的工人。
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2023-11-01
Chong Ahn, Taekhee Lee, Jae Hoon Shin, Jong Seong Lee, V Thiyagarajan Upaassana, Sthitodhi Ghosh, Bon Ki Ku

Early detection of pulmonary responses to silica aerosol exposure, such as lung inflammation as well as early identification of silicosis initiation, is of great importance in disease prevention of workers. In this study, to early screen the health condition of the workers who are exposed to respirable silica dusts, an immunoassay lab on a chip (LOC) was designed, developed and fully characterized for analyzing Clara cell protein 16 (CC16) in serum which has been considered as one of the potential biomarkers of lung inflammation or lung damage due to the respirable silica dusts. Sandwich immunoassay of CC16 was performed on the LOC developed with a custom-designed portable analyzer using artificial serums spiked with CC16 protein first and then human serums obtained from the coal mine workers exposed to the respirable silica-containing dusts. The dynamic range of CC16 assay performed on the LOC was in a range of 0.625-20 ng/mL, and the achieved limit of detection (LOD) was around 0.35 ng/mL. The assay results of CC16 achieved from both the developed LOC and the conventional 96 well plate showed a reasonable corelation. The correlation between the conventional reader and the developed portable analyzer was found to be reasonable, resulting in R2 ~ 0.93. This study shows that the LOC developed for the early detection of CC16 can be potentially applied for the development of a field-deployable point-of-care testing (POCT) for the early monitoring of the field workers who are exposed to silica aerosol.

早期检测接触二氧化硅气溶胶的肺部反应(如肺部炎症)以及早期识别矽肺病的诱发因素,对工人的疾病预防具有重要意义。为了早期筛查暴露于可吸入二氧化硅粉尘的工人的健康状况,本研究设计、开发了一种芯片上免疫测定实验室(LOC),并对其进行了全面鉴定,用于分析血清中的克拉细胞蛋白 16(CC16),该蛋白被认为是可吸入二氧化硅粉尘导致肺部炎症或肺损伤的潜在生物标志物之一。首先使用添加了 CC16 蛋白的人工血清,然后使用从暴露于含可吸入二氧化硅粉尘的煤矿工人处获得的人体血清,在定制设计的便携式分析仪开发的 LOC 上进行了 CC16 的三明治免疫测定。在 LOC 上进行的 CC16 检测的动态范围为 0.625-20 纳克/毫升,检出限(LOD)约为 0.35 纳克/毫升。开发的 LOC 和传统 96 孔板的 CC16 检测结果显示出合理的相关性。传统阅读器与开发的便携式分析仪之间的相关性也很合理,R2 ~ 0.93。这项研究表明,所开发的用于早期检测 CC16 的 LOC 有可能被用于开发一种可现场部署的护理点检测(POCT),以对暴露于二氧化硅气溶胶的现场工作人员进行早期监测。
{"title":"Lab on a chip for detecting Clara cell protein 16 (CC16) for potential screening of the workers exposed to respirable silica aerosol.","authors":"Chong Ahn, Taekhee Lee, Jae Hoon Shin, Jong Seong Lee, V Thiyagarajan Upaassana, Sthitodhi Ghosh, Bon Ki Ku","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Early detection of pulmonary responses to silica aerosol exposure, such as lung inflammation as well as early identification of silicosis initiation, is of great importance in disease prevention of workers. In this study, to early screen the health condition of the workers who are exposed to respirable silica dusts, an immunoassay lab on a chip (LOC) was designed, developed and fully characterized for analyzing Clara cell protein 16 (CC16) in serum which has been considered as one of the potential biomarkers of lung inflammation or lung damage due to the respirable silica dusts. Sandwich immunoassay of CC16 was performed on the LOC developed with a custom-designed portable analyzer using artificial serums spiked with CC16 protein first and then human serums obtained from the coal mine workers exposed to the respirable silica-containing dusts. The dynamic range of CC16 assay performed on the LOC was in a range of 0.625-20 ng/mL, and the achieved limit of detection (LOD) was around 0.35 ng/mL. The assay results of CC16 achieved from both the developed LOC and the conventional 96 well plate showed a reasonable corelation. The correlation between the conventional reader and the developed portable analyzer was found to be reasonable, resulting in <i>R</i><sup>2</sup> ~ 0.93. This study shows that the LOC developed for the early detection of CC16 can be potentially applied for the development of a field-deployable point-of-care testing (POCT) for the early monitoring of the field workers who are exposed to silica aerosol.</p>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10772934/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139401355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computation of flow rates in rarefied gas flow through circular tubes via machine learning techniques 利用机器学习技术计算稀薄气体流经圆管的流速
IF 2.8 4区 工程技术 Q2 Physics and Astronomy Pub Date : 2023-10-27 DOI: 10.1007/s10404-023-02689-6
F. Sofos, C. Dritselis, S. Misdanitis, T. Karakasidis, D. Valougeorgis

Kinetic theory and modeling have been proven extremely suitable in computing the flow rates in rarefied gas pipe flows, but they are computationally expensive and more importantly not practical in design and optimization of micro- and vacuum systems. In an effort to reduce the computational cost and improve accessibility when dealing with such systems, two efficient methods are employed by leveraging machine learning (ML). More specifically, random forest regression (RFR) and symbolic regression (SR) have been adopted, suggesting a framework capable of extracting numerical predictions and analytical equations, respectively, exclusively derived from data. The database of the reduced flow rates W used in the current ML framework has been obtained using kinetic modeling and it refers to nonlinear flows through circular tubes (tube length over radius (l in [0,5]) and downstream over upstream pressure (p in [0,0.9])) in a very wide range of the gas rarefaction parameter (delta in [0,10^3]). The accuracy of both RFR and SR models is assessed using statistical metrics, as well as the relative error between the ML predictions and the kinetic database. The predictions obtained by RFR show very good fit on the simulation data, having a maximum absolute relative error of less than (12.5%). Various expressions of the form of (W=W(p,l,delta )) with different accuracy and complexity are acquired from SR. The proposed equation, valid in the whole range of the relevant parameters, exhibits a maximum absolute relative error less than (17%). To further improve the accuracy, the dataset is divided into three subsets in terms of (delta) and one SR-based closed-form expression of each subset is proposed, achieving a maximum absolute relative error smaller than (9%). Very good performance of all proposed equations is observed, as indicated by the obtained accuracy measures. Overall, the present ML-predicted data may be very useful in gaseous microfluidics and vacuum technology for engineering purposes.

动力学理论和模型已被证明非常适用于计算稀薄气体管道流动的流量,但它们的计算成本很高,更重要的是在微系统和真空系统的设计和优化中不实用。在处理此类系统时,为了降低计算成本并提高可访问性,利用机器学习(ML)采用了两种有效的方法。更具体地说,采用了随机森林回归(RFR)和符号回归(SR),提出了一个能够分别从数据中提取数值预测和分析方程的框架。目前ML框架中使用的降低流量W数据库是通过动力学建模获得的,它指的是在很宽的气体稀薄参数(delta in [0,10^3])范围内通过圆管(管长除以半径(l in [0,5])和下游除以上游压力(p in [0,0.9]))的非线性流动。使用统计指标评估RFR和SR模型的准确性,以及ML预测与动力学数据库之间的相对误差。RFR预测结果与模拟数据拟合良好,最大绝对相对误差小于(12.5%)。由sr得到了不同精度和复杂度的(W=W(p,l,delta ))形式的表达式。所提出的方程在所有相关参数范围内都有效,其最大绝对相对误差小于(17%)。为了进一步提高准确率,将数据集按(delta)划分为三个子集,并对每个子集提出一个基于sr的封闭形式表达式,最大绝对相对误差小于(9%)。所有提出的方程都有很好的性能,正如所获得的精度测量所表明的那样。总的来说,目前的机器学习预测数据可能对气体微流体和真空技术的工程用途非常有用。
{"title":"Computation of flow rates in rarefied gas flow through circular tubes via machine learning techniques","authors":"F. Sofos,&nbsp;C. Dritselis,&nbsp;S. Misdanitis,&nbsp;T. Karakasidis,&nbsp;D. Valougeorgis","doi":"10.1007/s10404-023-02689-6","DOIUrl":"10.1007/s10404-023-02689-6","url":null,"abstract":"<div><p>Kinetic theory and modeling have been proven extremely suitable in computing the flow rates in rarefied gas pipe flows, but they are computationally expensive and more importantly not practical in design and optimization of micro- and vacuum systems. In an effort to reduce the computational cost and improve accessibility when dealing with such systems, two efficient methods are employed by leveraging machine learning (ML). More specifically, random forest regression (RFR) and symbolic regression (SR) have been adopted, suggesting a framework capable of extracting numerical predictions and analytical equations, respectively, exclusively derived from data. The database of the reduced flow rates <i>W</i> used in the current ML framework has been obtained using kinetic modeling and it refers to nonlinear flows through circular tubes (tube length over radius <span>(l in [0,5])</span> and downstream over upstream pressure <span>(p in [0,0.9])</span>) in a very wide range of the gas rarefaction parameter <span>(delta in [0,10^3])</span>. The accuracy of both RFR and SR models is assessed using statistical metrics, as well as the relative error between the ML predictions and the kinetic database. The predictions obtained by RFR show very good fit on the simulation data, having a maximum absolute relative error of less than <span>(12.5%)</span>. Various expressions of the form of <span>(W=W(p,l,delta ))</span> with different accuracy and complexity are acquired from SR. The proposed equation, valid in the whole range of the relevant parameters, exhibits a maximum absolute relative error less than <span>(17%)</span>. To further improve the accuracy, the dataset is divided into three subsets in terms of <span>(delta)</span> and one SR-based closed-form expression of each subset is proposed, achieving a maximum absolute relative error smaller than <span>(9%)</span>. Very good performance of all proposed equations is observed, as indicated by the obtained accuracy measures. Overall, the present ML-predicted data may be very useful in gaseous microfluidics and vacuum technology for engineering purposes.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-023-02689-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134797671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The mechanisms and properties of inertial microfluidics: from fundamental models to biomedical applications 惯性微流体的机理和特性:从基本模型到生物医学应用
IF 2.8 4区 工程技术 Q2 Physics and Astronomy Pub Date : 2023-10-25 DOI: 10.1007/s10404-023-02692-x
Shlok Mishra, Joydeb Mukherjee, Deepa Chaturvedi, Ratnesh Jain, Prajakta Dandekar

With continuous efforts of researchers all over the world, the field of inertial microfluidics is constantly growing, to cater to the requirements of diverse areas like healthcare, biological and chemical analysis, materials synthesis, etc. The scale, automation, or unique physics of these systems has been expanding their scope of applications. In this review article, we have provided insights into the fundamental mechanisms of inertial microfluidics, the forces involved, the interactions and effects of different applied forces on the suspended particles, the underlying physics of these systems, and the description of numerical studies, which are the prime factors that govern designing of effective and practical devices.. Further, we describe how various forces lead to the migration and focusing of suspended particles at equilibrium positions in channels with different cross-sections and also review various factors affecting the same. We also focus on the effect of suspended particles on the flow of fluids within these systems. Furthermore, we discuss how Dean flows are created in a curved channel and how different structures affect the creation of secondary flows, and their application to mixing, manipulating, and focusing particles as fluid. Finally, we describe various applications of microfluidics for diagnostic and other clinical purposes, and discuss the challenges and advancements in this field. We anticipate that this manuscript will elucidate the basics and quantitative aspects of inertial fluid dynamic effects for application in biomedicines, materials synthesis, chemical process control, and beyond.

Graphical abstract

随着世界各地研究人员的不断努力,惯性微流体领域正在不断发展,以满足医疗保健、生物和化学分析、材料合成等不同领域的要求。这些系统的规模、自动化或独特的物理特性不断扩大其应用范围。在这篇综述文章中,我们深入了解了惯性微流体的基本机制、所涉及的力、不同作用力对悬浮颗粒的相互作用和影响、这些系统的基本物理特性以及数值研究的描述,这些都是控制有效和实用装置设计的主要因素。。此外,我们描述了各种力如何导致悬浮颗粒在不同横截面通道中平衡位置的迁移和聚焦,并回顾了影响迁移和聚焦的各种因素。我们还关注悬浮颗粒对这些系统内流体流动的影响。此外,我们还讨论了Dean流是如何在弯曲通道中产生的,不同的结构如何影响二次流的产生,以及它们在混合、操纵和聚焦作为流体的粒子方面的应用。最后,我们描述了微流体在诊断和其他临床目的中的各种应用,并讨论了该领域的挑战和进展。我们预计,这篇手稿将阐明惯性流体动力学效应的基础和定量方面,用于生物医学、材料合成、化学过程控制等领域。图形摘要
{"title":"The mechanisms and properties of inertial microfluidics: from fundamental models to biomedical applications","authors":"Shlok Mishra,&nbsp;Joydeb Mukherjee,&nbsp;Deepa Chaturvedi,&nbsp;Ratnesh Jain,&nbsp;Prajakta Dandekar","doi":"10.1007/s10404-023-02692-x","DOIUrl":"10.1007/s10404-023-02692-x","url":null,"abstract":"<div><p>With continuous efforts of researchers all over the world, the field of inertial microfluidics is constantly growing, to cater to the requirements of diverse areas like healthcare, biological and chemical analysis, materials synthesis, etc. The scale, automation, or unique physics of these systems has been expanding their scope of applications. In this review article, we have provided insights into the fundamental mechanisms of inertial microfluidics, the forces involved, the interactions and effects of different applied forces on the suspended particles, the underlying physics of these systems, and the description of numerical studies, which are the prime factors that govern designing of effective and practical devices.. Further, we describe how various forces lead to the migration and focusing of suspended particles at equilibrium positions in channels with different cross-sections and also review various factors affecting the same. We also focus on the effect of suspended particles on the flow of fluids within these systems. Furthermore, we discuss how Dean flows are created in a curved channel and how different structures affect the creation of secondary flows, and their application to mixing, manipulating, and focusing particles as fluid. Finally, we describe various applications of microfluidics for diagnostic and other clinical purposes, and discuss the challenges and advancements in this field. We anticipate that this manuscript will elucidate the basics and quantitative aspects of inertial fluid dynamic effects for application in biomedicines, materials synthesis, chemical process control, and beyond.</p><h3>Graphical abstract</h3>\u0000 <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\u0000 </div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50514203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Particle separation based on dielectrophoresis force using boundary element method and point-particle approach in a microfluidic channel 微流体通道中基于介电电泳力的边界元法和点粒子法粒子分离
IF 2.8 4区 工程技术 Q2 Physics and Astronomy Pub Date : 2023-10-24 DOI: 10.1007/s10404-023-02694-9
Mostafa Olfat, Erfan Kadivar

Active sorting of particle in the dielectrophoresis microfluidic channel by applying the boundary element method and point-particle approach is investigated. In this paper, we investigate the dynamics of particle sorting for various particle sizes, electrode potential, electrode spacing, and relative permittivity. The microfluidic device consists a straight mother channel, two inlets, two outlets, and up and down triangular electrodes. The boundary element method is applied to numerically solve the integral equations of the Laplace differential equation of electric potential and Stokes differential equation. In continue, the dynamics of particle separation using the point-particle approach is investigated. Numerical results indicate that there are three different particle sorting regimes. They are called by up-outlet, down-outlet, and trapped regimes. The results illustrate that there are a good agreement between two numerical approaches.

应用边界元法和点粒子法研究了介电电泳微流体通道中粒子的主动分选。在本文中,我们研究了不同颗粒尺寸、电极电势、电极间距和相对介电常数的颗粒分选动力学。微流体装置由一个直的母通道、两个入口、两个出口和上下三角形电极组成。应用边界元法对拉普拉斯电位微分方程和斯托克斯微分方程的积分方程进行了数值求解。在继续,使用点粒子方法研究粒子分离的动力学。数值结果表明,存在三种不同的颗粒分选方式。它们被上行出口、下行出口和受困政权所召唤。结果表明,两种数值方法之间有很好的一致性。
{"title":"Particle separation based on dielectrophoresis force using boundary element method and point-particle approach in a microfluidic channel","authors":"Mostafa Olfat,&nbsp;Erfan Kadivar","doi":"10.1007/s10404-023-02694-9","DOIUrl":"10.1007/s10404-023-02694-9","url":null,"abstract":"<div><p>Active sorting of particle in the dielectrophoresis microfluidic channel by applying the boundary element method and point-particle approach is investigated. In this paper, we investigate the dynamics of particle sorting for various particle sizes, electrode potential, electrode spacing, and relative permittivity. The microfluidic device consists a straight mother channel, two inlets, two outlets, and up and down triangular electrodes. The boundary element method is applied to numerically solve the integral equations of the Laplace differential equation of electric potential and Stokes differential equation. In continue, the dynamics of particle separation using the point-particle approach is investigated. Numerical results indicate that there are three different particle sorting regimes. They are called by up-outlet, down-outlet, and trapped regimes. The results illustrate that there are a good agreement between two numerical approaches.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-023-02694-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50511015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microfluidics and Nanofluidics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1