首页 > 最新文献

Microfluidics and Nanofluidics最新文献

英文 中文
Synergistic thermal and hydrodynamic effects in 3D-printed heat sinks with intricate microchannel patterns 具有复杂微通道图案的 3D 打印散热器中的热效应和流体力学效应的协同作用
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-08-05 DOI: 10.1007/s10404-024-02751-x
Win-Jet Luo, Pramod Vishwakarma, Bivas Panigrahi

A compelling solution to the issue of high heat flux generated by flexible electronic devices has been found in liquid-based microfluidic cooling devices. It has been earlier realized that the varying microchannel hydrodynamics influences the overall heat transfer in these devices. However, microfluidic cooling devices that incorporate intricate microchannels have not been explored to their full potential. In this study, we investigate the use of 3-D intricate microchannel geometries in microfluidic heat sinks, their generated hydrodynamics, and their profound impact on the overall heat transfer process. Utilizing 3D-printed scaffold removal technology, three distinct microfluidic devices were fabricated, each distinguishable by its cross-sectional shape of the microchannel designs (coil, square, and triangle). These microfluidic devices, based on Polydimethylsiloxane-Graphene oxide (PDMS-GO) as substrate material, have been examined experimentally and numerically for their heat dissipation capacities under constant temperature heat source of 358 K at flow rates ranging from 40 to 400 μL/min. Experimental observation illustrates that the coil-microchannel configuration exhibited superior heat dissipation capabilities, outperforming both the square and triangle microchannels across all flow settings. Furthermore, numerical simulations corroborated this experimental finding by providing insights into through-plane temperature distribution, heat transfer coefficient, pressure drop, and channel hydrodynamics. Our study intends to advance the understanding of microchannel cooling, as well as emphasizes the importance of geometrical configuration towards optimal electronic hotspot cooling.

对于柔性电子设备产生的高热通量问题,液基微流体冷却设备是一个令人信服的解决方案。人们较早意识到,不同的微通道流体力学会影响这些设备的整体热传递。然而,包含复杂微通道的微流体冷却设备尚未被充分挖掘其潜力。在本研究中,我们研究了微流体散热器中三维复杂微通道几何形状的使用、其产生的流体力学以及它们对整个传热过程的深远影响。利用三维打印支架移除技术,我们制造出了三种不同的微流体装置,每种装置都可通过微通道设计的横截面形状(线圈、方形和三角形)加以区分。这些微流控装置以聚二甲基硅氧烷-氧化石墨烯(PDMS-GO)为基底材料,在 358 K 的恒温热源条件下,以 40 至 400 μL/min 的流速对其散热能力进行了实验和数值检验。实验观察结果表明,线圈微通道配置的散热能力更强,在所有流量设置下均优于方形和三角形微通道。此外,数值模拟也证实了这一实验结果,并提供了对通面温度分布、传热系数、压降和通道流体力学的深入了解。我们的研究旨在推进对微通道冷却的理解,并强调几何配置对优化电子热点冷却的重要性。
{"title":"Synergistic thermal and hydrodynamic effects in 3D-printed heat sinks with intricate microchannel patterns","authors":"Win-Jet Luo,&nbsp;Pramod Vishwakarma,&nbsp;Bivas Panigrahi","doi":"10.1007/s10404-024-02751-x","DOIUrl":"10.1007/s10404-024-02751-x","url":null,"abstract":"<div><p>A compelling solution to the issue of high heat flux generated by flexible electronic devices has been found in liquid-based microfluidic cooling devices. It has been earlier realized that the varying microchannel hydrodynamics influences the overall heat transfer in these devices. However, microfluidic cooling devices that incorporate intricate microchannels have not been explored to their full potential. In this study, we investigate the use of 3-D intricate microchannel geometries in microfluidic heat sinks, their generated hydrodynamics, and their profound impact on the overall heat transfer process. Utilizing 3D-printed scaffold removal technology, three distinct microfluidic devices were fabricated, each distinguishable by its cross-sectional shape of the microchannel designs (coil, square, and triangle). These microfluidic devices, based on Polydimethylsiloxane-Graphene oxide (PDMS-GO) as substrate material, have been examined experimentally and numerically for their heat dissipation capacities under constant temperature heat source of 358 K at flow rates ranging from 40 to 400 μL/min. Experimental observation illustrates that the coil-microchannel configuration exhibited superior heat dissipation capabilities, outperforming both the square and triangle microchannels across all flow settings. Furthermore, numerical simulations corroborated this experimental finding by providing insights into through-plane temperature distribution, heat transfer coefficient, pressure drop, and channel hydrodynamics. Our study intends to advance the understanding of microchannel cooling, as well as emphasizes the importance of geometrical configuration towards optimal electronic hotspot cooling.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 9","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141940307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Template-assisted fabrication of moon-shaped channels for protein breakthrough analysis 模板辅助制造用于蛋白质突破分析的月形通道
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-07-31 DOI: 10.1007/s10404-024-02755-7
Raghu K. Moorthy, Serena D’Souza, P. Sunthar, Santosh B. Noronha

Cylindrical column with packed stationary phase is the workhorse of liquid chromatography systems. These stationary phases are commonly classified on the basis of different form factors namely, beads and monoliths for protein chromatography. Monolithic rods are one of the important geometries derived from polymers through complex polymerization schemes with additional requirements such as cross-linkers and specific reaction conditions. To address these practical difficulties and enable ease of fabrication at laboratory scale, acrylic copolymers are hypothesized to perform as a monolithic stationary phase suitable for protein chromatography. The present work proposes a rapid fabrication technique to obtain monolithic rods that could be reconditioned without any of the above additional steps. It is characterized with monolith diameter that could be controlled using acrylic copolymer concentration. Formation of the copolymeric stationary phase inside microchannel led to annular geometry and in turn, demonstrated fabrication of moon-shaped channels (MSCs) for the first time in literature. An online monitoring system facilitated tracer breakthrough analysis with MSCs to report sharp peak front and an estimate of channel void volume. Breakthrough curves with single protein validated the selection of blue dextran as tracer and indicated retention of proteins due to electrostatic interactions on the functional copolymer surface.

带有填料固定相的圆柱形色谱柱是液相色谱系统的主力。这些固定相通常根据不同的形式因素进行分类,即用于蛋白质色谱的珠状固定相和整体固定相。整体柱是重要的几何形状之一,它是通过复杂的聚合方案从聚合物中衍生出来的,还需要交联剂和特定的反应条件等额外要求。为了解决这些实际困难并方便实验室规模的制造,我们假设丙烯酸共聚物可用作适用于蛋白质色谱法的整体固定相。本研究提出了一种快速制备技术,可获得整体棒材,且无需任何上述额外步骤即可进行翻新。该技术的特点是可通过丙烯酸共聚物的浓度来控制整体柱的直径。共聚物固定相在微通道内的形成导致了环形几何形状,进而在文献中首次展示了月形通道(MSC)的制造。在线监测系统有助于对 MSCs 进行示踪剂突破分析,报告尖锐的峰值前沿并估算通道空隙体积。单个蛋白质的突破曲线验证了选择蓝色葡聚糖作为示踪剂的正确性,并表明由于功能共聚物表面的静电作用,蛋白质得以保留。
{"title":"Template-assisted fabrication of moon-shaped channels for protein breakthrough analysis","authors":"Raghu K. Moorthy,&nbsp;Serena D’Souza,&nbsp;P. Sunthar,&nbsp;Santosh B. Noronha","doi":"10.1007/s10404-024-02755-7","DOIUrl":"10.1007/s10404-024-02755-7","url":null,"abstract":"<div><p>Cylindrical column with packed stationary phase is the workhorse of liquid chromatography systems. These stationary phases are commonly classified on the basis of different form factors namely, beads and monoliths for protein chromatography. Monolithic rods are one of the important geometries derived from polymers through complex polymerization schemes with additional requirements such as cross-linkers and specific reaction conditions. To address these practical difficulties and enable ease of fabrication at laboratory scale, acrylic copolymers are hypothesized to perform as a monolithic stationary phase suitable for protein chromatography. The present work proposes a rapid fabrication technique to obtain monolithic rods that could be reconditioned without any of the above additional steps. It is characterized with monolith diameter that could be controlled using acrylic copolymer concentration. Formation of the copolymeric stationary phase inside microchannel led to annular geometry and in turn, demonstrated fabrication of moon-shaped channels (MSCs) for the first time in literature. An online monitoring system facilitated tracer breakthrough analysis with MSCs to report sharp peak front and an estimate of channel void volume. Breakthrough curves with single protein validated the selection of blue dextran as tracer and indicated retention of proteins due to electrostatic interactions on the functional copolymer surface.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SERS-active core-satellite nanostructures in a membrane filter-integrated microfluidic device for sensitive and continuous detection of trace molecules 用于灵敏、连续检测痕量分子的膜过滤器集成微流控装置中的 SERS 活性核心卫星纳米结构
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-07-30 DOI: 10.1007/s10404-024-02756-6
Li-An Wu, Kai-Ting Hsieh, Chien-Shen Lin, Yuh-Lin Wang, Yih-Fan Chen

We developed a surface-enhanced Raman scattering (SERS)-active plasmonic core-satellite nanostructure and incorporated it into a membrane filter-integrated microfluidic device for continuous monitoring of molecules in solution. The core-satellite nanostructures were fabricated by immobilizing a high number density of gold nanoparticles (AuNPs) on silica beads.to create many nanogaps among the AuNPs. The sizes of the nanogaps were fine-tuned by adding a silver (Ag) shell to optimize the SERS activity. In addition, citrate molecule, the capping agent of the nanoparticles, was displaced by alkali halides. The displacement not only reduced the SERS signals of citrate but also enhanced the adsorption of target molecules. The alkali halide-treated core-satellite nanostructures were accumulated onto a membrane filter integrated into a microfluidic device, serving as a uniform and sensitive SERS substrate. By increasing the volume of the sample solution flowing through the membrane filter, we increased the number of molecules adsorbed to the nanostructures, amplifying the intensities of their characteristic Raman peaks. Our microfluidic SERS device demonstrated continuous SERS detection of malachite green at a concentration as low as 500 fM. In summary, while various core-satellite nanostructures and microfluidic SERS devices have been reported, the integration of the membrane filter-containing microfluidic device with the core-satellite nanostructures facilitated sensitive and continuous molecule detection in our study.

我们开发了一种表面增强拉曼散射(SERS)活性等离子体核心-卫星纳米结构,并将其纳入膜过滤集成微流控装置,用于连续监测溶液中的分子。核心-卫星纳米结构是通过将高密度的金纳米粒子(AuNPs)固定在二氧化硅珠上,在AuNPs之间形成许多纳米间隙而制成的。通过添加银(Ag)壳对纳米间隙的大小进行微调,以优化 SERS 活性。此外,纳米粒子的封端剂柠檬酸盐分子被碱卤化物置换。这种置换不仅降低了柠檬酸盐的 SERS 信号,还增强了对目标分子的吸附。经碱卤化物处理的核心-卫星纳米结构被积聚到集成到微流控装置中的膜过滤器上,作为均匀、灵敏的 SERS 基底。通过增加流经膜过滤器的样品溶液体积,我们增加了纳米结构上吸附的分子数量,从而放大了其特征拉曼峰的强度。我们的微流控 SERS 设备在孔雀石绿浓度低至 500 fM 时就能对其进行连续 SERS 检测。总之,虽然已有各种核心卫星纳米结构和微流控 SERS 装置的报道,但在我们的研究中,含膜过滤器的微流控装置与核心卫星纳米结构的整合促进了灵敏和连续的分子检测。
{"title":"SERS-active core-satellite nanostructures in a membrane filter-integrated microfluidic device for sensitive and continuous detection of trace molecules","authors":"Li-An Wu,&nbsp;Kai-Ting Hsieh,&nbsp;Chien-Shen Lin,&nbsp;Yuh-Lin Wang,&nbsp;Yih-Fan Chen","doi":"10.1007/s10404-024-02756-6","DOIUrl":"10.1007/s10404-024-02756-6","url":null,"abstract":"<div><p>We developed a surface-enhanced Raman scattering (SERS)-active plasmonic core-satellite nanostructure and incorporated it into a membrane filter-integrated microfluidic device for continuous monitoring of molecules in solution. The core-satellite nanostructures were fabricated by immobilizing a high number density of gold nanoparticles (AuNPs) on silica beads.to create many nanogaps among the AuNPs. The sizes of the nanogaps were fine-tuned by adding a silver (Ag) shell to optimize the SERS activity. In addition, citrate molecule, the capping agent of the nanoparticles, was displaced by alkali halides. The displacement not only reduced the SERS signals of citrate but also enhanced the adsorption of target molecules. The alkali halide-treated core-satellite nanostructures were accumulated onto a membrane filter integrated into a microfluidic device, serving as a uniform and sensitive SERS substrate. By increasing the volume of the sample solution flowing through the membrane filter, we increased the number of molecules adsorbed to the nanostructures, amplifying the intensities of their characteristic Raman peaks. Our microfluidic SERS device demonstrated continuous SERS detection of malachite green at a concentration as low as 500 fM. In summary, while various core-satellite nanostructures and microfluidic SERS devices have been reported, the integration of the membrane filter-containing microfluidic device with the core-satellite nanostructures facilitated sensitive and continuous molecule detection in our study.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-024-02756-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pressure drop and bubble velocity in Taylor flow through square microchannel 泰勒流经方形微通道时的压降和气泡速度
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-07-30 DOI: 10.1007/s10404-024-02750-y
Ryo Kurimoto, Kosuke Hayashi, Akio Tomiyama

Interface tracking simulations of gas–liquid Taylor flow in horizontal square microchannels were carried out to understand the relation between the pressure drop in the bubble part and the curvatures at the nose and tail of a bubble. Numerical conditions ranged for 0.00159 ≤ CaT ≤ 0.0989, 0.0817 ≤ WeT ≤ 25.4, and 8.33 ≤ ReT ≤ 791, where CaT, WeT, and ReT are the capillary, Weber, and Reynolds numbers based on the total volumetric flux. The dimensionless pressure drop in the bubble part increased with increasing the capillary number and the Weber number. The curvature at the nose of a bubble increased and that at the tail of a bubble decreased as the capillary number increased. The variation of the curvature at the tail of a bubble was more remarkable than that at the nose of a bubble due to the increase in the Weber number, which was the main cause of large pressure drop in the bubble part at the same capillary number. The relation between the bubble velocity and the total volumetric flux was also discussed. The distribution parameter of the drift-flux model without inertial effects showed a simple relation with the capillary number. A correlation of the distribution parameter, which is expressed in terms of the capillary number and the Weber number, was developed and was confirmed to give good predictions of the bubble velocity.

对水平方形微通道中的气液泰勒流进行了界面跟踪模拟,以了解气泡部分的压降与气泡头部和尾部曲率之间的关系。数值条件为 0.00159 ≤ CaT ≤ 0.0989、0.0817 ≤ WeT ≤ 25.4 和 8.33 ≤ ReT ≤ 791,其中 CaT、WeT 和 ReT 是基于总体积流量的毛细管数、韦伯数和雷诺数。气泡部分的无量纲压降随着毛细管数和韦伯数的增加而增大。随着毛细管数的增大,气泡头部的曲率增大,气泡尾部的曲率减小。由于韦伯数的增加,气泡尾部的曲率变化比气泡头部的变化更为显著,这是在相同毛细管数下气泡部分压力下降较大的主要原因。此外,还讨论了气泡速度与总体积流量之间的关系。无惯性效应的漂移-通量模型的分布参数与毛细管数的关系很简单。以毛细管数和韦伯数表示的分布参数的相关性得到了发展,并被证实能够很好地预测气泡速度。
{"title":"Pressure drop and bubble velocity in Taylor flow through square microchannel","authors":"Ryo Kurimoto,&nbsp;Kosuke Hayashi,&nbsp;Akio Tomiyama","doi":"10.1007/s10404-024-02750-y","DOIUrl":"10.1007/s10404-024-02750-y","url":null,"abstract":"<div><p>Interface tracking simulations of gas–liquid Taylor flow in horizontal square microchannels were carried out to understand the relation between the pressure drop in the bubble part and the curvatures at the nose and tail of a bubble. Numerical conditions ranged for 0.00159 ≤ <i>Ca</i><sub><i>T</i></sub> ≤ 0.0989, 0.0817 ≤ <i>We</i><sub><i>T</i></sub> ≤ 25.4, and 8.33 ≤ <i>Re</i><sub><i>T</i></sub> ≤ 791, where <i>Ca</i><sub><i>T</i></sub>, <i>We</i><sub><i>T</i></sub>, and <i>Re</i><sub><i>T</i></sub> are the capillary, Weber, and Reynolds numbers based on the total volumetric flux. The dimensionless pressure drop in the bubble part increased with increasing the capillary number and the Weber number. The curvature at the nose of a bubble increased and that at the tail of a bubble decreased as the capillary number increased. The variation of the curvature at the tail of a bubble was more remarkable than that at the nose of a bubble due to the increase in the Weber number, which was the main cause of large pressure drop in the bubble part at the same capillary number. The relation between the bubble velocity and the total volumetric flux was also discussed. The distribution parameter of the drift-flux model without inertial effects showed a simple relation with the capillary number. A correlation of the distribution parameter, which is expressed in terms of the capillary number and the Weber number, was developed and was confirmed to give good predictions of the bubble velocity.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-024-02750-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusion coefficient measurement with fluorescent detection in free-diffusion based microfluidics 在基于自由扩散的微流控技术中利用荧光检测测量扩散系数
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-07-29 DOI: 10.1007/s10404-024-02752-w
Lilia Bató, Péter Fürjes

Microfluidic devices have been widely used to measure the diffusion coefficients and hydrodynamic radii of various molecules, especially proteins. The existing devices that use diffusion-based gradient generation apply obstacles such as membranes or hydrogels to avoid additional fluid flow affecting the evolution of concentration distribution and precise measurement. Here, a free-diffusion based microfluidic device was developed which is capable of measuring the diffusion coefficients of various, different-sized proteins and dyes without using any obstacles by minimizing pressure differences due to its symmetrical geometry. The fluorescent detection and the ease of application of the device enable accelerated measurements and interpretation of results. Time-lapse pictures of 30 s were taken of the diffusion profiles and a custom-made self-written Python program was used to fit the profiles to the theoretical functions and calculate the diffusion coefficients. Diffusion coefficients of bovine serum albumin, immunoglobulin G and rhodamine B were determined with this method and compared to their theoretical and experimental values.

微流控装置已被广泛用于测量各种分子(尤其是蛋白质)的扩散系数和流体力学半径。现有的基于扩散生成梯度的装置都会使用膜或水凝胶等障碍物,以避免额外的流体流动影响浓度分布的演变和精确测量。在这里,我们开发了一种基于自由扩散的微流控装置,它能够测量各种不同大小的蛋白质和染料的扩散系数,由于其对称的几何形状,可以最大限度地减少压力差,因而无需使用任何障碍物。该装置的荧光检测和易用性加快了测量和结果解释的速度。我们拍摄了 30 秒的扩散曲线延时照片,并使用自编的 Python 程序将曲线拟合到理论函数并计算扩散系数。用这种方法测定了牛血清白蛋白、免疫球蛋白 G 和罗丹明 B 的扩散系数,并将其与理论值和实验值进行了比较。
{"title":"Diffusion coefficient measurement with fluorescent detection in free-diffusion based microfluidics","authors":"Lilia Bató,&nbsp;Péter Fürjes","doi":"10.1007/s10404-024-02752-w","DOIUrl":"10.1007/s10404-024-02752-w","url":null,"abstract":"<div><p>Microfluidic devices have been widely used to measure the diffusion coefficients and hydrodynamic radii of various molecules, especially proteins. The existing devices that use diffusion-based gradient generation apply obstacles such as membranes or hydrogels to avoid additional fluid flow affecting the evolution of concentration distribution and precise measurement. Here, a free-diffusion based microfluidic device was developed which is capable of measuring the diffusion coefficients of various, different-sized proteins and dyes without using any obstacles by minimizing pressure differences due to its symmetrical geometry. The fluorescent detection and the ease of application of the device enable accelerated measurements and interpretation of results. Time-lapse pictures of 30 s were taken of the diffusion profiles and a custom-made self-written Python program was used to fit the profiles to the theoretical functions and calculate the diffusion coefficients. Diffusion coefficients of bovine serum albumin, immunoglobulin G and rhodamine B were determined with this method and compared to their theoretical and experimental values.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Process optimization for preparation of curcumin and quercetin co-encapsulated liposomes using microfluidic device 利用微流体装置制备姜黄素和槲皮素共包囊脂质体的工艺优化
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-07-26 DOI: 10.1007/s10404-024-02753-9
Vandana Krishna, Harshita Chitturi, Venkata Vamsi Krishna Venuganti

The aim of this study was to prepare, characterize and evaluate liposomes co-encapsulated with curcumin and quercetin using a droplet-based microfluidic device. Curcumin and quercetin co-encapsulated liposomes made of phosphatidylcholine and cholesterol were synthesized using a droplet-based microfluidic device with different flow rate ratios of 9:1, 6:1, 3:1 and 1:1 of the aqueous to organic phase at 100 to 160 µl/min flow rate. The dynamic light scattering technique showed that 9:1 and 6:1 flow rate ratios at 140 and 160 µl/min flow rates, respectively provide desired particle size range of 200–250 nm and 0.17–0.23 polydispersity index. The greatest encapsulation and loading efficiency achieved for curcumin and quercetin was 68 ± 9.2%, 14 ± 1.8%, and 36 ± 2.7%, 7.2 ± 0.5%, respectively with 6:1 flow rate ratio. Cell uptake studies performed on human oral carcinoma cells, FaDu using confocal laser scanning microscopy showed that the liposomes were taken up within 2 h. Clathrin and caveolin-mediated pathways contribute to the cell uptake of liposomes. The FaDu cell viability was reduced to 49 ± 2.2, 69 ± 1.5 and 47 ± 3.5% after incubation with liposomes containing curcumin (80 µM), quercetin (86 µM) and combination (32 µM of curcumin and 26 µM of quercetin), respectively. Apoptosis assay showed that the combination liposomes inhibit FaDu cell growth through apoptosis induced cell death. In conclusion, co-encapsulated liposomes can be prepared by microfluidics-based method and curcumin and quercetin combination liposomes are effective against oral carcinoma.

Graphical Abstract

本研究旨在使用液滴式微流体装置制备、表征和评估姜黄素和槲皮素共包囊脂质体。使用液滴式微流体装置,在 100 至 160 µl/min 的流速下,按照水相与有机相 9:1、6:1、3:1 和 1:1 的不同流速比,合成了由磷脂酰胆碱和胆固醇制成的姜黄素和槲皮素共包囊脂质体。动态光散射技术表明,在 140 微升/分钟和 160 微升/分钟的流速下,9:1 和 6:1 的流速比分别可提供 200-250 纳米的理想粒度范围和 0.17-0.23 的多分散指数。在流速为 6:1 的条件下,姜黄素和槲皮素的最大封装和负载效率分别为 68 ± 9.2% 和 14 ± 1.8%,以及 36 ± 2.7% 和 7.2 ± 0.5%。利用激光共聚焦扫描显微镜对人口腔癌细胞 FaDu 进行的细胞摄取研究表明,脂质体在 2 小时内被细胞摄取。用含有姜黄素(80 µM)、槲皮素(86 µM)和组合(姜黄素 32 µM 和槲皮素 26 µM)的脂质体孵育 FaDu 细胞后,其存活率分别降至 49 ± 2.2%、69 ± 1.5% 和 47 ± 3.5%。细胞凋亡试验表明,组合脂质体通过诱导细胞凋亡抑制了 FaDu 细胞的生长。总之,基于微流控技术的方法可以制备共包囊脂质体,姜黄素和槲皮素组合脂质体对口腔癌有效。
{"title":"Process optimization for preparation of curcumin and quercetin co-encapsulated liposomes using microfluidic device","authors":"Vandana Krishna,&nbsp;Harshita Chitturi,&nbsp;Venkata Vamsi Krishna Venuganti","doi":"10.1007/s10404-024-02753-9","DOIUrl":"10.1007/s10404-024-02753-9","url":null,"abstract":"<div><p>The aim of this study was to prepare, characterize and evaluate liposomes co-encapsulated with curcumin and quercetin using a droplet-based microfluidic device. Curcumin and quercetin co-encapsulated liposomes made of phosphatidylcholine and cholesterol were synthesized using a droplet-based microfluidic device with different flow rate ratios of 9:1, 6:1, 3:1 and 1:1 of the aqueous to organic phase at 100 to 160 µl/min flow rate. The dynamic light scattering technique showed that 9:1 and 6:1 flow rate ratios at 140 and 160 µl/min flow rates, respectively provide desired particle size range of 200–250 nm and 0.17–0.23 polydispersity index. The greatest encapsulation and loading efficiency achieved for curcumin and quercetin was 68 ± 9.2%, 14 ± 1.8%, and 36 ± 2.7%, 7.2 ± 0.5%, respectively with 6:1 flow rate ratio. Cell uptake studies performed on human oral carcinoma cells, FaDu using confocal laser scanning microscopy showed that the liposomes were taken up within 2 h. Clathrin and caveolin-mediated pathways contribute to the cell uptake of liposomes. The FaDu cell viability was reduced to 49 ± 2.2, 69 ± 1.5 and 47 ± 3.5% after incubation with liposomes containing curcumin (80 µM), quercetin (86 µM) and combination (32 µM of curcumin and 26 µM of quercetin), respectively. Apoptosis assay showed that the combination liposomes inhibit FaDu cell growth through apoptosis induced cell death. In conclusion, co-encapsulated liposomes can be prepared by microfluidics-based method and curcumin and quercetin combination liposomes are effective against oral carcinoma.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141772647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of experimental and simulation methods for determining accommodation coefficients, particularly TMAC, at fluid-surface interfaces 确定流体-表面界面上的容纳系数,特别是 TMAC 的实验和模拟方法综述
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-07-20 DOI: 10.1007/s10404-024-02747-7
Sadegh Yousefi-Nasab, Jaber Safdari, Javad Karimi-Sabet

Accommodation Coefficients (ACs) are used in slip models to determine some important parameters for flowing dilute gases on solid surfaces such as: Cercignani–Lampis–Lord (CLL) model, drag coefficient, slip velocity, shear stress, and temperature jump. These coefficients in slip, transitional, and free molecular flow regimes take values other than unity. As a result, determining these coefficients for different gases and surfaces is crucial, especially where the continuum assumption with no-slip conditions at the surface is inaccurate. These coefficients can be extracted using experimental and simulation methods with different techniques. This paper provides a review of studies that have been conducted to determine the ACs, with a particular focus on the tangential momentum accommodation coefficient (TMAC), using both experimental and simulation methods. The research mainly pertains to microfluidics and nanofluidics. The reviewed studies have concluded that there is no clear relationship between the molecular weight of a gas and it’s TMAC. Also, the values of ACs depend on various factors.

滑移模型中的容纳系数(AC)用于确定稀释气体在固体表面流动时的一些重要参数,如:Cercignani-Lampis-Lord(CLL)模型的阻力系数、滑移速度、剪切应力和温度跃迁:Cercignani-Lampis-Lord(CLL)模型、阻力系数、滑移速度、剪切应力和温度跃迁。这些系数在滑移、过渡和自由分子流动状态下的取值均不等于一。因此,确定不同气体和表面的这些系数至关重要,尤其是在表面无滑动条件的连续假设不准确的情况下。这些系数可以通过不同技术的实验和模拟方法提取出来。本文回顾了使用实验和模拟方法确定 AC 的研究,尤其侧重于切向动量容纳系数 (TMAC)。研究主要涉及微流体和纳米流体。综述研究得出的结论是,气体的分子量与其切向动量容纳系数之间没有明确的关系。此外,AC 值还取决于各种因素。
{"title":"A review of experimental and simulation methods for determining accommodation coefficients, particularly TMAC, at fluid-surface interfaces","authors":"Sadegh Yousefi-Nasab,&nbsp;Jaber Safdari,&nbsp;Javad Karimi-Sabet","doi":"10.1007/s10404-024-02747-7","DOIUrl":"10.1007/s10404-024-02747-7","url":null,"abstract":"<div><p>Accommodation Coefficients (ACs) are used in slip models to determine some important parameters for flowing dilute gases on solid surfaces such as: Cercignani–Lampis–Lord (CLL) model, drag coefficient, slip velocity, shear stress, and temperature jump. These coefficients in slip, transitional, and free molecular flow regimes take values other than unity. As a result, determining these coefficients for different gases and surfaces is crucial, especially where the continuum assumption with no-slip conditions at the surface is inaccurate. These coefficients can be extracted using experimental and simulation methods with different techniques. This paper provides a review of studies that have been conducted to determine the ACs, with a particular focus on the tangential momentum accommodation coefficient (TMAC), using both experimental and simulation methods. The research mainly pertains to microfluidics and nanofluidics. The reviewed studies have concluded that there is no clear relationship between the molecular weight of a gas and it’s TMAC. Also, the values of ACs depend on various factors.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141746408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-cost microfabrication methodology for microfluidic chips using 3D printer and replica molding techniques for biosensors 利用 3D 打印机和生物传感器复制成型技术实现微流控芯片的低成本微制造方法
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-07-18 DOI: 10.1007/s10404-024-02745-9
Tamara Jennifer Crisóstomo-Rodríguez, Vania Denis Alonso-Santacruz, Luis Alfonso Villa-Vargas, Marco Antonio Ramírez-Salinas, Miguel Ángel Alemán-Arce, Verónica Iraís Solís-Tinoco

Microfluidics is an area that allows the design and construction of microchips. The most common fabrication of these chips is expensive and difficult to access, requiring a specialized laboratory, with instruments that need to be monitored by experienced technicians and high-cost materials, then new techniques are sought to facilitate their production. Here, we present a fabrication methodology that combines the 3D printer resolution, and the polydimethylsiloxane flexibility to create hydrophobic and biocompatible microfluidics chips which are connected to a microfluidic control system. Transparent, and leak-free polydimethylsiloxane microchips were achieved with a width and a height of 250 µm. This strategy allows to produce at least, 20 chips using the same resin mold. The pressure at which the chip can work is from 2.4 kPa to 124 kPa. This work provides a low-cost alternative for academic and research groups to create their own microfluidic systems and use the microfluidic advantages in all types of applications including biosensor building, studies in medicine, biology, nanoscience, environmental technology, chemistry, etc., since it allows a controlled manipulation of one or more fluids in a certain area where a sensor can be placed, generate a reaction, among others.

微流体技术是一个可以设计和制造微型芯片的领域。这些芯片最常见的制造方法既昂贵又难以获得,需要专门的实验室、需要有经验的技术人员监控的仪器和高成本的材料,因此人们寻求新技术来促进其生产。在这里,我们介绍一种结合了三维打印机分辨率和聚二甲基硅氧烷柔韧性的制造方法,用于制造疏水性和生物相容性微流体芯片,并将其连接到微流体控制系统。透明无泄漏聚二甲基硅氧烷微芯片的宽度和高度均为 250 微米。通过这种方法,使用同一个树脂模具至少可以生产 20 个芯片。芯片的工作压力从 2.4 千帕到 124 千帕不等。这项工作为学术和研究团体提供了一个低成本的替代方案,使他们能够创建自己的微流体系统,并将微流体的优势用于各类应用,包括生物传感器构建、医学研究、生物学、纳米科学、环境技术、化学等,因为它允许在一定区域内对一种或多种流体进行可控操作,在该区域内可以放置传感器,产生反应等。
{"title":"Low-cost microfabrication methodology for microfluidic chips using 3D printer and replica molding techniques for biosensors","authors":"Tamara Jennifer Crisóstomo-Rodríguez,&nbsp;Vania Denis Alonso-Santacruz,&nbsp;Luis Alfonso Villa-Vargas,&nbsp;Marco Antonio Ramírez-Salinas,&nbsp;Miguel Ángel Alemán-Arce,&nbsp;Verónica Iraís Solís-Tinoco","doi":"10.1007/s10404-024-02745-9","DOIUrl":"10.1007/s10404-024-02745-9","url":null,"abstract":"<div><p>Microfluidics is an area that allows the design and construction of microchips. The most common fabrication of these chips is expensive and difficult to access, requiring a specialized laboratory, with instruments that need to be monitored by experienced technicians and high-cost materials, then new techniques are sought to facilitate their production. Here, we present a fabrication methodology that combines the 3D printer resolution, and the polydimethylsiloxane flexibility to create hydrophobic and biocompatible microfluidics chips which are connected to a microfluidic control system. Transparent, and leak-free polydimethylsiloxane microchips were achieved with a width and a height of 250 µm. This strategy allows to produce at least, 20 chips using the same resin mold. The pressure at which the chip can work is from 2.4 kPa to 124 kPa. This work provides a low-cost alternative for academic and research groups to create their own microfluidic systems and use the microfluidic advantages in all types of applications including biosensor building, studies in medicine, biology, nanoscience, environmental technology, chemistry, etc., since it allows a controlled manipulation of one or more fluids in a certain area where a sensor can be placed, generate a reaction, among others.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141746224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microfluidic synthesis of alginate co-polymeric microgels for enhanced protein delivery applications 微流控合成海藻酸盐共聚物微凝胶,用于增强蛋白质输送应用
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-07-10 DOI: 10.1007/s10404-024-02744-w
Mohammad Amin Zaker, Shima Ostovar, Vahid Bazargan, Mohammad Akrami, Marco Marengo, Zeinab Salehi

Alginate-based microcapsules are promising carriers for drugs and biomedical agents due to their biodegradability, biocompatible character, and easy availability. Through microfluidic technology, we've achieved highly uniform alginate microencapsulation, exhibiting remarkable monodispersity. Despite alginate's favorable attributes, such as biocompatibility, its limited stability and mechanical properties pose challenges for drug delivery applications. Our research addresses this limitation by introducing a cross-linked alginate/kappa-carrageenan (Alg/κ-Car) co-polymer, enabling the fabrication of microgels through microfluidic devices. Our study demonstrates significant enhancements in Alg microgel properties with the incorporation of κ-Car. Comparative analyses of Alg/κ-Car and Alg microgels revealed substantial improvements in morphology, gel network, and stability attributed to the κ-Car addition. Notably, loading BSA as a model protein showcased enhanced drug carrier capabilities of the microgel when κ-Car was present. The release half-life of BSA within 1.5 wt.% Alg microgel was approximately 1.5 h, which extended to about 3 h when substituting 0.5 wt.% of Alg with κ-Car. This shift signifies a more controlled BSA release.

Graphical abstract

海藻酸盐微胶囊具有生物降解性、生物相容性和易得性,是药物和生物医用制剂的理想载体。通过微流体技术,我们实现了高度均匀的海藻酸盐微胶囊化,表现出显著的单分散性。尽管海藻酸盐具有生物相容性等有利特性,但其有限的稳定性和机械性能给药物输送应用带来了挑战。我们的研究通过引入交联海藻酸盐/卡帕卡拉胶(Alg/κ-Car)共聚物解决了这一限制,从而能够通过微流体设备制造微凝胶。我们的研究表明,掺入κ-Car后,阿尔胶微凝胶的性能显著增强。对 Alg/κ-Car 和 Alg 微凝胶的比较分析表明,κ-Car 的加入大大改善了微凝胶的形态、凝胶网络和稳定性。值得注意的是,加入 BSA 作为模型蛋白质后,κ-Car 的存在增强了微凝胶的载药能力。在 1.5 重量百分比的 Alg 微凝胶中,BSA 的释放半衰期约为 1.5 小时,当用 κ-Car 替代 0.5 重量百分比的 Alg 时,释放半衰期延长至约 3 小时。这种变化表明 BSA 的释放受到了更严格的控制。
{"title":"Microfluidic synthesis of alginate co-polymeric microgels for enhanced protein delivery applications","authors":"Mohammad Amin Zaker,&nbsp;Shima Ostovar,&nbsp;Vahid Bazargan,&nbsp;Mohammad Akrami,&nbsp;Marco Marengo,&nbsp;Zeinab Salehi","doi":"10.1007/s10404-024-02744-w","DOIUrl":"10.1007/s10404-024-02744-w","url":null,"abstract":"<div><p>Alginate-based microcapsules are promising carriers for drugs and biomedical agents due to their biodegradability, biocompatible character, and easy availability. Through microfluidic technology, we've achieved highly uniform alginate microencapsulation, exhibiting remarkable monodispersity. Despite alginate's favorable attributes, such as biocompatibility, its limited stability and mechanical properties pose challenges for drug delivery applications. Our research addresses this limitation by introducing a cross-linked alginate/kappa-carrageenan (Alg/κ-Car) co-polymer, enabling the fabrication of microgels through microfluidic devices. Our study demonstrates significant enhancements in Alg microgel properties with the incorporation of κ-Car. Comparative analyses of Alg/κ-Car and Alg microgels revealed substantial improvements in morphology, gel network, and stability attributed to the κ-Car addition. Notably, loading BSA as a model protein showcased enhanced drug carrier capabilities of the microgel when κ-Car was present. The release half-life of BSA within 1.5 wt.% Alg microgel was approximately 1.5 h, which extended to about 3 h when substituting 0.5 wt.% of Alg with κ-Car. This shift signifies a more controlled BSA release.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141576012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation on the focusing and separation of polystyrene microbeads in an integrated microfluidic system using magnetized functionalized flexible micro-magnet arrays 利用磁化功能化柔性微磁体阵列研究聚苯乙烯微珠在集成微流体系统中的聚焦和分离问题
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-07-09 DOI: 10.1007/s10404-024-02749-5
Shuang Chen, Jiajia Sun, Zongqian Shi, Xiaofeng Liu, Yuxin Ma, Ruohan Li, Shumin Xin, Nan Wang, Xiaoling Li, Kai Wu

Focusing and separation of cells by microfluidic techniques are significant steps in many applications, such as single-cell analysis and disease diagnosis. Among the microfluidic techniques, passive magnetophoresis, as a label-free manner, can manipulate samples by means of magnetic field. Nowadays, most magnetic fields are generated by permanent magnets and electromagnets with large size. However, it is difficult to assemble a magnetic array using permanent magnets or electromagnets to optimize the field distribution. To produce a flexible magnetic field, a micro-magnet made by NdFeB powder and polydimethyl siloxane is proposed in this paper, and those magnetized micro-magnets are arranged into different arrays according to the arrangements of their magnetization directions. Meanwhile, a microfluidic chip containing magnetized micro-magnet arrays is designed for focusing and separating polystyrene microbeads with different diameters. The focusing and separation behaviors of microbeads in the designed microfluidic system are numerical and experimental investigated. In addition, the effects of flow rate and the arrangement of the magnetic micro-magnet array on microbead focusing and separation are discussed. Finally, a multistage microfluidic chip is designed to successfully isolate 5 μm-diameter, 10 μm-diameter, and 15 μm-diameter microbeads from their mixture at a flow rate of 240 μL/min with high purity.

利用微流体技术聚焦和分离细胞是单细胞分析和疾病诊断等许多应用中的重要步骤。在微流体技术中,无源磁泳作为一种无标记的方式,可以通过磁场操纵样品。目前,磁场大多由体积较大的永久磁铁和电磁铁产生。然而,使用永久磁铁或电磁铁组装磁阵列以优化磁场分布却很困难。为了产生柔性磁场,本文提出了一种由钕铁硼粉末和聚二甲基硅氧烷制成的微型磁体,并根据磁化方向的排列将这些磁化的微型磁体排列成不同的阵列。同时,设计了一种包含磁化微磁体阵列的微流控芯片,用于聚焦和分离不同直径的聚苯乙烯微珠。通过数值和实验研究了微珠在所设计的微流控系统中的聚焦和分离行为。此外,还讨论了流速和磁性微磁体阵列排列对微珠聚焦和分离的影响。最后,设计了一种多级微流控芯片,可在 240 μL/min 的流速下成功地从混合物中分离出直径为 5 μm、10 μm 和 15 μm 的微珠,且分离纯度很高。
{"title":"Investigation on the focusing and separation of polystyrene microbeads in an integrated microfluidic system using magnetized functionalized flexible micro-magnet arrays","authors":"Shuang Chen,&nbsp;Jiajia Sun,&nbsp;Zongqian Shi,&nbsp;Xiaofeng Liu,&nbsp;Yuxin Ma,&nbsp;Ruohan Li,&nbsp;Shumin Xin,&nbsp;Nan Wang,&nbsp;Xiaoling Li,&nbsp;Kai Wu","doi":"10.1007/s10404-024-02749-5","DOIUrl":"10.1007/s10404-024-02749-5","url":null,"abstract":"<div><p>Focusing and separation of cells by microfluidic techniques are significant steps in many applications, such as single-cell analysis and disease diagnosis. Among the microfluidic techniques, passive magnetophoresis, as a label-free manner, can manipulate samples by means of magnetic field. Nowadays, most magnetic fields are generated by permanent magnets and electromagnets with large size. However, it is difficult to assemble a magnetic array using permanent magnets or electromagnets to optimize the field distribution. To produce a flexible magnetic field, a micro-magnet made by NdFeB powder and polydimethyl siloxane is proposed in this paper, and those magnetized micro-magnets are arranged into different arrays according to the arrangements of their magnetization directions. Meanwhile, a microfluidic chip containing magnetized micro-magnet arrays is designed for focusing and separating polystyrene microbeads with different diameters. The focusing and separation behaviors of microbeads in the designed microfluidic system are numerical and experimental investigated. In addition, the effects of flow rate and the arrangement of the magnetic micro-magnet array on microbead focusing and separation are discussed. Finally, a multistage microfluidic chip is designed to successfully isolate 5 μm-diameter, 10 μm-diameter, and 15 μm-diameter microbeads from their mixture at a flow rate of 240 μL/min with high purity.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microfluidics and Nanofluidics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1