In the tumor microenvironment (TME), the interaction between cancer cells and the microvascular network plays a crucial role in cancer progression. It is also well known that an extremely low oxygen concentration is generated in the TME. However, the effects of oxygen concentration on the interaction between cancer cells and the microvascular network remain poorly understood. In the present study, we developed a microfluidic device with three gel channels and used this device to co-culture cancer cells and a microvascular network. We then investigated the cellular dynamics at different oxygen concentrations. Cancer cells and cells forming a microvascular network (endothelial cells and fibroblasts) were separately mixed with fibrin gels and placed in separate gel channels that flanked a middle gel channel lacking cells. During a seven-day co-culture, the dynamics of cancer cells and formation of a three-dimensional microvascular structure were observed. Cell culture was conducted at three different oxygen concentrations: atmospheric oxygen (21% O2), physiological normoxia (5% O2), and physiological hypoxia (1% O2, resembling the TME). Inspection revealed that cancer cells migrated toward the microvascular network under the co-culture conditions, a property that was potentiated at lower oxygen levels. Under physiological normoxia, endothelial cells formed a thick, dense microvascular network rather than migrating towards the cancer cells. In contrast, under physiological hypoxia, endothelial cells did not exhibit angiogenesis toward cancer cells. These results suggest that the microfluidic device described here will be useful for investigating the interactions between cancer cells and microvascular network under various oxygen conditions.