首页 > 最新文献

Microfluidics and Nanofluidics最新文献

英文 中文
Enhancement of zebrafish sperm activation through microfluidic mixing induced by aquatic microrobots 通过水生微型机器人诱导的微流体混合提高斑马鱼精子活化能力
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-11-28 DOI: 10.1007/s10404-024-02778-0
Kai-Hsiang Yang, Dineshkumar Loganathan, Ming-Lung Chen, Vignesh Sahadevan, Chia-Yun Chen, Chia-Yuan Chen

The activation of zebrafish sperm is essential for advancing vertebrate research, including studies in germplasm physiology and cryopreservation. In this study, a magnetic microrobot-based micromixer is developed to maximize zebrafish sperm activation through uniform micromixing and precise hydrodynamic control. Three distinct configurations of the microfluidic channel, labeled Design I, II, and III, are proposed and employed to activate zebrafish sperm cells. These configurations are distinguished by the number of microrobots utilized and their specific placement within the microfluidic channel. The fluid shear rate induced by the microrobot’s rotational motion is quantified to be 0.2 s⁻¹, falling within the lower range conducive to sperm activation. Meanwhile, zebrafish sperm activation percentage is observed to reach 88% within 10 s in an individual experiment. Additionally, the dynamics of sperm motility parameters, including VSL (straight-line velocity), VCL (curvilinear velocity), and LIN (linearity, VSL/VCL), are quantified to verify these results. The LIN value is observed to be 0.91 for Design III at the actuation time period of 10 s, indicating that the activated sperms are highly efficient and progressively motile. This study underscores the efficacy of microrobotic technologies in live cell manipulation, establishing a promising approach for future research.

斑马鱼精子的活化对推进脊椎动物研究,包括种质生理和冷冻保存研究至关重要。本研究开发了一种基于磁性微机器人的微混合器,通过均匀的微混合和精确的流体动力学控制,最大限度地激活斑马鱼精子。该研究提出了微流体通道的三种不同配置,分别标记为设计 I、II 和 III,用于激活斑马鱼精子细胞。这些配置的区别在于微机器人的数量及其在微流体通道中的具体位置。微机器人旋转运动引起的流体剪切速率被量化为 0.2 s-¹,处于有利于精子活化的较低范围内。同时,在单个实验中观察到斑马鱼精子激活率在 10 秒内达到 88%。此外,为了验证上述结果,还对精子运动参数,包括 VSL(直线速度)、VCL(曲线速度)和 LIN(线性度,VSL/VCL)进行了量化。在启动时间为 10 秒时,设计 III 的 LIN 值为 0.91,这表明激活的精子具有高效和渐进的运动能力。这项研究强调了微型机器人技术在活细胞操作中的功效,为未来的研究提供了一种前景广阔的方法。
{"title":"Enhancement of zebrafish sperm activation through microfluidic mixing induced by aquatic microrobots","authors":"Kai-Hsiang Yang,&nbsp;Dineshkumar Loganathan,&nbsp;Ming-Lung Chen,&nbsp;Vignesh Sahadevan,&nbsp;Chia-Yun Chen,&nbsp;Chia-Yuan Chen","doi":"10.1007/s10404-024-02778-0","DOIUrl":"10.1007/s10404-024-02778-0","url":null,"abstract":"<div><p>The activation of zebrafish sperm is essential for advancing vertebrate research, including studies in germplasm physiology and cryopreservation. In this study, a magnetic microrobot-based micromixer is developed to maximize zebrafish sperm activation through uniform micromixing and precise hydrodynamic control. Three distinct configurations of the microfluidic channel, labeled Design I, II, and III, are proposed and employed to activate zebrafish sperm cells. These configurations are distinguished by the number of microrobots utilized and their specific placement within the microfluidic channel. The fluid shear rate induced by the microrobot’s rotational motion is quantified to be 0.2 s⁻¹, falling within the lower range conducive to sperm activation. Meanwhile, zebrafish sperm activation percentage is observed to reach 88% within 10 s in an individual experiment. Additionally, the dynamics of sperm motility parameters, including VSL (straight-line velocity), VCL (curvilinear velocity), and LIN (linearity, VSL/VCL), are quantified to verify these results. The LIN value is observed to be 0.91 for Design III at the actuation time period of 10 s, indicating that the activated sperms are highly efficient and progressively motile. This study underscores the efficacy of microrobotic technologies in live cell manipulation, establishing a promising approach for future research.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microfluidic technologies: buffer exchange in bioprocessing, a mini review 微流控技术:生物处理中的缓冲交换,微型综述
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-11-27 DOI: 10.1007/s10404-024-02775-3
Tom Carvell, Paul Burgoyne, Alasdair R. Fraser, Helen Bridle

Buffer exchange is a common process in manufacturing protocols for a wide range of bioprocessing applications, with a variety of technologies available to manipulate biological materials for culture medium exchange, cell washing and buffer removal. Microfluidics is an emerging field for buffer exchange and has shown promising results with both prototype research and commercialised devices which are inexpensive, highly customisable and often have the capacity for scalability to substantially increase throughput. Microfluidic devices are capable of processing biological materials and exchanging solutions without the need for conventional processing techniques like centrifugation, which are time-consuming, unsuitable for large volumes and may be damaging to cells. The use of microfluidic separation devices for cell therapy manufacturing has been under-explored despite some device designs successfully being used for diagnostic enrichment of rare circulating tumour cells from peripheral blood. This mini-review aims to review the current state of microfluidic devices for buffer exchange, provide an insight into the advantages microfluidics offers for buffer exchange and identify future developments key to exploiting the technology for this application.

缓冲液交换是多种生物处理应用生产规程中的常见流程,有多种技术可用于处理生物材料,以进行培养基交换、细胞清洗和缓冲液去除。微流体技术是缓冲液交换的一个新兴领域,其原型研究和商业化设备都取得了可喜的成果,这些设备价格低廉、高度可定制,而且通常具有可扩展性,可大幅提高吞吐量。微流体设备能够处理生物材料和交换溶液,而无需离心等传统处理技术,因为离心耗时长,不适合大容量处理,还可能对细胞造成损害。尽管一些设备设计已成功用于诊断性富集外周血中的罕见循环肿瘤细胞,但将微流体分离设备用于细胞疗法制造的研究还不够深入。这篇微型综述旨在回顾用于缓冲液交换的微流体设备的现状,深入探讨微流体技术在缓冲液交换方面的优势,并确定该技术在这一应用中的未来发展关键。
{"title":"Microfluidic technologies: buffer exchange in bioprocessing, a mini review","authors":"Tom Carvell,&nbsp;Paul Burgoyne,&nbsp;Alasdair R. Fraser,&nbsp;Helen Bridle","doi":"10.1007/s10404-024-02775-3","DOIUrl":"10.1007/s10404-024-02775-3","url":null,"abstract":"<div><p>Buffer exchange is a common process in manufacturing protocols for a wide range of bioprocessing applications, with a variety of technologies available to manipulate biological materials for culture medium exchange, cell washing and buffer removal. Microfluidics is an emerging field for buffer exchange and has shown promising results with both prototype research and commercialised devices which are inexpensive, highly customisable and often have the capacity for scalability to substantially increase throughput. Microfluidic devices are capable of processing biological materials and exchanging solutions without the need for conventional processing techniques like centrifugation, which are time-consuming, unsuitable for large volumes and may be damaging to cells. The use of microfluidic separation devices for cell therapy manufacturing has been under-explored despite some device designs successfully being used for diagnostic enrichment of rare circulating tumour cells from peripheral blood. This mini-review aims to review the current state of microfluidic devices for buffer exchange, provide an insight into the advantages microfluidics offers for buffer exchange and identify future developments key to exploiting the technology for this application.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 12","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-024-02775-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142736926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High throughput cell mechanotyping of cell response to cytoskeletal modulations using a microfluidic cell deformation system 利用微流体细胞变形系统对细胞对细胞骨架调节的反应进行高通量细胞机械分型
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-11-26 DOI: 10.1007/s10404-024-02774-4
Ian M. Smith, Jeanine A. Ursitti, Sai Pranav Majeti Venkata, Nikka Givpoor, Megan B. Stemberger, Autumn Hengen, Shohini Banerjee, Khaled Hached, Siem van der Laan, Joseph Stains, Stuart S. Martin, Christopher Ward, Kimberly M. Stroka

Cellular mechanical properties influence cellular functions across pathological and physiological systems. The observation of these mechanical properties is limited in part by methods with a low throughput of acquisition or with low accessibility. To overcome these limitations, we have designed, developed, validated, and optimized a microfluidic cellular deformation system (MCDS) capable of mechanotyping suspended cells on a population level at a high throughput rate of ~ 300 cells per second. The MCDS provides researchers with a viable method for efficiently quantifying cellular mechanical properties towards defining prognostic implications of mechanical changes in pathology or screening drugs to modulate cytoskeletal integrity.

细胞机械特性影响着病理和生理系统中的细胞功能。对这些机械特性的观察部分受限于采集通量低或可及性低的方法。为了克服这些限制,我们设计、开发、验证并优化了一种微流体细胞变形系统(MCDS),该系统能够以每秒约 300 个细胞的高通量速率在群体水平上对悬浮细胞进行机械分型。MCDS 为研究人员提供了一种有效量化细胞机械特性的可行方法,可用于确定病理中机械变化的预后影响或筛选调节细胞骨架完整性的药物。
{"title":"High throughput cell mechanotyping of cell response to cytoskeletal modulations using a microfluidic cell deformation system","authors":"Ian M. Smith,&nbsp;Jeanine A. Ursitti,&nbsp;Sai Pranav Majeti Venkata,&nbsp;Nikka Givpoor,&nbsp;Megan B. Stemberger,&nbsp;Autumn Hengen,&nbsp;Shohini Banerjee,&nbsp;Khaled Hached,&nbsp;Siem van der Laan,&nbsp;Joseph Stains,&nbsp;Stuart S. Martin,&nbsp;Christopher Ward,&nbsp;Kimberly M. Stroka","doi":"10.1007/s10404-024-02774-4","DOIUrl":"10.1007/s10404-024-02774-4","url":null,"abstract":"<div><p>Cellular mechanical properties influence cellular functions across pathological and physiological systems. The observation of these mechanical properties is limited in part by methods with a low throughput of acquisition or with low accessibility. To overcome these limitations, we have designed, developed, validated, and optimized a microfluidic cellular deformation system (MCDS) capable of mechanotyping suspended cells on a population level at a high throughput rate of ~ 300 cells per second. The MCDS provides researchers with a viable method for efficiently quantifying cellular mechanical properties towards defining prognostic implications of mechanical changes in pathology or screening drugs to modulate cytoskeletal integrity.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 12","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-throughput separation of microalgae on a runway-shaped channel with ordered semicircular micro-obstacles 在带有有序半圆形微障碍物的跑道形通道上高通量分离微藻
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-11-23 DOI: 10.1007/s10404-024-02773-5
Sheng Hu, Shuai Jin, Xiaoming Chen, Ruijie Tong

Microalgae serve as a valuable biological resource in many industrial applications. Thus, it is essential to obtain a high-efficiency separation technique for microalgae precisely. In this study, a runway-shaped microchannel with ordered semicircular micro-obstacles was introduced to conduct the separation of microalgae with different sizes. The runway-shaped microchannel combined the spiral characteristics with a series of semicircular micro-obstacles to realize the advantage of a sheathless configuration, high-throughput, and low aspect ratio advantages. These micro-obstacles improved the performance of particle focusing, which can promote the microalga separation effectively. These simulated results demonstrated that the runway-shaped channel with ordered semicircular micro-obstacles could form the evident distribution of local Dean vortices to separate particles with different size and density. When the flow rate is considered 4mL/min, the experiment indicated that the microchannel could separate the Chlorella vulgaris and Haematococcus pluvialis in 94.6% and 81.5% purity, respectively. The microchannel with the high throughput and separation efficiency is competent to carry out the task of microalga screening and artificial cultivation.

在许多工业应用中,微藻都是一种宝贵的生物资源。因此,精确地获得高效的微藻分离技术至关重要。本研究采用了带有有序半圆形微障碍物的跑道形微通道来分离不同大小的微藻。跑道形微通道结合了螺旋特性和一系列半圆形微障碍物,实现了无鞘配置、高通量和低纵横比的优势。这些微障碍物改善了粒子聚焦的性能,能有效促进微藻分离。这些模拟结果表明,带有有序半圆形微障碍物的跑道形通道可以形成明显的局部迪安涡流分布,从而分离不同大小和密度的颗粒。当流速为 4mL/min 时,实验结果表明该微通道能分离出纯度分别为 94.6% 和 81.5% 的小球藻和血球藻。高通量、高分离效率的微通道可以胜任微藻筛选和人工培养的任务。
{"title":"High-throughput separation of microalgae on a runway-shaped channel with ordered semicircular micro-obstacles","authors":"Sheng Hu,&nbsp;Shuai Jin,&nbsp;Xiaoming Chen,&nbsp;Ruijie Tong","doi":"10.1007/s10404-024-02773-5","DOIUrl":"10.1007/s10404-024-02773-5","url":null,"abstract":"<div><p>Microalgae serve as a valuable biological resource in many industrial applications. Thus, it is essential to obtain a high-efficiency separation technique for microalgae precisely. In this study, a runway-shaped microchannel with ordered semicircular micro-obstacles was introduced to conduct the separation of microalgae with different sizes. The runway-shaped microchannel combined the spiral characteristics with a series of semicircular micro-obstacles to realize the advantage of a sheathless configuration, high-throughput, and low aspect ratio advantages. These micro-obstacles improved the performance of particle focusing, which can promote the microalga separation effectively. These simulated results demonstrated that the runway-shaped channel with ordered semicircular micro-obstacles could form the evident distribution of local Dean vortices to separate particles with different size and density. When the flow rate is considered 4mL/min, the experiment indicated that the microchannel could separate the Chlorella vulgaris and Haematococcus pluvialis in 94.6% and 81.5% purity, respectively. The microchannel with the high throughput and separation efficiency is competent to carry out the task of microalga screening and artificial cultivation.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 12","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Future electrodes for sepsis detection: digital microfluidic biosensors from plant waste 用于败血症检测的未来电极:从植物废料中提取的数字微流控生物传感器
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-11-20 DOI: 10.1007/s10404-024-02771-7
Sushmeeka Nair Prathaban, Nor Syafirah Zambry, Fatimah Ibrahim, Mohd Yazed Ahmad, Nurul Fauzani Jamaluddin, Tay Sun Tee

Sepsis is a major global health concern, necessitating timely and accurate diagnosis for effective patient management. The standard diagnostic methods used to diagnose sepsis often face challenges in sensitivity and rapidity, prompting the exploration of innovative solutions such as microfluidic-based biosensors. Advances in digital microfluidic technology have garnered more interest as a promising approach in biomedical applications due to its unique ability to manipulate discrete fluid droplets on the surface, offering greater flexibility and precision. This paper presents the recent advancements of microfluidic and biosensor technology in sepsis diagnosis over the past ten years (2014–2024), highlighting their potential to revolutionize healthcare. Additionally, the integration of future electrode biosensor materials derived from plant waste is discussed, showcasing their eco-friendly and sustainable attributes in enhancing biosensor performance. Finally, this paper highlights a positive outlook on the future potential of digital microfluidic-based biosensors with green electrode nanomaterials for sepsis diagnosis, making them ideal for point-of-care applications addressing critical challenges in healthcare industries.

败血症是全球关注的重大健康问题,需要及时准确的诊断才能对患者进行有效管理。用于诊断败血症的标准诊断方法往往在灵敏度和快速性方面面临挑战,这促使人们探索创新的解决方案,如基于微流控的生物传感器。由于数字微流控技术具有在表面操控离散液滴的独特能力,可提供更大的灵活性和更高的精确度,因此作为生物医学应用中的一种前景广阔的方法,它的进展引起了人们更多的兴趣。本文介绍了过去十年(2014-2024 年)中微流控和生物传感器技术在败血症诊断方面的最新进展,强调了它们在彻底改变医疗保健方面的潜力。此外,本文还讨论了从植物废弃物中提取的未来电极生物传感器材料的整合,展示了它们在提高生物传感器性能方面的生态友好和可持续属性。最后,本文强调了基于数字微流体的生物传感器与绿色电极纳米材料在败血症诊断方面的未来潜力,使其成为应对医疗保健行业关键挑战的理想护理点应用。
{"title":"Future electrodes for sepsis detection: digital microfluidic biosensors from plant waste","authors":"Sushmeeka Nair Prathaban,&nbsp;Nor Syafirah Zambry,&nbsp;Fatimah Ibrahim,&nbsp;Mohd Yazed Ahmad,&nbsp;Nurul Fauzani Jamaluddin,&nbsp;Tay Sun Tee","doi":"10.1007/s10404-024-02771-7","DOIUrl":"10.1007/s10404-024-02771-7","url":null,"abstract":"<div><p>Sepsis is a major global health concern, necessitating timely and accurate diagnosis for effective patient management. The standard diagnostic methods used to diagnose sepsis often face challenges in sensitivity and rapidity, prompting the exploration of innovative solutions such as microfluidic-based biosensors. Advances in digital microfluidic technology have garnered more interest as a promising approach in biomedical applications due to its unique ability to manipulate discrete fluid droplets on the surface, offering greater flexibility and precision. This paper presents the recent advancements of microfluidic and biosensor technology in sepsis diagnosis over the past ten years (2014–2024), highlighting their potential to revolutionize healthcare. Additionally, the integration of future electrode biosensor materials derived from plant waste is discussed, showcasing their eco-friendly and sustainable attributes in enhancing biosensor performance. Finally, this paper highlights a positive outlook on the future potential of digital microfluidic-based biosensors with green electrode nanomaterials for sepsis diagnosis, making them ideal for point-of-care applications addressing critical challenges in healthcare industries.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 12","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-024-02771-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing conformance control mechanisms in high-temperature reservoirs: a microfluidic analysis of Pickering emulsified gel systems 高温储层中一致性控制机制的可视化:对皮克林乳化凝胶系统的微流体分析
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-10-12 DOI: 10.1007/s10404-024-02770-8
Tinku Saikia, Lucas Mejia, Abdullah Sultan, Matthew Balhoff, Jafar Al Hamad

In the context of mature oil fields, the management of water production stands out as a formidable challenge. Our prior research endeavors (Saikia et al. J Pet Sci Eng 2020, ACS Omega 2021) have introduced an innovative Pickering emulsified gel system tailored for the precise adjustment of relative permeability in high-temperature reservoirs. To make this system work better, it is required to fully understand how it controls water flow. Traditionally, conformance control studies rely on data from core flooding tests, CT scans, and nuclear magnetic resonance (NMR) techniques, among other methods. However, these traditional approaches often struggle to provide real-time visual data, which limits their accuracy in predicting how conformance mechanisms actually work. In our research study, using two distinct glass micromodels (Micromodel I-water-wet and Micromodel II-oil-wet), we conducted Pickering emulsified gel treatments at 105 °C. Microfluidic analysis revealed that the emulsion enters the pore space as slugs, coalescing during injection. The subsequent gelation of the aqueous phase restricts water flow, while oil preferentially flows through specific channels created by the separated oleic phase. These findings challenge the previously proposed Thin Film mechanism, suggesting instead a Relative Permeability Modified Channel Flow. This research provides a deeper understanding of the Pickering emulsified gel system’s conformance control mechanism, highlighting its potential for managing water production in high-temperature reservoirs.

在成熟油田中,产水量管理是一项艰巨的挑战。我们之前的研究工作(Saikia 等人,J Pet Sci Eng 2020,ACS Omega 2021)引入了一种创新的皮克林乳化凝胶系统,专门用于精确调节高温油藏的相对渗透率。为了让这一系统更好地工作,需要充分了解它是如何控制水流的。传统的一致性控制研究依赖于岩心水浸测试、CT 扫描和核磁共振(NMR)技术等方法获得的数据。然而,这些传统方法往往难以提供实时可视数据,这限制了它们预测一致性机制如何实际运作的准确性。在我们的研究中,我们使用两种不同的玻璃微模型(Micromodel I-水-湿和Micromodel II-油-湿),在105 °C下进行了皮克林乳化凝胶处理。微流体分析表明,乳液以蛞蝓形式进入孔隙,并在注入过程中凝聚。水相随后的凝胶化限制了水的流动,而油则优先流经由分离的油酸相形成的特定通道。这些发现对之前提出的薄膜机制提出了质疑,并提出了相对渗透性修正通道流。这项研究加深了对皮克林乳化凝胶系统一致性控制机制的理解,突出了其在管理高温油藏产水量方面的潜力。
{"title":"Visualizing conformance control mechanisms in high-temperature reservoirs: a microfluidic analysis of Pickering emulsified gel systems","authors":"Tinku Saikia,&nbsp;Lucas Mejia,&nbsp;Abdullah Sultan,&nbsp;Matthew Balhoff,&nbsp;Jafar Al Hamad","doi":"10.1007/s10404-024-02770-8","DOIUrl":"10.1007/s10404-024-02770-8","url":null,"abstract":"<div><p>In the context of mature oil fields, the management of water production stands out as a formidable challenge. Our prior research endeavors (Saikia et al. J Pet Sci Eng 2020, ACS Omega 2021) have introduced an innovative Pickering emulsified gel system tailored for the precise adjustment of relative permeability in high-temperature reservoirs. To make this system work better, it is required to fully understand how it controls water flow. Traditionally, conformance control studies rely on data from core flooding tests, CT scans, and nuclear magnetic resonance (NMR) techniques, among other methods. However, these traditional approaches often struggle to provide real-time visual data, which limits their accuracy in predicting how conformance mechanisms actually work. In our research study, using two distinct glass micromodels (Micromodel I-water-wet and Micromodel II-oil-wet), we conducted Pickering emulsified gel treatments at 105 °C. Microfluidic analysis revealed that the emulsion enters the pore space as slugs, coalescing during injection. The subsequent gelation of the aqueous phase restricts water flow, while oil preferentially flows through specific channels created by the separated oleic phase. These findings challenge the previously proposed Thin Film mechanism, suggesting instead a Relative Permeability Modified Channel Flow. This research provides a deeper understanding of the Pickering emulsified gel system’s conformance control mechanism, highlighting its potential for managing water production in high-temperature reservoirs.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-024-02770-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring fluid flow in microchannels with branching and variable constrictions 探索具有分支和可变收缩的微通道中的流体流动
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-10-08 DOI: 10.1007/s10404-024-02765-5
Rakesh Kumar, Amritendu Bhuson Ghosh, Bidisha Borah, Rajaram Lakkaraju, Arnab Atta

We employ a three-dimensional numerical model to analyze the dynamics of single-phase flow in a parallel branched microchannel with varying geometric dimensions of constrictions. The primary objective is to delve into the intricacies of flow within microdevices featuring a branched network and constrictions. The findings illustrate nonlinear variations in velocity, pressure, acceleration, and shear stress along the streamwise direction, underscoring their significant dependence on the converging/diverging angles of the constrictions. To gain deeper insights into the effects of geometric parameters resulting from converging/diverging constrictions in microchannels, a geometric Reynolds number is introduced as the governing parameter for flow transition, further highlighting the novel approach. Our results demonstrate a notable improvement in the magnitude of inertial forces, a feature uncommon in simple microchannels. From the results, it is asserted that microdevices with higher converging–diverging angles combined with lower width ratios are a preferable choice compared to those with lower converging–diverging angles and higher width ratios. Such configurations exhibit lower pumping power, contributing to enhanced energy efficiency. These findings provide fundamental insights that can guide the design of necessary modifications aimed at improving the performance of micropumps or microvalves.

我们采用三维数值模型来分析单相流在具有不同几何尺寸约束的平行分支微通道中的动态。主要目的是深入研究具有分支网络和约束的微装置内流动的复杂性。研究结果表明,速度、压力、加速度和剪切应力沿流向呈非线性变化,并强调了它们与收缩的收敛/发散角之间的重要关系。为了更深入地了解微通道中收敛/发散收缩所产生的几何参数的影响,我们引入了几何雷诺数作为流动转换的控制参数,进一步突出了这种新方法。我们的研究结果表明,惯性力的大小明显改善,这在简单微通道中并不常见。根据这些结果,我们可以断言,与具有较小聚散角和较高宽比的微装置相比,具有较大聚散角和较低宽比的微装置是一种更可取的选择。这种配置显示出较低的泵功率,有助于提高能效。这些发现提供了基本见解,可以指导设计必要的修改,从而提高微泵或微阀的性能。
{"title":"Exploring fluid flow in microchannels with branching and variable constrictions","authors":"Rakesh Kumar,&nbsp;Amritendu Bhuson Ghosh,&nbsp;Bidisha Borah,&nbsp;Rajaram Lakkaraju,&nbsp;Arnab Atta","doi":"10.1007/s10404-024-02765-5","DOIUrl":"10.1007/s10404-024-02765-5","url":null,"abstract":"<div><p>We employ a three-dimensional numerical model to analyze the dynamics of single-phase flow in a parallel branched microchannel with varying geometric dimensions of constrictions. The primary objective is to delve into the intricacies of flow within microdevices featuring a branched network and constrictions. The findings illustrate nonlinear variations in velocity, pressure, acceleration, and shear stress along the streamwise direction, underscoring their significant dependence on the converging/diverging angles of the constrictions. To gain deeper insights into the effects of geometric parameters resulting from converging/diverging constrictions in microchannels, a geometric Reynolds number is introduced as the governing parameter for flow transition, further highlighting the novel approach. Our results demonstrate a notable improvement in the magnitude of inertial forces, a feature uncommon in simple microchannels. From the results, it is asserted that microdevices with higher converging–diverging angles combined with lower width ratios are a preferable choice compared to those with lower converging–diverging angles and higher width ratios. Such configurations exhibit lower pumping power, contributing to enhanced energy efficiency. These findings provide fundamental insights that can guide the design of necessary modifications aimed at improving the performance of micropumps or microvalves.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-024-02765-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142410650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variance-reduction kinetic simulation for characterization of surface and corner effects in low-speed rarefied gas flows through long micro-ducts 用于表征低速稀薄气体流经长微型导管时的表面和拐角效应的方差还原动力学模拟
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-10-06 DOI: 10.1007/s10404-024-02769-1
Ferdin Sagai Don Bosco, Kammara K. Kishore

Microfluidic-MEMS (micro-electromechanical system) devices consist of complex subsystems in which the transfer of mass, momentum and energy is critical. This is often achieved by a pressure gradient-driven, low-speed rarefied gas transport in long micro-ducts. Gaseous rarefaction, and geometrical properties of micro-ducts, such as cross-section profile and surface roughness, play a decisive role in the segregation of the flow into inertia-driven and surface-dominated domains. In this work, a parallel stochastic kinetic particle solver that solves the low-variance Boltzmann Bhatnagar-Gross-Krook (BGK) formulation is utilized to study isothermal rarefied gas transport through polar and triangular cross-sections. The effect of geometrical features such as surface proximity to the inertial core and the role of corners, are characterized. A novel parameter to indicate surface influence is introduced, which can be gainfully used in MEMS design and optimization.

微流体-MEMS(微机电系统)设备由复杂的子系统组成,其中质量、动量和能量的传输至关重要。这通常是通过压力梯度驱动的低速稀薄气体在长微型导管中的传输来实现的。气体稀释和微导管的几何特性(如横截面轮廓和表面粗糙度)在将气流分离为惯性驱动域和表面主导域方面起着决定性作用。在这项工作中,利用并行随机动力学粒子求解器求解低方差波兹曼-巴特纳加-格罗斯-克罗克(BGK)公式,研究了通过极性和三角形横截面的等温稀薄气体传输。研究了几何特征的影响,如表面与惯性核心的接近程度以及角的作用。此外,还引入了一个表示表面影响的新参数,可用于微机电系统的设计和优化。
{"title":"Variance-reduction kinetic simulation for characterization of surface and corner effects in low-speed rarefied gas flows through long micro-ducts","authors":"Ferdin Sagai Don Bosco,&nbsp;Kammara K. Kishore","doi":"10.1007/s10404-024-02769-1","DOIUrl":"10.1007/s10404-024-02769-1","url":null,"abstract":"<div><p>Microfluidic-MEMS (micro-electromechanical system) devices consist of complex subsystems in which the transfer of mass, momentum and energy is critical. This is often achieved by a pressure gradient-driven, low-speed rarefied gas transport in long micro-ducts. Gaseous rarefaction, and geometrical properties of micro-ducts, such as cross-section profile and surface roughness, play a decisive role in the segregation of the flow into inertia-driven and surface-dominated domains. In this work, a parallel stochastic kinetic particle solver that solves the low-variance Boltzmann Bhatnagar-Gross-Krook (BGK) formulation is utilized to study isothermal rarefied gas transport through polar and triangular cross-sections. The effect of geometrical features such as surface proximity to the inertial core and the role of corners, are characterized. A novel parameter to indicate surface influence is introduced, which can be gainfully used in MEMS design and optimization.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 11","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-024-02769-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142410257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-step particle-based microfluidic test for biotin measurement 基于微粒的多步骤生物素测量微流控试验
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-09-30 DOI: 10.1007/s10404-024-02766-4
Airiin Laaneväli, Indrek Saar, Naila Nasirova, Hanno Evard

Microfluidics has emerged as a highly promising technology for miniaturizing chemical analysis laboratory into a single, small lab-on-a-chip device. In our previous research, we have developed an innovative approach to particle-based microfluidics by screen printing silica gel microparticles onto glass substrate to create a patterned porous material. In this article we demonstrate a multi-step sample analysis – combining conventional and affinity thin-layer chromatography with competitive assay for detection – along with blister reservoirs that can be integrated into the particle-based microfluidic point-of-care test. This integration achieves high analytical performance and makes the test simple to use. Biotin was chosen as the exemplary analyte, because measuring it is crucial in immunoassays, where high circulating biotin concentrations can lead to false results. This research also addresses the challenge of biotin interference in immunoassays by making it possible to produce rapid biotin tests. Need for these tests is particularly critical in emergency situations. Validation of the developed test demonstrated a dynamic range of 0.09 to 0.24 µg ml− 1 and that artificial urine matrix does not have significant effect on the results. This would make it possible to assess whether the biotin interference occurs in urine sample immunoassays.

微流体技术已成为一种极具前景的技术,可将化学分析实验室微型化,成为单一的小型芯片实验室设备。在之前的研究中,我们开发了一种基于微粒的微流体技术的创新方法,即在玻璃基底上丝网印刷硅胶微粒,以形成图案化的多孔材料。在这篇文章中,我们展示了一种多步骤样品分析方法--结合了传统的亲和薄层色谱法和竞争性检测法--以及可集成到基于微粒的微流控检测中的泡罩。这种集成实现了高分析性能,并使检测简单易用。之所以选择生物素作为示范分析物,是因为生物素的测量在免疫测定中至关重要,循环中生物素浓度过高会导致错误结果。这项研究还解决了生物素干扰免疫测定的难题,使生物素快速检测成为可能。在紧急情况下,对这些测试的需求尤为迫切。对所开发的检测方法进行的验证表明,其动态范围为 0.09 至 0.24 微克毫升-1,而且人工尿基质对检测结果没有明显影响。这样就可以评估尿样免疫测定中是否会出现生物素干扰。
{"title":"Multi-step particle-based microfluidic test for biotin measurement","authors":"Airiin Laaneväli,&nbsp;Indrek Saar,&nbsp;Naila Nasirova,&nbsp;Hanno Evard","doi":"10.1007/s10404-024-02766-4","DOIUrl":"10.1007/s10404-024-02766-4","url":null,"abstract":"<div><p>Microfluidics has emerged as a highly promising technology for miniaturizing chemical analysis laboratory into a single, small lab-on-a-chip device. In our previous research, we have developed an innovative approach to particle-based microfluidics by screen printing silica gel microparticles onto glass substrate to create a patterned porous material. In this article we demonstrate a multi-step sample analysis – combining conventional and affinity thin-layer chromatography with competitive assay for detection – along with blister reservoirs that can be integrated into the particle-based microfluidic point-of-care test. This integration achieves high analytical performance and makes the test simple to use. Biotin was chosen as the exemplary analyte, because measuring it is crucial in immunoassays, where high circulating biotin concentrations can lead to false results. This research also addresses the challenge of biotin interference in immunoassays by making it possible to produce rapid biotin tests. Need for these tests is particularly critical in emergency situations. Validation of the developed test demonstrated a dynamic range of 0.09 to 0.24 µg ml<sup>− 1</sup> and that artificial urine matrix does not have significant effect on the results. This would make it possible to assess whether the biotin interference occurs in urine sample immunoassays.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 10","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic response of a weakly ionized fluid in a vibrating Riga channel exposed to intense electromagnetic rotation 振动里加通道中的弱电离流体在强烈电磁旋转下的动态响应
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-09-30 DOI: 10.1007/s10404-024-02764-6
Poly Karmakar, Sanatan Das, Rabindra Nath Jana, Oluwole Daniel Makinde

The utilization of external magnetic or electric fields, particularly through a Riga setup, markedly enhances flow dynamics by mitigating frictional forces and turbulent fluctuations, thereby facilitating superior flow management. Such improvements are especially beneficial in optimizing the operational efficiency of machinery and turbines. Our research focuses on the behavior of a weakly ionized fluid within a porous, infinitely extended Riga channel (or electromagnetic channel) set in a rotational framework affected by Hall and ion-slip electric fields. This model integrates the cumulative repulsions of an abruptly applied pressure gradient, electromagnetic forces, electromagnetic radiation, and chemical reactions. The physical configuration of the model features a stationary right wall and a left wall subjected to transverse vibrations, establishing a complex flow environment. This scenario is analytically modeled using time-dependent partial differential equations, with the Laplace transform (LT) method applied to achieve a closed-form solution for the flow controlling equations. Through detailed graphical and tabular data, the study explores the impact of various pivotal parameters on the model’s flow traits and quantities. Our results indicate that an upswing in the modified Hartmann number significantly enhances fluid flow within the channel, with the primary flow component showing marked improvement as Hall and ion-slip parameters amplify, and secondary flow component diminishing. Additionally, species concentration lowers with higher Schmidt numbers and chemical reaction rates, while an expanded modified Hartmann number correlate with enhanced shear stresses at the channel wall. Moreover, an elevation in the radiation parameter reduces the rate of heat transfer (RHT) at the vibrating wall, whereas RHT at the stationary wall improves. This study has profound implications across several fields, notably in fusion energy research, spacecraft propulsion systems, satellite operations, aerospace engineering, and advanced manufacturing technologies.

利用外部磁场或电场,特别是通过里加装置,可通过减轻摩擦力和湍流波动显著增强流动动力学,从而促进卓越的流动管理。这种改进尤其有利于优化机械和涡轮机的运行效率。我们的研究重点是多孔、无限延伸的里加通道(或电磁通道)中弱电离流体的行为,该通道设置在受霍尔电场和离子滑动电场影响的旋转框架中。该模型整合了突然施加的压力梯度、电磁力、电磁辐射和化学反应的累积斥力。模型的物理结构包括静止的右壁和受到横向振动的左壁,从而建立了一个复杂的流动环境。这种情况使用随时间变化的偏微分方程进行分析建模,并应用拉普拉斯变换(LT)方法实现流动控制方程的闭式求解。研究通过详细的图形和表格数据,探讨了各种关键参数对模型流量特征和数量的影响。研究结果表明,修正哈特曼数的上升会显著增强通道内的流体流动,随着霍尔参数和离子滑动参数的放大,主要流动成分会得到明显改善,而次要流动成分则会减弱。此外,物种浓度随着施密特数和化学反应速率的增加而降低,而修正哈特曼数的增加则与通道壁剪应力的增加有关。此外,辐射参数的升高降低了振动壁的传热速率(RHT),而静止壁的传热速率则有所提高。这项研究对多个领域都有深远影响,特别是在聚变能研究、航天器推进系统、卫星运行、航空航天工程和先进制造技术方面。
{"title":"Dynamic response of a weakly ionized fluid in a vibrating Riga channel exposed to intense electromagnetic rotation","authors":"Poly Karmakar,&nbsp;Sanatan Das,&nbsp;Rabindra Nath Jana,&nbsp;Oluwole Daniel Makinde","doi":"10.1007/s10404-024-02764-6","DOIUrl":"10.1007/s10404-024-02764-6","url":null,"abstract":"<div><p>The utilization of external magnetic or electric fields, particularly through a Riga setup, markedly enhances flow dynamics by mitigating frictional forces and turbulent fluctuations, thereby facilitating superior flow management. Such improvements are especially beneficial in optimizing the operational efficiency of machinery and turbines. Our research focuses on the behavior of a weakly ionized fluid within a porous, infinitely extended Riga channel (or electromagnetic channel) set in a rotational framework affected by Hall and ion-slip electric fields. This model integrates the cumulative repulsions of an abruptly applied pressure gradient, electromagnetic forces, electromagnetic radiation, and chemical reactions. The physical configuration of the model features a stationary right wall and a left wall subjected to transverse vibrations, establishing a complex flow environment. This scenario is analytically modeled using time-dependent partial differential equations, with the Laplace transform (LT) method applied to achieve a closed-form solution for the flow controlling equations. Through detailed graphical and tabular data, the study explores the impact of various pivotal parameters on the model’s flow traits and quantities. Our results indicate that an upswing in the modified Hartmann number significantly enhances fluid flow within the channel, with the primary flow component showing marked improvement as Hall and ion-slip parameters amplify, and secondary flow component diminishing. Additionally, species concentration lowers with higher Schmidt numbers and chemical reaction rates, while an expanded modified Hartmann number correlate with enhanced shear stresses at the channel wall. Moreover, an elevation in the radiation parameter reduces the rate of heat transfer (RHT) at the vibrating wall, whereas RHT at the stationary wall improves. This study has profound implications across several fields, notably in fusion energy research, spacecraft propulsion systems, satellite operations, aerospace engineering, and advanced manufacturing technologies.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 10","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microfluidics and Nanofluidics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1