首页 > 最新文献

Microfluidics and Nanofluidics最新文献

英文 中文
Interplay of acoustophoresis and dielectrophoresis in a standing surface acoustic wave field: from spherical to non-spherical particles 驻留表面声波场中声电泳与介电泳的相互作用:从球形颗粒到非球形颗粒
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-09-15 DOI: 10.1007/s10404-024-02762-8
Sebastian Sachs, David Schreier, Felix Brand, Klaus Stefan Drese, Christian Cierpka, Jörg König

Standing surface acoustic waves (sSAW) emerged as a flexible tool for precise manipulation of spherical and non-spherical objects in Lab-on-a-Chip devices. While the manipulation of suspended particles and cells in acoustofluidic devices is mostly dominated by acoustic forces due to acoustic scattering and the acoustically induced fluid flow, surface acoustic waves are inherently linked to an inhomogeneous electric field. The superimposed effects of dielectrophoretic forces and torques on polarizable particles are less explored in microfluidics using sSAW. In this study, a thorough analysis of the physical interplay of acoustophoresis and dielectrophoresis aims to bridge this gap. In comprehensive experiments, the dielectrophoretic impact on the behavior of spherical and non-spherical particles is distinguished by screening the electric field of the sSAW inside the micro channel locally. As a result, particles are forced into trapping locations across the entire channel height. However, the height position close to the bottom differs between the screened and non-screened region. Regardless of the shape of the particles used in this study, particles are forced towards the bottom at the region with screening, while being levitated at regions without screening. This indicates clearly the influence of the electric field in close vicinity to the substrate surface. Furthermore, the unintuitive preferred orientation of prolate spheroids perpendicular to the pressure nodes of the sSAW recently reported, is confirmed in both region regardless of the presence of the electric field. Based on a three-dimensional numerical model, this orientation results not only due to the acoustic torque but is also caused by the dielectrophoretic torque, which complement each other. The experimental and numerical findings are in excellent agreement and provide deep insights into the underlying physical mechanisms responsible for patterning and orientation of the particles.

驻留表面声波(sSAW)是在片上实验室设备中精确操纵球形和非球形物体的灵活工具。在声学流体设备中操纵悬浮颗粒和细胞主要受声学散射和声学诱导流体流动所产生的声学力的支配,而表面声波本质上与不均匀电场有关。在使用 sSAW 的微流体中,人们较少探讨可极化粒子上的介电泳力和力矩的叠加效应。在本研究中,对声泳和介电泳的物理相互作用进行了深入分析,旨在弥补这一不足。在综合实验中,通过在微通道内局部屏蔽 sSAW 的电场,区分了介电泳对球形和非球形粒子行为的影响。因此,颗粒被迫进入整个通道高度的捕获位置。不过,屏蔽和非屏蔽区域靠近底部的高度位置有所不同。无论本研究中使用的颗粒形状如何,颗粒在有筛分区域都会被逼向底部,而在无筛分区域则会被悬浮起来。这清楚地表明了电场在基底表面附近的影响。此外,最近报道的垂直于超小型超声波压力节点的凸面球体的非直观优先取向在这两个区域都得到了证实,而与电场的存在无关。根据三维数值模型,这种取向不仅是声学力矩造成的,也是介电泳力矩造成的,两者相辅相成。实验结果和数值结果非常吻合,让我们深入了解了粒子图案化和定向的基本物理机制。
{"title":"Interplay of acoustophoresis and dielectrophoresis in a standing surface acoustic wave field: from spherical to non-spherical particles","authors":"Sebastian Sachs,&nbsp;David Schreier,&nbsp;Felix Brand,&nbsp;Klaus Stefan Drese,&nbsp;Christian Cierpka,&nbsp;Jörg König","doi":"10.1007/s10404-024-02762-8","DOIUrl":"10.1007/s10404-024-02762-8","url":null,"abstract":"<div><p>Standing surface acoustic waves (sSAW) emerged as a flexible tool for precise manipulation of spherical and non-spherical objects in Lab-on-a-Chip devices. While the manipulation of suspended particles and cells in acoustofluidic devices is mostly dominated by acoustic forces due to acoustic scattering and the acoustically induced fluid flow, surface acoustic waves are inherently linked to an inhomogeneous electric field. The superimposed effects of dielectrophoretic forces and torques on polarizable particles are less explored in microfluidics using sSAW. In this study, a thorough analysis of the physical interplay of acoustophoresis and dielectrophoresis aims to bridge this gap. In comprehensive experiments, the dielectrophoretic impact on the behavior of spherical and non-spherical particles is distinguished by screening the electric field of the sSAW inside the micro channel locally. As a result, particles are forced into trapping locations across the entire channel height. However, the height position close to the bottom differs between the screened and non-screened region. Regardless of the shape of the particles used in this study, particles are forced towards the bottom at the region with screening, while being levitated at regions without screening. This indicates clearly the influence of the electric field in close vicinity to the substrate surface. Furthermore, the unintuitive preferred orientation of prolate spheroids perpendicular to the pressure nodes of the sSAW recently reported, is confirmed in both region regardless of the presence of the electric field. Based on a three-dimensional numerical model, this orientation results not only due to the acoustic torque but is also caused by the dielectrophoretic torque, which complement each other. The experimental and numerical findings are in excellent agreement and provide deep insights into the underlying physical mechanisms responsible for patterning and orientation of the particles.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 10","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-024-02762-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrocoalescence of unequal-sized aqueous droplet pair in non-conductive medium 非导电介质中大小不等的水滴对的电凝聚
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-09-09 DOI: 10.1007/s10404-024-02763-7
Seongsu Cho, Jinkee Lee

Electrocoalescence is a valuable phenomenon for merging droplets and is widely used in various applications such as the demulsification of crude oil, chemical or biological reaction using a small volume and so on. The ‘non-coalescence’ or ‘partial coalescence’ regimes, at which the droplet pair does not completely merge, appear under particular conditions, and researchers figured out these conditions using an equal-sized droplet pair. However, actual applications involve the merging of an unequal-sized droplet pair; the conditions for the non-coalescence or partial coalescence of unequal-sized droplet pair have not been clearly established. In this study, we evaluated the electrocoalescence behavior of a droplet pair with varying the droplet radius ratio, the initial distance between droplets, and the strength of electric fields, and found the conditions when non-coalescence and partial coalescence occur for unequal- and equal-sized droplet pairs. We discovered that unequal-sized droplet pair demonstrates non-coalescence and partial coalescence more frequently than equal-sized pair. Additionally, non-coalescence and partial coalescence occurred for lower strength of electric field as droplet size ratio and initial distance between droplets increased. Finally, we demonstrate that the unequal formation of the cone angle for unequal-sized droplet pair causes different electrocoalescence behaviors compared with equal-sized droplet pair. We anticipate that this study will contribute to the identification of an appropriate electric field range for diverse electrocoalescence applications.

电凝聚是一种宝贵的液滴合并现象,被广泛应用于原油破乳、使用小体积进行化学或生物反应等各种领域。在特定条件下会出现 "非凝聚 "或 "部分凝聚 "状态,即液滴对不会完全融合,研究人员利用等大小的液滴对找出了这些条件。然而,在实际应用中,需要合并大小不等的液滴对;而大小不等的液滴对不聚合或部分聚合的条件尚未明确确定。在这项研究中,我们评估了在改变液滴半径比、液滴间初始距离和电场强度时液滴对的电凝聚行为,并发现了不等大和等大液滴对发生不凝聚和部分凝聚的条件。我们发现,大小不等的液滴对比大小相等的液滴对更容易发生不凝聚和部分凝聚。此外,随着液滴尺寸比和液滴间初始距离的增加,在电场强度较低时也会出现不凝聚和部分凝聚现象。最后,我们证明了与等尺寸液滴对相比,不等尺寸液滴对形成的锥角不等会导致不同的电凝聚行为。我们预计这项研究将有助于为各种电凝聚应用确定合适的电场范围。
{"title":"Electrocoalescence of unequal-sized aqueous droplet pair in non-conductive medium","authors":"Seongsu Cho,&nbsp;Jinkee Lee","doi":"10.1007/s10404-024-02763-7","DOIUrl":"10.1007/s10404-024-02763-7","url":null,"abstract":"<div><p>Electrocoalescence is a valuable phenomenon for merging droplets and is widely used in various applications such as the demulsification of crude oil, chemical or biological reaction using a small volume and so on. The ‘non-coalescence’ or ‘partial coalescence’ regimes, at which the droplet pair does not completely merge, appear under particular conditions, and researchers figured out these conditions using an equal-sized droplet pair. However, actual applications involve the merging of an unequal-sized droplet pair; the conditions for the non-coalescence or partial coalescence of unequal-sized droplet pair have not been clearly established. In this study, we evaluated the electrocoalescence behavior of a droplet pair with varying the droplet radius ratio, the initial distance between droplets, and the strength of electric fields, and found the conditions when non-coalescence and partial coalescence occur for unequal- and equal-sized droplet pairs. We discovered that unequal-sized droplet pair demonstrates non-coalescence and partial coalescence more frequently than equal-sized pair. Additionally, non-coalescence and partial coalescence occurred for lower strength of electric field as droplet size ratio and initial distance between droplets increased. Finally, we demonstrate that the unequal formation of the cone angle for unequal-sized droplet pair causes different electrocoalescence behaviors compared with equal-sized droplet pair. We anticipate that this study will contribute to the identification of an appropriate electric field range for diverse electrocoalescence applications.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 10","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of nitrocellulose microspheres based on low-cost high-throughput microfluidic technology 基于低成本高通量微流控技术制备硝化纤维微球
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-08-27 DOI: 10.1007/s10404-024-02759-3
ChaoShan Hu, Kaixin Sun, Yajun Zhang

Nitrocellulose microspheres have garnered extensive use in propellants and launching agents due to their inherent safety, robust flowability, and high explosive power. However, conventional preparation methods for these microspheres are often hampered by complex processes, low safety factor and poor sphericity. This study explores an innovative approach to nitrocellulose microsphere fabrication utilizing microfluidic technology. We designed and assembled two high-throughput preparation devices—a coaxial and a centrifugal device—employing 3D printing technology. Our findings demonstrate an 18-fold increase in efficiency over traditional single-pass microfluidic techniques. Additionally, we examined the impact of these devices on the microspheres’ size distribution. The proposed device showcases significant advantages, including reduced cost, enhanced efficiency, and shorter production cycles, indicating promising potential for wide-scale application in nitrocellulose microsphere preparation.

硝化纤维微球因其固有的安全性、强流动性和高爆炸力,在推进剂和发射药中得到了广泛的应用。然而,这些微球的传统制备方法往往因工艺复杂、安全系数低和球形度差而受到阻碍。本研究探索了一种利用微流体技术制备硝化纤维微球的创新方法。我们设计并组装了两个高通量制备装置--一个同轴装置和一个离心装置--并采用了三维打印技术。我们的研究结果表明,与传统的单通道微流控技术相比,效率提高了 18 倍。此外,我们还研究了这些装置对微球粒度分布的影响。所提出的装置具有显著的优势,包括降低成本、提高效率和缩短生产周期,这表明它有望在硝酸纤维素微球制备领域得到广泛应用。
{"title":"Preparation of nitrocellulose microspheres based on low-cost high-throughput microfluidic technology","authors":"ChaoShan Hu,&nbsp;Kaixin Sun,&nbsp;Yajun Zhang","doi":"10.1007/s10404-024-02759-3","DOIUrl":"10.1007/s10404-024-02759-3","url":null,"abstract":"<div><p>Nitrocellulose microspheres have garnered extensive use in propellants and launching agents due to their inherent safety, robust flowability, and high explosive power. However, conventional preparation methods for these microspheres are often hampered by complex processes, low safety factor and poor sphericity. This study explores an innovative approach to nitrocellulose microsphere fabrication utilizing microfluidic technology. We designed and assembled two high-throughput preparation devices—a coaxial and a centrifugal device—employing 3D printing technology. Our findings demonstrate an 18-fold increase in efficiency over traditional single-pass microfluidic techniques. Additionally, we examined the impact of these devices on the microspheres’ size distribution. The proposed device showcases significant advantages, including reduced cost, enhanced efficiency, and shorter production cycles, indicating promising potential for wide-scale application in nitrocellulose microsphere preparation.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 9","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance enhancement of hollow fiber membrane contactors for CO2 absorption using MEA-based functionalized nanofluids 利用基于 MEA 的功能化纳米流体提高中空纤维膜接触器吸收二氧化碳的性能
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-08-23 DOI: 10.1007/s10404-024-02760-w
Miad Ahmari, Seyed Mojtaba Mirfendereski

The performance of hollow fiber membrane contactor for CO2 removal using MEA-based nanofluid was experimentally evaluated. Different types of nanoparticles, including Al2O3, Fe3O4, and functionalized MWCNT in this study. The influence of various operating conditions including gas and absorbent flow rates, absorbent concentration, and nanofluid characteristics on separation performance was thoroughly examined. The results showed that compared to conventional amine solvents, the nanofluid absorbents significantly enhance CO2 absorption performance. In comparison to the base fluid, the mass transfer coefficient was raised by 320, 120, and 40% for 0.15 wt% MWCNT, Al2O3 and Fe2O3, respectively. The MWCNT showed much more compliance with amine solvents due to its carboxyl functional groups and higher surface area which make it more stable in a strong polar mixture. The study underscores the importance of stability, viscosity, and shear stress of nanofluids as key parameters affecting CO2 absorption performance.

实验评估了利用基于 MEA 的纳米流体去除二氧化碳的中空纤维膜接触器的性能。本研究采用了不同类型的纳米颗粒,包括 Al2O3、Fe3O4 和功能化 MWCNT。研究深入考察了各种操作条件(包括气体和吸收剂流速、吸收剂浓度和纳米流体特性)对分离性能的影响。结果表明,与传统胺溶剂相比,纳米流体吸收剂能显著提高二氧化碳吸收性能。与基础流体相比,0.15 wt% 的 MWCNT、Al2O3 和 Fe2O3 的传质系数分别提高了 320%、120% 和 40%。由于 MWCNT 具有羧基官能团和较高的比表面积,使其在强极性混合物中更加稳定,因此在胺溶剂中表现出更高的顺应性。该研究强调了纳米流体的稳定性、粘度和剪切应力作为影响二氧化碳吸收性能的关键参数的重要性。
{"title":"Performance enhancement of hollow fiber membrane contactors for CO2 absorption using MEA-based functionalized nanofluids","authors":"Miad Ahmari,&nbsp;Seyed Mojtaba Mirfendereski","doi":"10.1007/s10404-024-02760-w","DOIUrl":"10.1007/s10404-024-02760-w","url":null,"abstract":"<div><p>The performance of hollow fiber membrane contactor for CO<sub>2</sub> removal using MEA-based nanofluid was experimentally evaluated. Different types of nanoparticles, including Al<sub>2</sub>O<sub>3</sub>, Fe<sub>3</sub>O<sub>4</sub>, and functionalized MWCNT in this study. The influence of various operating conditions including gas and absorbent flow rates, absorbent concentration, and nanofluid characteristics on separation performance was thoroughly examined. The results showed that compared to conventional amine solvents, the nanofluid absorbents significantly enhance CO<sub>2</sub> absorption performance. In comparison to the base fluid, the mass transfer coefficient was raised by 320, 120, and 40% for 0.15 wt% MWCNT, Al<sub>2</sub>O<sub>3</sub> and Fe<sub>2</sub>O<sub>3</sub>, respectively. The MWCNT showed much more compliance with amine solvents due to its carboxyl functional groups and higher surface area which make it more stable in a strong polar mixture. The study underscores the importance of stability, viscosity, and shear stress of nanofluids as key parameters affecting CO<sub>2</sub> absorption performance.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 9","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of bubble formation dynamics of gas-non-Newtonian liquid two-phase flow in a flow-focusing generator 流聚焦发生器中气体-非牛顿液体两相流的气泡形成动力学研究
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-08-16 DOI: 10.1007/s10404-024-02757-5
Gang Yang, Hui-Chen Zhang

In the present study, we explore the dynamics of bubble formation in a flow-focusing device designed for gas-non-Newtonian liquid two-phase flow. The flow-focusing device with a cross-section of a square (300 μm × 300 μm) is constructed on polydimethylsiloxane using lithographic techniques and subsequently sealed with polymethylmethacrylate. A high-speed camera is employed to document the process of bubble formation during the experiment, complemented by computational fluid dynamics methods for an in-depth analysis. The gas is nitrogen, and the liquid is sodium carboxymethyl cellulose solutions with mass fractions of 0.1, 0.2, and 0.3%, respectively. The inlet flow rates of gas and liquid are set at 1–2 ml/min in the simulation and the experiment, and the observed flow patterns are all slug flows. Experimental findings suggest that the duration of bubble formation can be bifurcated into two distinct parts. The first part is predominantly influenced by the velocity of the inlet gas, and the correlation coefficient between velocity and time is −0.56, while the second part is impacted by the shear-thinning properties of the liquid, which are correlated with the flow index and viscosity coefficient of the non-Newtonian liquids, and the correlation coefficients are −0.47 and 0.48, respectively. The computational fluid dynamics results of gas-non-Newtonian liquid two-phase flow with gas and liquid flow rates of 2 ml/min corroborate that the manifestation of the aforementioned time segmentation phenomenon primarily depends on the vortex intensity at the bubble’s head and the orientation of pressure gradients. When the bubble neck size approaches 0, the viscosity of the surrounding liquid decreases rapidly, and alterations in the velocity field near the bubble neck trigger fluctuations in the viscosity of the non-Newtonian liquid, thereby influencing the bubble formation process.

在本研究中,我们探讨了气泡在专为气体-非牛顿液体两相流设计的流动聚焦装置中的形成动力学。我们利用平版印刷技术在聚二甲基硅氧烷上制作了一个横截面为正方形(300 μm × 300 μm)的流动聚焦装置,随后用聚甲基丙烯酸甲酯进行了密封。在实验过程中,使用高速摄像机记录气泡的形成过程,并辅以计算流体动力学方法进行深入分析。气体为氮气,液体为羧甲基纤维素钠溶液,质量分数分别为 0.1%、0.2% 和 0.3%。在模拟和实验中,气体和液体的入口流速均设定为 1-2 ml/min,观察到的流动模式均为蛞蝓流。实验结果表明,气泡形成的持续时间可分为两个不同的部分。第一部分主要受入口气体速度的影响,速度与时间的相关系数为-0.56;第二部分受液体剪切稀化特性的影响,与非牛顿液体的流动指数和粘度系数相关,相关系数分别为-0.47 和 0.48。气体和液体流速为 2 ml/min 的气体-非牛顿液体两相流的计算流体动力学结果证实,上述时间分段现象的表现主要取决于气泡头部的涡流强度和压力梯度的方向。当气泡颈部尺寸接近 0 时,周围液体的粘度迅速降低,气泡颈部附近速度场的变化会引发非牛顿液体粘度的波动,从而影响气泡的形成过程。
{"title":"Investigation of bubble formation dynamics of gas-non-Newtonian liquid two-phase flow in a flow-focusing generator","authors":"Gang Yang,&nbsp;Hui-Chen Zhang","doi":"10.1007/s10404-024-02757-5","DOIUrl":"10.1007/s10404-024-02757-5","url":null,"abstract":"<div><p>In the present study, we explore the dynamics of bubble formation in a flow-focusing device designed for gas-non-Newtonian liquid two-phase flow. The flow-focusing device with a cross-section of a square (300 μm × 300 μm) is constructed on polydimethylsiloxane using lithographic techniques and subsequently sealed with polymethylmethacrylate. A high-speed camera is employed to document the process of bubble formation during the experiment, complemented by computational fluid dynamics methods for an in-depth analysis. The gas is nitrogen, and the liquid is sodium carboxymethyl cellulose solutions with mass fractions of 0.1, 0.2, and 0.3%, respectively. The inlet flow rates of gas and liquid are set at 1–2 ml/min in the simulation and the experiment, and the observed flow patterns are all slug flows. Experimental findings suggest that the duration of bubble formation can be bifurcated into two distinct parts. The first part is predominantly influenced by the velocity of the inlet gas, and the correlation coefficient between velocity and time is −0.56, while the second part is impacted by the shear-thinning properties of the liquid, which are correlated with the flow index and viscosity coefficient of the non-Newtonian liquids, and the correlation coefficients are −0.47 and 0.48, respectively. The computational fluid dynamics results of gas-non-Newtonian liquid two-phase flow with gas and liquid flow rates of 2 ml/min corroborate that the manifestation of the aforementioned time segmentation phenomenon primarily depends on the vortex intensity at the bubble’s head and the orientation of pressure gradients. When the bubble neck size approaches 0, the viscosity of the surrounding liquid decreases rapidly, and alterations in the velocity field near the bubble neck trigger fluctuations in the viscosity of the non-Newtonian liquid, thereby influencing the bubble formation process.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 9","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurements of diffusion coefficient and kinetic diameter of acetone vapor via molecular tagging 通过分子标记测量丙酮蒸气的扩散系数和动力学直径
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-08-09 DOI: 10.1007/s10404-024-02754-8
Zongwei Zhang, Dominique Fratantonio, Christine Barrot Lattes, Marcos Rojas-Cardenas, Stéphane Colin

The Molecular Tagging (MT) technique is a promising methodology for locally measuring velocity and temperature fields in rarefied gas flows. Recently, Molecular Tagging Velocimetry (MTV) has been successfully applied to gas flows in mini-channels in the continuum regime at high pressure and early slip-flow regime at lower pressure. As the operating pressure decreases, diffusion effects become more pronounced, and in MTV, they hinder the extraction of the correct velocity profile by simply dividing the displacement profile of the tagged molecular line by time of flight. To address this issue, a reconstruction method that considers Taylor dispersion was previously developed to extract the velocity profile, considering the diffusion effects of the tracer molecules within the carrier gas. This reconstruction method successfully extracted the correct velocity profile in the continuum flow regime. However, the method still faces challenges in the slip-flow regime. Since there is currently no consensus in the literature regarding the kinetic diameter value of acetone vapor, the diffusion coefficient estimation is uncertain especially at low pressures. This is why, in this study, we propose an original optical method to measure the diffusion coefficient of acetone vapor. This is achieved by linking the temporal evolution of the spatial photoluminescence distribution of acetone vapor to the diffusion coefficient via the Chapman-Enskog theory. Our research provides measurements of these parameters for a wide range of pressures (0.5–10 kPa) at ambient temperature.

分子标记(MT)技术是局部测量稀薄气流中速度场和温度场的一种很有前途的方法。最近,分子标记测速仪(MTV)已成功应用于高压连续流和低压早期滑移流下的微型通道中的气体流动。随着工作压力的降低,扩散效应变得更加明显,在 MTV 中,它们阻碍了通过简单地将标记分子线的位移曲线除以飞行时间来提取正确的速度曲线。为了解决这个问题,之前开发了一种考虑泰勒色散的重构方法,以提取速度曲线,同时考虑示踪剂分子在载气中的扩散效应。这种重构方法成功地提取了连续流状态下的正确速度曲线。然而,该方法在滑移流动体系中仍面临挑战。由于目前文献中对丙酮蒸汽的动力学直径值还没有达成共识,因此扩散系数的估算并不确定,尤其是在低压条件下。因此,我们在本研究中提出了一种测量丙酮蒸汽扩散系数的原创光学方法。这是通过 Chapman-Enskog 理论将丙酮蒸气空间光致发光分布的时间演变与扩散系数联系起来实现的。我们的研究提供了在环境温度下对这些参数在广泛压力(0.5-10 千帕)范围内的测量结果。
{"title":"Measurements of diffusion coefficient and kinetic diameter of acetone vapor via molecular tagging","authors":"Zongwei Zhang,&nbsp;Dominique Fratantonio,&nbsp;Christine Barrot Lattes,&nbsp;Marcos Rojas-Cardenas,&nbsp;Stéphane Colin","doi":"10.1007/s10404-024-02754-8","DOIUrl":"10.1007/s10404-024-02754-8","url":null,"abstract":"<div><p>The Molecular Tagging (MT) technique is a promising methodology for locally measuring velocity and temperature fields in rarefied gas flows. Recently, Molecular Tagging Velocimetry (MTV) has been successfully applied to gas flows in mini-channels in the continuum regime at high pressure and early slip-flow regime at lower pressure. As the operating pressure decreases, diffusion effects become more pronounced, and in MTV, they hinder the extraction of the correct velocity profile by simply dividing the displacement profile of the tagged molecular line by time of flight. To address this issue, a reconstruction method that considers Taylor dispersion was previously developed to extract the velocity profile, considering the diffusion effects of the tracer molecules within the carrier gas. This reconstruction method successfully extracted the correct velocity profile in the continuum flow regime. However, the method still faces challenges in the slip-flow regime. Since there is currently no consensus in the literature regarding the kinetic diameter value of acetone vapor, the diffusion coefficient estimation is uncertain especially at low pressures. This is why, in this study, we propose an original optical method to measure the diffusion coefficient of acetone vapor. This is achieved by linking the temporal evolution of the spatial photoluminescence distribution of acetone vapor to the diffusion coefficient via the Chapman-Enskog theory. Our research provides measurements of these parameters for a wide range of pressures (0.5–10 kPa) at ambient temperature.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 9","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-024-02754-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141923321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning-aided tailoring of double-emulsions within double-T microchannel 机器学习辅助在双 T 型微通道内定制双乳液
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-08-07 DOI: 10.1007/s10404-024-02758-4
Saeed Ghasemzade Bariki, Salman Movahedirad, Mohadeseh Babaei layaei

The formation of double-emulsions or core/shell microdroplets in microchannels, essential for various chemical applications, traditionally relies on costly and time-consuming laboratory methods. In this regard, computational fluid dynamics (CFD) and artificial neural network (ANN) techniques were employed. The present study developed ANN models to predict the relationship between shell thickness and double-emulsion size in a double-T microchannel, using two datasets comprising 180 experimental and CFD data points. Assessing this relationship involved analyzing various input factors, including the Capillary, Weber (case A), and Reynolds numbers (case B) of the core, shell, and continuous phases. Among twelve training algorithms and four activation functions, the Levenberg–Marquardt (LM) algorithm with sigmoidal activation functions (Tansig and Logsig), in contrast to the linear activation functions (Poslin and Purelin), achieved the highest predictive accuracy. Additionally, the predictive accuracy of ANN models was found to be significantly improved when trained using a combination of capillary and Weber numbers, as opposed to models trained only using capillary, Weber, and Reynolds numbers. The optimal neural network architectures were [10 5] neurons for case A (tansig and logsig) and [8] neurons for case B (tansig), yielding coefficients of determination (R2) of 0.99 and 0.98, respectively. These models demonstrated high precision and effective generalization, evidenced by statistical measures such as R2, MSE, RMSE, AAD, %AARD, and computational time. Moreover, their ability to generalize within the training dataset further substantiates their predictive capacity.

微通道中双乳液或核/壳微滴的形成对各种化学应用至关重要,但传统上依赖于昂贵且耗时的实验室方法。在这方面,采用了计算流体动力学(CFD)和人工神经网络(ANN)技术。本研究利用由 180 个实验数据点和 CFD 数据点组成的两个数据集开发了 ANN 模型,用于预测双 T 微通道中的壳厚度和双乳液大小之间的关系。评估这种关系涉及分析各种输入因素,包括核心、外壳和连续相的毛细管数、韦伯数(情况 A)和雷诺数(情况 B)。在 12 种训练算法和 4 种激活函数中,与线性激活函数(Poslin 和 Purelin)相比,采用西格码激活函数(Tansig 和 Logsig)的 Levenberg-Marquardt 算法(LM)获得了最高的预测精度。此外,与仅使用毛细管数、韦伯数和雷诺数训练的模型相比,使用毛细管数和韦伯数组合训练的 ANN 模型的预测准确性显著提高。最佳的神经网络结构为:情况 A(tansig 和 logsig)为 [10 5] 个神经元,情况 B(tansig)为 [8] 个神经元,其决定系数 (R2) 分别为 0.99 和 0.98。从 R2、MSE、RMSE、AAD、%AARD 和计算时间等统计指标来看,这些模型表现出了高精度和有效的泛化能力。此外,这些模型在训练数据集中的泛化能力也进一步证实了它们的预测能力。
{"title":"Machine learning-aided tailoring of double-emulsions within double-T microchannel","authors":"Saeed Ghasemzade Bariki,&nbsp;Salman Movahedirad,&nbsp;Mohadeseh Babaei layaei","doi":"10.1007/s10404-024-02758-4","DOIUrl":"10.1007/s10404-024-02758-4","url":null,"abstract":"<div><p>The formation of double-emulsions or core/shell microdroplets in microchannels, essential for various chemical applications, traditionally relies on costly and time-consuming laboratory methods. In this regard, computational fluid dynamics (CFD) and artificial neural network (ANN) techniques were employed. The present study developed ANN models to predict the relationship between shell thickness and double-emulsion size in a double-T microchannel, using two datasets comprising 180 experimental and CFD data points. Assessing this relationship involved analyzing various input factors, including the Capillary, Weber (case A), and Reynolds numbers (case B) of the core, shell, and continuous phases. Among twelve training algorithms and four activation functions, the Levenberg–Marquardt (LM) algorithm with sigmoidal activation functions (Tansig and Logsig), in contrast to the linear activation functions (Poslin and Purelin), achieved the highest predictive accuracy. Additionally, the predictive accuracy of ANN models was found to be significantly improved when trained using a combination of capillary and Weber numbers, as opposed to models trained only using capillary, Weber, and Reynolds numbers. The optimal neural network architectures were [10 5] neurons for case A (tansig and logsig) and [8] neurons for case B (tansig), yielding coefficients of determination (R<sup>2</sup>) of 0.99 and 0.98, respectively. These models demonstrated high precision and effective generalization, evidenced by statistical measures such as R<sup>2</sup>, MSE, RMSE, AAD, %AARD, and computational time. Moreover, their ability to generalize within the training dataset further substantiates their predictive capacity.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 9","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic thermal and hydrodynamic effects in 3D-printed heat sinks with intricate microchannel patterns 具有复杂微通道图案的 3D 打印散热器中的热效应和流体力学效应的协同作用
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-08-05 DOI: 10.1007/s10404-024-02751-x
Win-Jet Luo, Pramod Vishwakarma, Bivas Panigrahi

A compelling solution to the issue of high heat flux generated by flexible electronic devices has been found in liquid-based microfluidic cooling devices. It has been earlier realized that the varying microchannel hydrodynamics influences the overall heat transfer in these devices. However, microfluidic cooling devices that incorporate intricate microchannels have not been explored to their full potential. In this study, we investigate the use of 3-D intricate microchannel geometries in microfluidic heat sinks, their generated hydrodynamics, and their profound impact on the overall heat transfer process. Utilizing 3D-printed scaffold removal technology, three distinct microfluidic devices were fabricated, each distinguishable by its cross-sectional shape of the microchannel designs (coil, square, and triangle). These microfluidic devices, based on Polydimethylsiloxane-Graphene oxide (PDMS-GO) as substrate material, have been examined experimentally and numerically for their heat dissipation capacities under constant temperature heat source of 358 K at flow rates ranging from 40 to 400 μL/min. Experimental observation illustrates that the coil-microchannel configuration exhibited superior heat dissipation capabilities, outperforming both the square and triangle microchannels across all flow settings. Furthermore, numerical simulations corroborated this experimental finding by providing insights into through-plane temperature distribution, heat transfer coefficient, pressure drop, and channel hydrodynamics. Our study intends to advance the understanding of microchannel cooling, as well as emphasizes the importance of geometrical configuration towards optimal electronic hotspot cooling.

对于柔性电子设备产生的高热通量问题,液基微流体冷却设备是一个令人信服的解决方案。人们较早意识到,不同的微通道流体力学会影响这些设备的整体热传递。然而,包含复杂微通道的微流体冷却设备尚未被充分挖掘其潜力。在本研究中,我们研究了微流体散热器中三维复杂微通道几何形状的使用、其产生的流体力学以及它们对整个传热过程的深远影响。利用三维打印支架移除技术,我们制造出了三种不同的微流体装置,每种装置都可通过微通道设计的横截面形状(线圈、方形和三角形)加以区分。这些微流控装置以聚二甲基硅氧烷-氧化石墨烯(PDMS-GO)为基底材料,在 358 K 的恒温热源条件下,以 40 至 400 μL/min 的流速对其散热能力进行了实验和数值检验。实验观察结果表明,线圈微通道配置的散热能力更强,在所有流量设置下均优于方形和三角形微通道。此外,数值模拟也证实了这一实验结果,并提供了对通面温度分布、传热系数、压降和通道流体力学的深入了解。我们的研究旨在推进对微通道冷却的理解,并强调几何配置对优化电子热点冷却的重要性。
{"title":"Synergistic thermal and hydrodynamic effects in 3D-printed heat sinks with intricate microchannel patterns","authors":"Win-Jet Luo,&nbsp;Pramod Vishwakarma,&nbsp;Bivas Panigrahi","doi":"10.1007/s10404-024-02751-x","DOIUrl":"10.1007/s10404-024-02751-x","url":null,"abstract":"<div><p>A compelling solution to the issue of high heat flux generated by flexible electronic devices has been found in liquid-based microfluidic cooling devices. It has been earlier realized that the varying microchannel hydrodynamics influences the overall heat transfer in these devices. However, microfluidic cooling devices that incorporate intricate microchannels have not been explored to their full potential. In this study, we investigate the use of 3-D intricate microchannel geometries in microfluidic heat sinks, their generated hydrodynamics, and their profound impact on the overall heat transfer process. Utilizing 3D-printed scaffold removal technology, three distinct microfluidic devices were fabricated, each distinguishable by its cross-sectional shape of the microchannel designs (coil, square, and triangle). These microfluidic devices, based on Polydimethylsiloxane-Graphene oxide (PDMS-GO) as substrate material, have been examined experimentally and numerically for their heat dissipation capacities under constant temperature heat source of 358 K at flow rates ranging from 40 to 400 μL/min. Experimental observation illustrates that the coil-microchannel configuration exhibited superior heat dissipation capabilities, outperforming both the square and triangle microchannels across all flow settings. Furthermore, numerical simulations corroborated this experimental finding by providing insights into through-plane temperature distribution, heat transfer coefficient, pressure drop, and channel hydrodynamics. Our study intends to advance the understanding of microchannel cooling, as well as emphasizes the importance of geometrical configuration towards optimal electronic hotspot cooling.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 9","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141940307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Template-assisted fabrication of moon-shaped channels for protein breakthrough analysis 模板辅助制造用于蛋白质突破分析的月形通道
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-07-31 DOI: 10.1007/s10404-024-02755-7
Raghu K. Moorthy, Serena D’Souza, P. Sunthar, Santosh B. Noronha

Cylindrical column with packed stationary phase is the workhorse of liquid chromatography systems. These stationary phases are commonly classified on the basis of different form factors namely, beads and monoliths for protein chromatography. Monolithic rods are one of the important geometries derived from polymers through complex polymerization schemes with additional requirements such as cross-linkers and specific reaction conditions. To address these practical difficulties and enable ease of fabrication at laboratory scale, acrylic copolymers are hypothesized to perform as a monolithic stationary phase suitable for protein chromatography. The present work proposes a rapid fabrication technique to obtain monolithic rods that could be reconditioned without any of the above additional steps. It is characterized with monolith diameter that could be controlled using acrylic copolymer concentration. Formation of the copolymeric stationary phase inside microchannel led to annular geometry and in turn, demonstrated fabrication of moon-shaped channels (MSCs) for the first time in literature. An online monitoring system facilitated tracer breakthrough analysis with MSCs to report sharp peak front and an estimate of channel void volume. Breakthrough curves with single protein validated the selection of blue dextran as tracer and indicated retention of proteins due to electrostatic interactions on the functional copolymer surface.

带有填料固定相的圆柱形色谱柱是液相色谱系统的主力。这些固定相通常根据不同的形式因素进行分类,即用于蛋白质色谱的珠状固定相和整体固定相。整体柱是重要的几何形状之一,它是通过复杂的聚合方案从聚合物中衍生出来的,还需要交联剂和特定的反应条件等额外要求。为了解决这些实际困难并方便实验室规模的制造,我们假设丙烯酸共聚物可用作适用于蛋白质色谱法的整体固定相。本研究提出了一种快速制备技术,可获得整体棒材,且无需任何上述额外步骤即可进行翻新。该技术的特点是可通过丙烯酸共聚物的浓度来控制整体柱的直径。共聚物固定相在微通道内的形成导致了环形几何形状,进而在文献中首次展示了月形通道(MSC)的制造。在线监测系统有助于对 MSCs 进行示踪剂突破分析,报告尖锐的峰值前沿并估算通道空隙体积。单个蛋白质的突破曲线验证了选择蓝色葡聚糖作为示踪剂的正确性,并表明由于功能共聚物表面的静电作用,蛋白质得以保留。
{"title":"Template-assisted fabrication of moon-shaped channels for protein breakthrough analysis","authors":"Raghu K. Moorthy,&nbsp;Serena D’Souza,&nbsp;P. Sunthar,&nbsp;Santosh B. Noronha","doi":"10.1007/s10404-024-02755-7","DOIUrl":"10.1007/s10404-024-02755-7","url":null,"abstract":"<div><p>Cylindrical column with packed stationary phase is the workhorse of liquid chromatography systems. These stationary phases are commonly classified on the basis of different form factors namely, beads and monoliths for protein chromatography. Monolithic rods are one of the important geometries derived from polymers through complex polymerization schemes with additional requirements such as cross-linkers and specific reaction conditions. To address these practical difficulties and enable ease of fabrication at laboratory scale, acrylic copolymers are hypothesized to perform as a monolithic stationary phase suitable for protein chromatography. The present work proposes a rapid fabrication technique to obtain monolithic rods that could be reconditioned without any of the above additional steps. It is characterized with monolith diameter that could be controlled using acrylic copolymer concentration. Formation of the copolymeric stationary phase inside microchannel led to annular geometry and in turn, demonstrated fabrication of moon-shaped channels (MSCs) for the first time in literature. An online monitoring system facilitated tracer breakthrough analysis with MSCs to report sharp peak front and an estimate of channel void volume. Breakthrough curves with single protein validated the selection of blue dextran as tracer and indicated retention of proteins due to electrostatic interactions on the functional copolymer surface.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SERS-active core-satellite nanostructures in a membrane filter-integrated microfluidic device for sensitive and continuous detection of trace molecules 用于灵敏、连续检测痕量分子的膜过滤器集成微流控装置中的 SERS 活性核心卫星纳米结构
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-07-30 DOI: 10.1007/s10404-024-02756-6
Li-An Wu, Kai-Ting Hsieh, Chien-Shen Lin, Yuh-Lin Wang, Yih-Fan Chen

We developed a surface-enhanced Raman scattering (SERS)-active plasmonic core-satellite nanostructure and incorporated it into a membrane filter-integrated microfluidic device for continuous monitoring of molecules in solution. The core-satellite nanostructures were fabricated by immobilizing a high number density of gold nanoparticles (AuNPs) on silica beads.to create many nanogaps among the AuNPs. The sizes of the nanogaps were fine-tuned by adding a silver (Ag) shell to optimize the SERS activity. In addition, citrate molecule, the capping agent of the nanoparticles, was displaced by alkali halides. The displacement not only reduced the SERS signals of citrate but also enhanced the adsorption of target molecules. The alkali halide-treated core-satellite nanostructures were accumulated onto a membrane filter integrated into a microfluidic device, serving as a uniform and sensitive SERS substrate. By increasing the volume of the sample solution flowing through the membrane filter, we increased the number of molecules adsorbed to the nanostructures, amplifying the intensities of their characteristic Raman peaks. Our microfluidic SERS device demonstrated continuous SERS detection of malachite green at a concentration as low as 500 fM. In summary, while various core-satellite nanostructures and microfluidic SERS devices have been reported, the integration of the membrane filter-containing microfluidic device with the core-satellite nanostructures facilitated sensitive and continuous molecule detection in our study.

我们开发了一种表面增强拉曼散射(SERS)活性等离子体核心-卫星纳米结构,并将其纳入膜过滤集成微流控装置,用于连续监测溶液中的分子。核心-卫星纳米结构是通过将高密度的金纳米粒子(AuNPs)固定在二氧化硅珠上,在AuNPs之间形成许多纳米间隙而制成的。通过添加银(Ag)壳对纳米间隙的大小进行微调,以优化 SERS 活性。此外,纳米粒子的封端剂柠檬酸盐分子被碱卤化物置换。这种置换不仅降低了柠檬酸盐的 SERS 信号,还增强了对目标分子的吸附。经碱卤化物处理的核心-卫星纳米结构被积聚到集成到微流控装置中的膜过滤器上,作为均匀、灵敏的 SERS 基底。通过增加流经膜过滤器的样品溶液体积,我们增加了纳米结构上吸附的分子数量,从而放大了其特征拉曼峰的强度。我们的微流控 SERS 设备在孔雀石绿浓度低至 500 fM 时就能对其进行连续 SERS 检测。总之,虽然已有各种核心卫星纳米结构和微流控 SERS 装置的报道,但在我们的研究中,含膜过滤器的微流控装置与核心卫星纳米结构的整合促进了灵敏和连续的分子检测。
{"title":"SERS-active core-satellite nanostructures in a membrane filter-integrated microfluidic device for sensitive and continuous detection of trace molecules","authors":"Li-An Wu,&nbsp;Kai-Ting Hsieh,&nbsp;Chien-Shen Lin,&nbsp;Yuh-Lin Wang,&nbsp;Yih-Fan Chen","doi":"10.1007/s10404-024-02756-6","DOIUrl":"10.1007/s10404-024-02756-6","url":null,"abstract":"<div><p>We developed a surface-enhanced Raman scattering (SERS)-active plasmonic core-satellite nanostructure and incorporated it into a membrane filter-integrated microfluidic device for continuous monitoring of molecules in solution. The core-satellite nanostructures were fabricated by immobilizing a high number density of gold nanoparticles (AuNPs) on silica beads.to create many nanogaps among the AuNPs. The sizes of the nanogaps were fine-tuned by adding a silver (Ag) shell to optimize the SERS activity. In addition, citrate molecule, the capping agent of the nanoparticles, was displaced by alkali halides. The displacement not only reduced the SERS signals of citrate but also enhanced the adsorption of target molecules. The alkali halide-treated core-satellite nanostructures were accumulated onto a membrane filter integrated into a microfluidic device, serving as a uniform and sensitive SERS substrate. By increasing the volume of the sample solution flowing through the membrane filter, we increased the number of molecules adsorbed to the nanostructures, amplifying the intensities of their characteristic Raman peaks. Our microfluidic SERS device demonstrated continuous SERS detection of malachite green at a concentration as low as 500 fM. In summary, while various core-satellite nanostructures and microfluidic SERS devices have been reported, the integration of the membrane filter-containing microfluidic device with the core-satellite nanostructures facilitated sensitive and continuous molecule detection in our study.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-024-02756-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microfluidics and Nanofluidics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1