Carbon-based perovskite solar cells (C-PSCs) exhibit notable stability and durability. However, the power conversion efficiency (PCE) is significantly hindered by energy level mismatches, which result in interfacial charge transport barriers at the electrode-related interfaces. Herein, we report a back electrode that utilizes atomically dispersed metallic cobalt (Co) in carbon nanosheets (Co1/CN) to adjust the interfacial energy levels. The electrons in the d-orbitals of Co atoms disrupt the electronic symmetry of the carbon nanosheets (CN), inducing a redistribution of the electronic density of states that leads to a downward shift in the Fermi level and a significantly reduced interfacial energy barrier. As a result, the C-PSCs using Co1/CN as back electrodes achieve a notable PCE of 22.61% with exceptional long-term stability, maintaining 94.4% of their initial efficiency after 1000 h of continuous illumination without encapsulation. This work provides a promising universal method to regulate the energy level of carbon electrodes for C-PSCs and paves the way for more efficient, stable, and scalable solar technologies toward commercialization.
{"title":"Atomically Dispersed Metal Atoms: Minimizing Interfacial Charge Transport Barrier for Efficient Carbon-Based Perovskite Solar Cells","authors":"Yanying Shi, Xusheng Cheng, Yudi Wang, Wenrui Li, Wenzhe Shang, Wei Liu, Wei Lu, Jiashuo Cheng, Lida Liu, Yantao Shi","doi":"10.1007/s40820-024-01639-3","DOIUrl":"10.1007/s40820-024-01639-3","url":null,"abstract":"<div><p>Carbon-based perovskite solar cells (C-PSCs) exhibit notable stability and durability. However, the power conversion efficiency (PCE) is significantly hindered by energy level mismatches, which result in interfacial charge transport barriers at the electrode-related interfaces. Herein, we report a back electrode that utilizes atomically dispersed metallic cobalt (Co) in carbon nanosheets (Co<sub>1</sub>/CN) to adjust the interfacial energy levels. The electrons in the d-orbitals of Co atoms disrupt the electronic symmetry of the carbon nanosheets (CN), inducing a redistribution of the electronic density of states that leads to a downward shift in the Fermi level and a significantly reduced interfacial energy barrier. As a result, the C-PSCs using Co<sub>1</sub>/CN as back electrodes achieve a notable PCE of 22.61% with exceptional long-term stability, maintaining 94.4% of their initial efficiency after 1000 h of continuous illumination without encapsulation. This work provides a promising universal method to regulate the energy level of carbon electrodes for C-PSCs and paves the way for more efficient, stable, and scalable solar technologies toward commercialization.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785869/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-31DOI: 10.1007/s40820-025-01654-y
Zhihao Lei, Sajjad Ali, CI Sathish, MuhammadIbrar Ahmed, Jiangtao Qu, Rongkun Zheng, Shibo Xi, Xiaojiang Yu, M. B. H. Breese, Chao Liu, Jizhen Zhang, Shuai Qi, Xinwei Guan, Vibin Perumalsamy, Mohammed Fawaz, Jae-Hun Yang, Mohamed Bououdina, Kazunari Domen, Ajayan Vinu, Liang Qiao, Jiabao Yi
Transition metal carbides, known as MXenes, particularly Ti3C2Tx, have been extensively explored as promising materials for electrochemical reactions. However, transition metal carbonitride MXenes with high nitrogen content for electrochemical reactions are rarely reported. In this work, transition metal carbonitride MXenes incorporated with Pt-based electrocatalysts, ranging from single atoms to sub-nanometer dimensions, are explored for hydrogen evolution reaction (HER). The fabricated Pt clusters/MXene catalyst exhibits superior HER performance compared to the single-atom-incorporated MXene and commercial Pt/C catalyst in both acidic and alkaline electrolytes. The optimized sample shows low overpotentials of 28, 65, and 154 mV at a current densities of 10, 100, and 500 mA cm−2, a small Tafel slope of 29 mV dec−1, a high mass activity of 1203 mA mgPt−1 and an excellent turnover frequency of 6.1 s−1 in the acidic electrolyte. Density functional theory calculations indicate that this high performance can be attributed to the enhanced active sites, increased surface functional groups, faster charge transfer dynamics, and stronger electronic interaction between Pt and MXene, resulting in optimized hydrogen absorption/desorption toward better HER. This work demonstrates that MXenes with a high content of nitrogen may be promising candidates for various catalytic reactions by incorporating single atoms or clusters.
{"title":"Transition Metal Carbonitride MXenes Anchored with Pt Sub-Nanometer Clusters to Achieve High-Performance Hydrogen Evolution Reaction at All pH Range","authors":"Zhihao Lei, Sajjad Ali, CI Sathish, MuhammadIbrar Ahmed, Jiangtao Qu, Rongkun Zheng, Shibo Xi, Xiaojiang Yu, M. B. H. Breese, Chao Liu, Jizhen Zhang, Shuai Qi, Xinwei Guan, Vibin Perumalsamy, Mohammed Fawaz, Jae-Hun Yang, Mohamed Bououdina, Kazunari Domen, Ajayan Vinu, Liang Qiao, Jiabao Yi","doi":"10.1007/s40820-025-01654-y","DOIUrl":"10.1007/s40820-025-01654-y","url":null,"abstract":"<div><p>Transition metal carbides, known as MXenes, particularly Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>, have been extensively explored as promising materials for electrochemical reactions. However, transition metal carbonitride MXenes with high nitrogen content for electrochemical reactions are rarely reported. In this work, transition metal carbonitride MXenes incorporated with Pt-based electrocatalysts, ranging from single atoms to sub-nanometer dimensions, are explored for hydrogen evolution reaction (HER). The fabricated Pt clusters/MXene catalyst exhibits superior HER performance compared to the single-atom-incorporated MXene and commercial Pt/C catalyst in both acidic and alkaline electrolytes. The optimized sample shows low overpotentials of 28, 65, and 154 mV at a current densities of 10, 100, and 500 mA cm<sup>−2</sup>, a small Tafel slope of 29 mV dec<sup>−1</sup>, a high mass activity of 1203 mA mg<sub>Pt</sub><sup>−1</sup> and an excellent turnover frequency of 6.1 s<sup>−1</sup> in the acidic electrolyte. Density functional theory calculations indicate that this high performance can be attributed to the enhanced active sites, increased surface functional groups, faster charge transfer dynamics, and stronger electronic interaction between Pt and MXene, resulting in optimized hydrogen absorption/desorption toward better HER. This work demonstrates that MXenes with a high content of nitrogen may be promising candidates for various catalytic reactions by incorporating single atoms or clusters. </p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}