首页 > 最新文献

Nano-Micro Letters最新文献

英文 中文
Vertical Interfacial Engineering in Two-Step-Processed Perovskite Films Enabled by Dual-Interface Modification for High-Efficiency p-i-n Solar Cells 高效p-i-n太阳能电池双界面改性钙钛矿膜的垂直界面工程
IF 36.3 1区 材料科学 Q1 Engineering Pub Date : 2026-01-05 DOI: 10.1007/s40820-025-02010-w
Wenhao Zhou, Heng Liu, Haiyan Li, Weihai Zhang, Hui Li, Xia Zhou, Rouxi Chen, Wenjun Zhang, Tingting Shi, Antonio Abate, Hsing-Lin Wang

Two-step-processed (TSP) inverted p-i-n perovskite solar cells (PSCs) have demonstrated significant promise in tandem applications. However, the power conversion efficiency (PCE) of TSP p-i-n PSCs rarely exceeds 24%. Here, we demonstrate that TSP perovskite films exhibit a vertically gradient distribution of residual PbI2 clusters, which form Schottky heterojunctions with the perovskite, leading to substantial interfacial energy-level mismatches within NiOx-based TSP p-i-n PSCs. These limitations were effectively addressed via a vertical interfacial engineering enabled by dual-interface modification incorporating tin trifluoromethanesulfonate (Sn(OTF)2) and 4-Fluorophenylethylamine chloride (F-PEA) at the NiOx/perovskite and perovskite/C60 interfaces, respectively. The functional Sn(OTF)2 not only enhances the conductivity of NiOx films but also suppresses ion migration, while inducing the formation of a Pb-Sn mixed perovskite interlayer that precisely regulates the energy level at the NiOx/perovskite interface. Complementally, F-PEA post-treatment effectively converts surface residual PbI2 clusters into a 2D perovskite capping layer, which simultaneously passivates surface defects and enhances energy-level alignment at the perovskite/C60 interface. Consequently, the optimized NiOx-based TSP p-i-n PSCs achieve a notable PCE of 25.6% with superior operational stability. This study elucidates the underlying mechanisms limiting the efficiency of TSP p-i-n PSCs, while establishing design principles for these devices targeting 26% efficiency.

两步加工(TSP)倒p-i-n钙钛矿太阳能电池(PSCs)在串联应用中显示出巨大的前景。然而,TSP p-i-n PSCs的功率转换效率(PCE)很少超过24%。在这里,我们证明了TSP钙钛矿薄膜呈现出垂直梯度分布的残余PbI2簇,这些簇与钙钛矿形成肖特基异质结,导致基于nioxs的TSP p-i-n psc中存在大量的界面能级不匹配。通过在NiOx/钙钛矿和钙钛矿/C60界面分别加入三氟甲烷磺酸锡(Sn(OTF)2)和4-氟苯乙胺氯(F-PEA)进行双界面改性,可以有效地解决这些限制。功能Sn(OTF)2不仅提高了NiOx薄膜的导电性,还抑制了迁移,同时诱导形成了Pb-Sn混合钙钛矿夹层,精确调节了NiOx/钙钛矿界面的能级。此外,F-PEA后处理有效地将表面残留的PbI2簇转化为2D钙钛矿覆盖层,同时钝化表面缺陷并增强钙钛矿/C60界面的能级排列。因此,优化后的基于niox的TSP p-i-n psc的PCE达到了25.6%,并且具有优异的工作稳定性。本研究阐明了限制TSP p-i-n psc效率的潜在机制,同时建立了这些器件的设计原则,目标是26%的效率。
{"title":"Vertical Interfacial Engineering in Two-Step-Processed Perovskite Films Enabled by Dual-Interface Modification for High-Efficiency p-i-n Solar Cells","authors":"Wenhao Zhou,&nbsp;Heng Liu,&nbsp;Haiyan Li,&nbsp;Weihai Zhang,&nbsp;Hui Li,&nbsp;Xia Zhou,&nbsp;Rouxi Chen,&nbsp;Wenjun Zhang,&nbsp;Tingting Shi,&nbsp;Antonio Abate,&nbsp;Hsing-Lin Wang","doi":"10.1007/s40820-025-02010-w","DOIUrl":"10.1007/s40820-025-02010-w","url":null,"abstract":"<div><p>Two-step-processed (TSP) inverted p-i-n perovskite solar cells (PSCs) have demonstrated significant promise in tandem applications. However, the power conversion efficiency (PCE) of TSP p-i-n PSCs rarely exceeds 24%. Here, we demonstrate that TSP perovskite films exhibit a vertically gradient distribution of residual PbI<sub>2</sub> clusters, which form Schottky heterojunctions with the perovskite, leading to substantial interfacial energy-level mismatches within NiO<sub>x</sub>-based TSP p-i-n PSCs. These limitations were effectively addressed via a vertical interfacial engineering enabled by dual-interface modification incorporating tin trifluoromethanesulfonate (Sn(OTF)<sub>2</sub>) and 4-Fluorophenylethylamine chloride (F-PEA) at the NiO<sub>x</sub>/perovskite and perovskite/C60 interfaces, respectively. The functional Sn(OTF)<sub>2</sub> not only enhances the conductivity of NiO<sub>x</sub> films but also suppresses ion migration, while inducing the formation of a Pb-Sn mixed perovskite interlayer that precisely regulates the energy level at the NiO<sub>x</sub>/perovskite interface. Complementally, F-PEA post-treatment effectively converts surface residual PbI<sub>2</sub> clusters into a 2D perovskite capping layer, which simultaneously passivates surface defects and enhances energy-level alignment at the perovskite/C60 interface. Consequently, the optimized NiO<sub>x</sub>-based TSP p-i-n PSCs achieve a notable PCE of 25.6% with superior operational stability. This study elucidates the underlying mechanisms limiting the efficiency of TSP p-i-n PSCs, while establishing design principles for these devices targeting 26% efficiency.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-02010-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxide Semiconductor for Advanced Memory Architectures: Atomic Layer Deposition, Key Requirement and Challenges 用于高级存储架构的氧化物半导体:原子层沉积,关键要求和挑战。
IF 36.3 1区 材料科学 Q1 Engineering Pub Date : 2026-01-05 DOI: 10.1007/s40820-025-02013-7
Chi-Hoon Lee, Seong-Hwan Ryu, Taewon Hwang, Sang-Hyun Kim, Yoon-Seo Kim, Jin-Seong Park

Oxide semiconductors (OSs), introduced by the Hosono group in the early 2000s, have evolved from display backplane materials to promising candidates for advanced memory and logic devices. The exceptionally low leakage current of OSs and compatibility with three-dimensional (3D) architectures have recently sparked renewed interest in their use in semiconductor applications. This review begins by exploring the unique material properties of OSs, which fundamentally originate from their distinct electronic band structure. Subsequently, we focus on atomic layer deposition (ALD), a core technique for growing excellent OS films, covering both basic and advanced processes compatible with 3D scaling. The basic surface reaction mechanisms—adsorption and reaction—and their roles in film growth are introduced. Furthermore, material design strategies, such as cation selection, crystallinity control, anion doping, and heterostructure engineering, are discussed. We also highlight challenges in memory applications, including contact resistance, hydrogen instability, and lack of p-type materials, and discuss the feasibility of ALD-grown OSs as potential solutions. Lastly, we provide an outlook on the role of ALD-grown OSs in memory technologies. This review bridges material fundamentals and device-level requirements, offering a comprehensive perspective on the potential of ALD-driven OSs for next-generation semiconductor memory devices.

细野集团在21世纪初推出的氧化物半导体(os),已经从显示背板材料发展成为先进存储和逻辑器件的有前途的候选者。操作系统异常低的漏电流和与三维(3D)架构的兼容性最近引发了对其在半导体应用中的使用的新兴趣。本综述从探索os的独特材料特性开始,这些特性基本上源于其独特的电子能带结构。随后,我们专注于原子层沉积(ALD),这是一种生长优秀OS薄膜的核心技术,涵盖了与3D缩放兼容的基本和高级工艺。介绍了表面反应的基本机理——吸附和反应机理及其在膜生长中的作用。此外,还讨论了材料设计策略,如阳离子选择、结晶度控制、阴离子掺杂和异质结构工程。我们还强调了存储应用中的挑战,包括接触电阻、氢不稳定性和p型材料的缺乏,并讨论了ald生长的os作为潜在解决方案的可行性。最后,我们展望了ald生长的操作系统在存储器技术中的作用。本综述结合了材料基础和器件级要求,为下一代半导体存储器件的ald驱动操作系统的潜力提供了一个全面的视角。
{"title":"Oxide Semiconductor for Advanced Memory Architectures: Atomic Layer Deposition, Key Requirement and Challenges","authors":"Chi-Hoon Lee,&nbsp;Seong-Hwan Ryu,&nbsp;Taewon Hwang,&nbsp;Sang-Hyun Kim,&nbsp;Yoon-Seo Kim,&nbsp;Jin-Seong Park","doi":"10.1007/s40820-025-02013-7","DOIUrl":"10.1007/s40820-025-02013-7","url":null,"abstract":"<div><p>Oxide semiconductors (OSs), introduced by the Hosono group in the early 2000s, have evolved from display backplane materials to promising candidates for advanced memory and logic devices. The exceptionally low leakage current of OSs and compatibility with three-dimensional (3D) architectures have recently sparked renewed interest in their use in semiconductor applications. This review begins by exploring the unique material properties of OSs, which fundamentally originate from their distinct electronic band structure. Subsequently, we focus on atomic layer deposition (ALD), a core technique for growing excellent OS films, covering both basic and advanced processes compatible with 3D scaling. The basic surface reaction mechanisms—adsorption and reaction—and their roles in film growth are introduced. Furthermore, material design strategies, such as cation selection, crystallinity control, anion doping, and heterostructure engineering, are discussed. We also highlight challenges in memory applications, including contact resistance, hydrogen instability, and lack of p-type materials, and discuss the feasibility of ALD-grown OSs as potential solutions. Lastly, we provide an outlook on the role of ALD-grown OSs in memory technologies. This review bridges material fundamentals and device-level requirements, offering a comprehensive perspective on the potential of ALD-driven OSs for next-generation semiconductor memory devices.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-02013-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iron–Manganese Dual-Doping Tailors the Electronic Structure of Na3V2(PO4)2F3 for High-Performance Sodium-Ion Batteries 铁锰双掺杂调整高性能钠离子电池用Na3V2(PO4)2F3的电子结构
IF 36.3 1区 材料科学 Q1 Engineering Pub Date : 2026-01-05 DOI: 10.1007/s40820-025-01881-3
Jien Li, Shuang Luo, Renjie Li, Yingkai Hua, Linlong Lyu, Xiangjun Pu, Jun Fan, Zheng-Long Xu

Highlights

  • Regulation of the electronic structure of Na3V2(PO4)2F3 (NVPF) via iron–manganese dual-doping enhances electrical conductivity and ion diffusion kinetics.

  • Efficient charge transport and highly reversible Na+ de/intercalation in Fe-Mn dual-doped NVPF (FM-NVPF) enable exceptional rate capability and charge storage capacity.

  • The full cell with the FM-NVPF cathode and hard carbon anode displays superior rate performance and cycling stability.

钠超离子导体(NASICON)型材料具有稳定的多通道结构和优异的离子导电性,是钠离子电池极具应用前景的材料。其中,Na3V2(PO4)2F3 (NVPF)备受关注。然而,其低电导率和相杂质限制了其储钠能力。在此,我们提出了一种Fe和Mn双掺杂的NVPF (FM-NVPF)阴极,具有提高的相纯度,电子导电性和电化学活性。详细的非原位分析和密度泛函理论计算表明,Fe和Mn掺杂剂诱导缺陷能级并调节电子结构,导致NVPF中直接到间接的带隙跃迁,从而增加载流子浓度和寿命,加速离子/电子输运,提高结构稳定性。因此,FM-NVPF阴极在0.1℃(1℃= 128 mAh g⁻1)时的高容量为126.6 mAh g⁻1,在50℃时的高容量为67.6 mAh g⁻1,相当于每次充电1.2分钟。此外,用FM-NVPF阴极和硬碳阳极组装的Na离子电池表现出约175 Wh kg-1阴极+阳极质量的高能量密度和吸引人的循环稳定性。本研究为开发高纯度、高性能的NVPF先进钠离子电池正极材料提供了有效的策略。
{"title":"Iron–Manganese Dual-Doping Tailors the Electronic Structure of Na3V2(PO4)2F3 for High-Performance Sodium-Ion Batteries","authors":"Jien Li,&nbsp;Shuang Luo,&nbsp;Renjie Li,&nbsp;Yingkai Hua,&nbsp;Linlong Lyu,&nbsp;Xiangjun Pu,&nbsp;Jun Fan,&nbsp;Zheng-Long Xu","doi":"10.1007/s40820-025-01881-3","DOIUrl":"10.1007/s40820-025-01881-3","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>Regulation of the electronic structure of Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub> (NVPF) via iron–manganese dual-doping enhances electrical conductivity and ion diffusion kinetics.</p>\u0000 </li>\u0000 <li>\u0000 <p>Efficient charge transport and highly reversible Na<sup>+</sup> de/intercalation in Fe-Mn dual-doped NVPF (FM-NVPF) enable exceptional rate capability and charge storage capacity.</p>\u0000 </li>\u0000 <li>\u0000 <p>The full cell with the FM-NVPF cathode and hard carbon anode displays superior rate performance and cycling stability.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01881-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoreactor-Structured Defective MoS2: Suppressing Intercalation-Induced Phase Transitions and Enhancing Reversibility for Potassium-Ion Batteries 纳米反应器结构缺陷二硫化钼:抑制插层诱导的相变并增强钾离子电池的可逆性。
IF 36.3 1区 材料科学 Q1 Engineering Pub Date : 2026-01-05 DOI: 10.1007/s40820-025-01992-x
Chunrong Ma, Cyrus Koroni, Jiacheng Hu, Ji Qian, Guangshuai Han, Hui Xiong

Highlights

  • A nanoreactor-structured MoSSe@NC heterostructure was constructed via defect engineering and carbon intercalation, simultaneously achieving phase transition suppression and enhanced ion transport.

  • Selenium-induced lattice disorder and carbon layer confinement synergistically inhibit the 1T–2H phase transition and buffer structural strain during cycling.

  • The designed heterostructure exhibits high capacity, excellent rate performance, and long-term cycling stability, offering a generalizable strategy for high-performance potassium-ion battery anodes.

转换型电极材料由于其高理论容量而在钾离子电池(PIBs)中具有重要的前景,但其实际部署受到缓慢动力学和不可逆结构降解的阻碍。为了克服这些限制,我们提出了一种合理设计的纳米反应器结构,该结构通过层间碳单层的掺入来稳定富含缺陷的MoS2,然后在氮掺杂的碳壳中封装,形成MoSSe@NC异质结构。这种定制的结构协同加速了K+扩散动力学和电子转移,实现了前所未有的速率性能(10 A g-1时107 mAh g-1)和超长循环性能(在3a g-1下1200次循环后容量保持率为86.5%)。机理揭示了一种独特的“吸附-转化”途径,其中暴露的S-Mo-S基面上的硫空位作为优先的K+吸附位点,有效地抑制了插层过程中的寄生相变。原位x射线衍射和透射电镜证实了转化反应的结构可逆性,碳基体在保持电极完整性的同时动态适应应变。这项工作不仅促进了对转换型材料中缺陷驱动界面化学的理解,而且为通过异质结构工程设计下一代pib中的高性能阳极提供了一种通用策略。
{"title":"Nanoreactor-Structured Defective MoS2: Suppressing Intercalation-Induced Phase Transitions and Enhancing Reversibility for Potassium-Ion Batteries","authors":"Chunrong Ma,&nbsp;Cyrus Koroni,&nbsp;Jiacheng Hu,&nbsp;Ji Qian,&nbsp;Guangshuai Han,&nbsp;Hui Xiong","doi":"10.1007/s40820-025-01992-x","DOIUrl":"10.1007/s40820-025-01992-x","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>A nanoreactor-structured MoSSe@NC heterostructure was constructed via defect engineering and carbon intercalation, simultaneously achieving phase transition suppression and enhanced ion transport.</p>\u0000 </li>\u0000 <li>\u0000 <p>Selenium-induced lattice disorder and carbon layer confinement synergistically inhibit the 1T–2H phase transition and buffer structural strain during cycling.</p>\u0000 </li>\u0000 <li>\u0000 <p>The designed heterostructure exhibits high capacity, excellent rate performance, and long-term cycling stability, offering a generalizable strategy for high-performance potassium-ion battery anodes.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01992-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ion-Mediated Carbon Microdomain Engineering Boosting Enhanced Plateau Capacity of Carbon Anode under High Rate Towards High-Performance Sodium Dual-Ion Batteries 离子介导的碳微畴工程提高了高倍率下碳阳极的平台容量,从而实现高性能钠双离子电池。
IF 36.3 1区 材料科学 Q1 Engineering Pub Date : 2026-01-05 DOI: 10.1007/s40820-025-02008-4
Bin Tang, Yuchen Zhang, Bifa Ji, Geng Yu, Yongping Zheng, Xiaolong Zhou, Nuntaporn Kamonsutthipaijit, Pornsuwan Buangam, Sarayut Tunmee, Hideki Nakajima, Ukit Rittihong, Qingguang Pan, Fan Zhang, Yongbing Tang

Highlights

  • Carbon microdomain engineering using ion-mediated structural control tailors oriented high-activity nitrogen species and creates specific closed pores.

  • This strategy accelerates sodium-ion desolvation kinetics, thereby enhancing sodium storage performance even at high current densities.

  • The optimized carbon material achieves exceptional rate performance and cycling stability, making it one of the top-tier materials for sodium-ion batteries.

近年来,钠基双离子电池(SDIBs)以其低成本、环保、高工作电压等优点受到越来越多的关注。然而,传统碳阳极的缓慢离子动力学无法与石墨阴极的快速电容性阴离子插入行为相匹配,限制了sdib功率密度的提高。在此,我们提出了一种巧妙的碳微畴工程策略来制造具有离子介导的高活性氮和分子尺度闭孔结构的高性能碳阳极。实验表征和理论研究表明,Zn2+介导的结构工程修饰了氧化态氮,有效地加速了钠离子脱溶动力学;同时,醋酸盐介导的孔隙形成过程调节了封闭的孔隙,从而协同提供了丰富的钠储存位点,从而提高了高原地区的容量。结果表明,优化后的微畴工程碳材料(MEC3)具有最佳的醋酸锌用量,即使在1℃下,其高原区容量也达到253 mAh g- 1,是目前报道的最高容量之一。因此,MEC3||膨胀石墨双离子电池在高电流倍率下表现出前所未有的循环稳定性,在10℃下循环10,000次后保持80.6%的容量保留率,是最好的报告之一。这种微畴工程策略为克服高原为主钠储存系统中碳质材料的动力学限制提供了一种新的设计原则。
{"title":"Ion-Mediated Carbon Microdomain Engineering Boosting Enhanced Plateau Capacity of Carbon Anode under High Rate Towards High-Performance Sodium Dual-Ion Batteries","authors":"Bin Tang,&nbsp;Yuchen Zhang,&nbsp;Bifa Ji,&nbsp;Geng Yu,&nbsp;Yongping Zheng,&nbsp;Xiaolong Zhou,&nbsp;Nuntaporn Kamonsutthipaijit,&nbsp;Pornsuwan Buangam,&nbsp;Sarayut Tunmee,&nbsp;Hideki Nakajima,&nbsp;Ukit Rittihong,&nbsp;Qingguang Pan,&nbsp;Fan Zhang,&nbsp;Yongbing Tang","doi":"10.1007/s40820-025-02008-4","DOIUrl":"10.1007/s40820-025-02008-4","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000<ul>\u0000 <li>\u0000 <p>Carbon microdomain engineering using ion-mediated structural control tailors oriented high-activity nitrogen species and creates specific closed pores.</p>\u0000 </li>\u0000 <li>\u0000 <p>This strategy accelerates sodium-ion desolvation kinetics, thereby enhancing sodium storage performance even at high current densities.\u0000</p>\u0000 </li>\u0000 <li>\u0000 <p>The optimized carbon material achieves exceptional rate performance and cycling stability, making it one of the top-tier materials for sodium-ion batteries.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-02008-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional Three-Dimensional Porous MXene-Based Film with Superior Electromagnetic Wave Absorption and Flexible Electronics Performance 具有优异电磁波吸收和柔性电子性能的多功能三维多孔mxene薄膜。
IF 36.3 1区 材料科学 Q1 Engineering Pub Date : 2026-01-05 DOI: 10.1007/s40820-025-02034-2
Li Chang, Xinci Zhang, Tingting Liu, Benyi Li, Ying Ji, Gongming Sun, Ziming Wang, Xitian Zhang, Maosheng Cao, Lin Li

The development of multifunctional electromagnetic wave-absorbing materials is essential for next-generation flexible electronics and intelligent protection systems. Herein, a novel three-dimensional porous MXene-based film integrated with metallic nickel nanoparticles (Ni-PMF) is designed and synthesized with the potential to address the urgent need for multifunctional electromagnetic wave-absorbing materials in next-generation intelligent systems. By using polystyrene spheres as sacrificial templates, a hierarchical porous architecture is constructed to prevent MXene nanosheet restacking, extend electromagnetic wave propagation paths, and optimize impedance matching. Simultaneously, uniformly distributed Ni nanoparticles introduce abundant heterogeneous interfaces, enhancing interfacial polarization and magnetic loss, which significantly improve electromagnetic wave attenuation. The Ni-PMF film achieves a minimum reflection loss of –64.7 dB and a broad effective absorption bandwidth of 7.2 GHz, covering the full Ku-band and outperforming most reported MXene thin film absorbers. In addition to superior electromagnetic wave absorption, the film demonstrates excellent electrothermal conversion and flexible strain-sensing capabilities, enabling integrated protection and real-time sensing functions. This multifunctional material offers promising potential for next-generation smart flexible electronic systems.

多功能电磁波吸收材料的发展是下一代柔性电子和智能保护系统的必要条件。本文设计并合成了一种新型的三维多孔mxene基金属镍纳米颗粒(Ni-PMF)薄膜,具有解决下一代智能系统对多功能电磁波吸收材料的迫切需求的潜力。以聚苯乙烯球为牺牲模板,构建了多层多孔结构,以防止MXene纳米片的堆积,延长电磁波传播路径,优化阻抗匹配。同时,均匀分布的Ni纳米颗粒引入了丰富的非均相界面,增强了界面极化和磁损耗,显著改善了电磁波的衰减。Ni-PMF薄膜的最小反射损耗为-64.7 dB,有效吸收带宽为7.2 GHz,覆盖了整个ku波段,优于大多数报道的MXene薄膜吸收器。除了优越的电磁波吸收外,该薄膜还具有出色的电热转换和灵活的应变传感能力,可实现集成保护和实时传感功能。这种多功能材料为下一代智能柔性电子系统提供了巨大的潜力。
{"title":"Multifunctional Three-Dimensional Porous MXene-Based Film with Superior Electromagnetic Wave Absorption and Flexible Electronics Performance","authors":"Li Chang,&nbsp;Xinci Zhang,&nbsp;Tingting Liu,&nbsp;Benyi Li,&nbsp;Ying Ji,&nbsp;Gongming Sun,&nbsp;Ziming Wang,&nbsp;Xitian Zhang,&nbsp;Maosheng Cao,&nbsp;Lin Li","doi":"10.1007/s40820-025-02034-2","DOIUrl":"10.1007/s40820-025-02034-2","url":null,"abstract":"<div><p>The development of multifunctional electromagnetic wave-absorbing materials is essential for next-generation flexible electronics and intelligent protection systems. Herein, a novel three-dimensional porous MXene-based film integrated with metallic nickel nanoparticles (Ni-PMF) is designed and synthesized with the potential to address the urgent need for multifunctional electromagnetic wave-absorbing materials in next-generation intelligent systems. By using polystyrene spheres as sacrificial templates, a hierarchical porous architecture is constructed to prevent MXene nanosheet restacking, extend electromagnetic wave propagation paths, and optimize impedance matching. Simultaneously, uniformly distributed Ni nanoparticles introduce abundant heterogeneous interfaces, enhancing interfacial polarization and magnetic loss, which significantly improve electromagnetic wave attenuation. The Ni-PMF film achieves a minimum reflection loss of –64.7 dB and a broad effective absorption bandwidth of 7.2 GHz, covering the full Ku-band and outperforming most reported MXene thin film absorbers. In addition to superior electromagnetic wave absorption, the film demonstrates excellent electrothermal conversion and flexible strain-sensing capabilities, enabling integrated protection and real-time sensing functions. This multifunctional material offers promising potential for next-generation smart flexible electronic systems.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-02034-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Assembly Control of Y-Series Non-fullerene Acceptors for Sustainable and Scalable Organic Photovoltaics y系列非富勒烯受体在可持续和可扩展有机光伏中的自组装控制。
IF 36.3 1区 材料科学 Q1 Engineering Pub Date : 2026-01-05 DOI: 10.1007/s40820-025-02021-7
Dingqin Hu, Hua Tang, Jiehao Fu, Yaohui Li, Lei Liu, Peihao Huang, Jie Lv, Daming Zheng, Yakun He, Heng Liu, Baomin Xu, Zheng Hu, Xinhui Lu, Zeyun Xiao, Gang Li, Yang Michael Yang, Frédéric Laquai, Christoph J. Brabec, Duu-Jong Lee, Hsien-Yi Hsu

Sustainability and scalability remain critical hurdles for the commercialization of organic solar cells (OSCs). However, addressing both poses challenge. Herein, we introduce a simple yet effective strategy utilizing 3,5-dichloropyridine (PDCC) as a solid additive to fine-tune the self-assembly behavior of Y-series non-fullerene acceptors (NFAs) to tackle the upscaling limitations in green-solvent-processed OSCs. PDCC predominantly interacts with Y-series NFAs, facilitating molecular crystallization and thereby driving the self-assembly of Y-series NFAs during film-forming dynamics, leading to more uniform active layers with improved molecular packing and reduced charge recombination. As a result, PDCC-driven self-assembly strategy enables high-performance OSCs with a power conversion efficiency (PCE) of 20.47%. When translated to sustainable fabrication, this strategy significantly boosts the PCE of large-area green-solvent-processed OSC modules (19.3 cm2) from 13.87% to 15.79%, ranking it among the best-performing green-solvent-processed large-area OSC modules (> 18 cm2). Beyond its impact on PCE enhancement, PDCC serves as a multifunctional additive to improve long-term stability and exhibits strong universality across multiple material systems. This work establishes a promising approach for advancing sustainable and scalable OSCs, paving the way for their commercialization.

可持续性和可扩展性仍然是有机太阳能电池(OSCs)商业化的关键障碍。然而,解决这两个问题带来了挑战。在此,我们介绍了一种简单而有效的策略,利用3,5-二氯吡啶(PDCC)作为固体添加剂来微调y系列非富勒烯受体(nfa)的自组装行为,以解决绿色溶剂加工osc的升级限制。PDCC主要与y系列nfa相互作用,促进分子结晶,从而在成膜动力学过程中驱动y系列nfa的自组装,从而导致更均匀的活性层,改善分子堆积,减少电荷重组。因此,pdcc驱动的自组装策略使高性能osc的功率转换效率(PCE)达到20.47%。当转化为可持续制造时,该策略显著提高了大面积绿色溶剂加工OSC模块(19.3 cm2)的PCE,从13.87%提高到15.79%,使其成为表现最佳的绿色溶剂加工大面积OSC模块(> 18 cm2)。除了对PCE的增强作用外,PDCC还可以作为多功能添加剂来提高长期稳定性,并在多种材料体系中表现出很强的通用性。这项工作为推进可持续和可扩展的osc建立了一个有希望的方法,为其商业化铺平了道路。
{"title":"Self-Assembly Control of Y-Series Non-fullerene Acceptors for Sustainable and Scalable Organic Photovoltaics","authors":"Dingqin Hu,&nbsp;Hua Tang,&nbsp;Jiehao Fu,&nbsp;Yaohui Li,&nbsp;Lei Liu,&nbsp;Peihao Huang,&nbsp;Jie Lv,&nbsp;Daming Zheng,&nbsp;Yakun He,&nbsp;Heng Liu,&nbsp;Baomin Xu,&nbsp;Zheng Hu,&nbsp;Xinhui Lu,&nbsp;Zeyun Xiao,&nbsp;Gang Li,&nbsp;Yang Michael Yang,&nbsp;Frédéric Laquai,&nbsp;Christoph J. Brabec,&nbsp;Duu-Jong Lee,&nbsp;Hsien-Yi Hsu","doi":"10.1007/s40820-025-02021-7","DOIUrl":"10.1007/s40820-025-02021-7","url":null,"abstract":"<div><p>Sustainability and scalability remain critical hurdles for the commercialization of organic solar cells (OSCs). However, addressing both poses challenge. Herein, we introduce a simple yet effective strategy utilizing 3,5-dichloropyridine (PDCC) as a solid additive to fine-tune the self-assembly behavior of Y-series non-fullerene acceptors (NFAs) to tackle the upscaling limitations in green-solvent-processed OSCs. PDCC predominantly interacts with Y-series NFAs, facilitating molecular crystallization and thereby driving the self-assembly of Y-series NFAs during film-forming dynamics, leading to more uniform active layers with improved molecular packing and reduced charge recombination. As a result, PDCC-driven self-assembly strategy enables high-performance OSCs with a power conversion efficiency (PCE) of 20.47%. When translated to sustainable fabrication, this strategy significantly boosts the PCE of large-area green-solvent-processed OSC modules (19.3 cm<sup>2</sup>) from 13.87% to 15.79%, ranking it among the best-performing green-solvent-processed large-area OSC modules (&gt; 18 cm<sup>2</sup>). Beyond its impact on PCE enhancement, PDCC serves as a multifunctional additive to improve long-term stability and exhibits strong universality across multiple material systems. This work establishes a promising approach for advancing sustainable and scalable OSCs, paving the way for their commercialization.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-02021-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Performance Cu-Based Liquid Thermocells Enabled by Thermosensitive Crystallization and Etched Carbon Cloth Electrode. 热敏结晶和蚀刻碳布电极实现高性能铜基液体热电池。
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2026-01-05 DOI: 10.1007/s40820-025-01977-w
Wei Fang,Zeping Ou,Yifan Wang,Zhe Li,Qian Huang,Pengchi Zhang,Xinzhe Li,Yujie Zheng,Lijun Hu,Chen Li,Jianyong Ouyang,Kuan Sun
Thermocells are garnering increasing attention as a promising thermoelectric technology for harvesting low-grade heat. However, their performance is often limited by the scarcity of high-performance redox couples that possess both high thermopower and rapid redox kinetics. This work addresses this challenge by leveraging our recently developed copper (I/II) (Cu+/Cu2+) redox couple. We significantly enhance the performance of Cu-based liquid thermocells by integrating a thermosensitive crystallization process with etched carbon cloth electrodes, achieving synergistic improvements in thermodynamic and kinetic performance. The thermosensitive crystallization process establishes a persistent Cu2+ concentration gradient, boosting the thermopower from 1.47 to 2.93 mV K-1. Moreover, the etched carbon cloth electrodes provide a larger electroactive surface area and demonstrate a higher current density. Consequently, the optimized Cu+/Cu2+ system achieved an exceptional normalized power density Pmax (ΔT)-2 of 3.97 mW m‒2 K-2. A thermocell module comprised of 20 cells directly power various electronic devices at a temperature difference of 40 K. This work successfully exhibits potential of Cu+/Cu2+ redox couple in thermoelectric conversion and introduces a valuable redox couple for high-performance thermocells.
热电电池作为一种很有前途的用于收集低品位热量的热电技术,正受到越来越多的关注。然而,它们的性能往往受到既具有高热功率又具有快速氧化还原动力学的高性能氧化还原偶的缺乏的限制。这项工作通过利用我们最近开发的铜(I/II) (Cu+/Cu2+)氧化还原偶对来解决这一挑战。我们通过将热敏结晶工艺与蚀刻碳布电极相结合,显著提高了铜基液体热电池的性能,实现了热力学和动力学性能的协同改进。热敏结晶过程建立了一个持久的Cu2+浓度梯度,使热功率从1.47 mV K-1提高到2.93 mV K-1。此外,蚀刻碳布电极提供了更大的电活性表面积,并表现出更高的电流密度。因此,优化后的Cu+/Cu2+体系实现了3.97 mW m-2 K-2的归一化功率密度Pmax (ΔT)-2。一个由20个电池组成的热电池模块在40 K的温差下直接为各种电子设备供电。这项工作成功地展示了Cu+/Cu2+氧化还原偶在热电转换中的潜力,并为高性能热电池提供了一种有价值的氧化还原偶。
{"title":"High-Performance Cu-Based Liquid Thermocells Enabled by Thermosensitive Crystallization and Etched Carbon Cloth Electrode.","authors":"Wei Fang,Zeping Ou,Yifan Wang,Zhe Li,Qian Huang,Pengchi Zhang,Xinzhe Li,Yujie Zheng,Lijun Hu,Chen Li,Jianyong Ouyang,Kuan Sun","doi":"10.1007/s40820-025-01977-w","DOIUrl":"https://doi.org/10.1007/s40820-025-01977-w","url":null,"abstract":"Thermocells are garnering increasing attention as a promising thermoelectric technology for harvesting low-grade heat. However, their performance is often limited by the scarcity of high-performance redox couples that possess both high thermopower and rapid redox kinetics. This work addresses this challenge by leveraging our recently developed copper (I/II) (Cu+/Cu2+) redox couple. We significantly enhance the performance of Cu-based liquid thermocells by integrating a thermosensitive crystallization process with etched carbon cloth electrodes, achieving synergistic improvements in thermodynamic and kinetic performance. The thermosensitive crystallization process establishes a persistent Cu2+ concentration gradient, boosting the thermopower from 1.47 to 2.93 mV K-1. Moreover, the etched carbon cloth electrodes provide a larger electroactive surface area and demonstrate a higher current density. Consequently, the optimized Cu+/Cu2+ system achieved an exceptional normalized power density Pmax (ΔT)-2 of 3.97 mW m‒2 K-2. A thermocell module comprised of 20 cells directly power various electronic devices at a temperature difference of 40 K. This work successfully exhibits potential of Cu+/Cu2+ redox couple in thermoelectric conversion and introduces a valuable redox couple for high-performance thermocells.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"25 1","pages":"131"},"PeriodicalIF":26.6,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sandwich-Architected Hybrid Organic Crystals with Humidity–Temperature Sensing and Cryogenic Photothermal Actuation 具有湿度-温度传感和低温光热驱动的三明治结构混合有机晶体。
IF 36.3 1区 材料科学 Q1 Engineering Pub Date : 2026-01-05 DOI: 10.1007/s40820-025-01996-7
Linfeng Lan, Lijie Wang, Chenguang Wang, Hongyu Zhang

Highlights

  • A layered hybrid crystal integrates fluorescence, mechanical flexibility, conductivity, and cryogenic durability via reduced graphene oxide and thermally responsive polyurethane encapsulation.

  • The hybrid crystal enables real-time dual-mode sensing of humidity (1.65% RH−1) and temperature (0.46% °C−1) with high sensitivity and cycling stability.

  • Infrared-induced photothermal actuation at − 150 °C allows reversible crawling and walking under cryogenic conditions.

个性化医疗保健、智能可穿戴设备和先进环境监测的需求不断增长,刺激了多功能材料的发展,这些材料结合了灵活性、环境适应性和多种功能。然而,传统材料往往不能同时集成这些属性,阻碍了它们在下一代技术中的适用性。在这里,我们提出了一种具有独特三明治状结构的有机-无机杂化晶体材料,其中柔性有机晶体核心由还原氧化石墨烯(rGO)和热塑性聚氨酯(TPU)包裹。这种战略性的整合使材料具有荧光、低温灵活性和导电性,同时还具有双重传感和驱动能力。rGO层通过环境相互作用促进实时湿度(25-90% RH)和温度(25-180°C)传感,而TPU和柔性晶体核心之间的热膨胀差异驱动- 150°C下的高效光热驱动,实现高级热调节。混合材料在极端条件下表现出稳定的性能,使其成为生物医学监测,柔性电子和能源应用的有希望的候选者。这项工作建立了混合晶体材料作为解决复杂技术需求的通用和可扩展平台,为其在下一代多功能器件中的应用铺平了道路。
{"title":"Sandwich-Architected Hybrid Organic Crystals with Humidity–Temperature Sensing and Cryogenic Photothermal Actuation","authors":"Linfeng Lan,&nbsp;Lijie Wang,&nbsp;Chenguang Wang,&nbsp;Hongyu Zhang","doi":"10.1007/s40820-025-01996-7","DOIUrl":"10.1007/s40820-025-01996-7","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>A layered hybrid crystal integrates fluorescence, mechanical flexibility, conductivity, and cryogenic durability via reduced graphene oxide and thermally responsive polyurethane encapsulation.</p>\u0000 </li>\u0000 <li>\u0000 <p>The hybrid crystal enables real-time dual-mode sensing of humidity (1.65% RH<sup>−1</sup>) and temperature (0.46% °C<sup>−1</sup>) with high sensitivity and cycling stability.</p>\u0000 </li>\u0000 <li>\u0000 <p>Infrared-induced photothermal actuation at − 150 °C allows reversible crawling and walking under cryogenic conditions.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01996-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxygen-Pressure Protocol Breaking Cycle Limit of Continuously Reversible Lithium-Oxygen Batteries 连续可逆锂氧电池氧压协议打破循环极限。
IF 36.3 1区 材料科学 Q1 Engineering Pub Date : 2026-01-05 DOI: 10.1007/s40820-025-01990-z
Xinhang Cui, Fenglong Xiao, Guoliang Zhang, Zhangliu Tian, Qingshan Bao, Yanlu Li, Deliang Cui, Qilong Wang, Feng Dang, Wei Chen, Haohai Yu, Huaijin Zhang, Gang Lian

Highlights

  • An O2− pressure protocol was proposed to strengthen mass transport, accelerate the reaction kinetics and optimize growth pathways of discharge products, which achieves ultrahigh discharge capacity at 3,000 mA g−1 (>9,000 mAh g−1).

  • This general pressure effect can protect Li anodes via densifying corrosion layers on them simultaneously.

  • The breakthrough of continuously operated ultralong-life lithium-oxygen batteries was actualized over a record-high lifetime of ~5,170 h (2,585 cycles) at 500 mA g−1 under constant operation.

锂氧(Li-O2)电池由于其特殊的能量密度,在“超越锂离子”的可持续性技术中备受青睐。主要的障碍是在高电流密度下循环稳定性差和严重的容量退化。我们通过一种“一石二鸟”的o2压力协议来解决这些问题。它首先解决了高速率的高效氧质量传递问题。加速反应动力学优化了排放物的组成和生长途径。其次,该协议通过在锂阳极上致密化腐蚀层来实现对锂阳极的保护。因此,该电池在3,000 mA g-1时提供超高的放电容量(> 9,000 mAh g-1)和出色的循环稳定性。在高压氧气和人工保护层的双重策略作用下,电池的循环寿命增加了11倍,达到5,170小时(2,585次循环)。该战略为推进锂氧电池走向实际应用开辟了道路,并将其扩展到其他气体基电池。
{"title":"Oxygen-Pressure Protocol Breaking Cycle Limit of Continuously Reversible Lithium-Oxygen Batteries","authors":"Xinhang Cui,&nbsp;Fenglong Xiao,&nbsp;Guoliang Zhang,&nbsp;Zhangliu Tian,&nbsp;Qingshan Bao,&nbsp;Yanlu Li,&nbsp;Deliang Cui,&nbsp;Qilong Wang,&nbsp;Feng Dang,&nbsp;Wei Chen,&nbsp;Haohai Yu,&nbsp;Huaijin Zhang,&nbsp;Gang Lian","doi":"10.1007/s40820-025-01990-z","DOIUrl":"10.1007/s40820-025-01990-z","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>An O<sub>2</sub>− pressure protocol was proposed to strengthen mass transport, accelerate the reaction kinetics and optimize growth pathways of discharge products, which achieves ultrahigh discharge capacity at 3,000 mA g<sup>−1</sup> (&gt;9,000 mAh g<sup>−1</sup>).</p>\u0000 </li>\u0000 <li>\u0000 <p>This general pressure effect can protect Li anodes via densifying corrosion layers on them simultaneously. </p>\u0000 </li>\u0000 <li>\u0000 <p>The breakthrough of continuously operated ultralong-life lithium-oxygen batteries was actualized over a record-high lifetime of ~5,170 h (2,585 cycles) at 500 mA g<sup>−1</sup> under constant operation.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01990-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nano-Micro Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1