Pub Date : 2022-05-19DOI: 10.3390/biomechanics2020020
Eleonora Croci, Marina Künzler, Sean Börlin, F. Eckers, C. Nüesch, D. Baumgartner, A. Müller, A. Mündermann
Rotator cuff tears are often linked to superior translational instability, but a thorough understanding of glenohumeral motion is lacking. This study aimed to assess the reliability of fluoroscopically measured glenohumeral translation during a shoulder abduction test. Ten patients with rotator cuff tears participated in this study. Fluoroscopic images were acquired during 30° abduction and adduction in the scapular plane with and without handheld weights of 2 kg and 4 kg. Images were labelled by two raters, and inferior-superior glenohumeral translation was calculated. During abduction, glenohumeral translation (mean (standard deviation)) ranged from 3.3 (2.2) mm for 0 kg to 4.1 (1.8) mm for 4 kg, and from 2.3 (1.5) mm for 0 kg to 3.8 (2.2) mm for 4 kg for the asymptomatic and symptomatic sides, respectively. For the translation range, moderate to good interrater (intra-class correlation coefficient ICC [95% confidence interval (CI)]; abduction: 0.803 [0.691; 0.877]; adduction: 0.705 [0.551; 0.813]) and intrarater reliabilities (ICC [95% CI]; abduction: 0.817 [0.712; 0.887]; adduction: 0.688 [0.529; 0.801]) were found. Differences in the translation range between the repeated measurements were not statistically significant (mean difference, interrater: abduction, −0.1 mm, p = 0.686; adduction, −0.1 mm, p = 0.466; intrarater: abduction 0.0 mm, p = 0.888; adduction, 0.2 mm, p = 0.275). This method is suitable for measuring inferior-superior glenohumeral translation in the scapular plane.
肩袖撕裂通常与移位不稳定有关,但缺乏对肩关节运动的透彻理解。本研究旨在评估在肩部外展试验中透视测量盂肱移位的可靠性。10例肩袖撕裂患者参与了这项研究。在肩胛骨平面30°外展和内收时,有和没有手持重量分别为2 kg和4 kg时的透视图像。图像由两名评分者标记,并计算上下肱骨移位。在外展期间,无症状侧和有症状侧的肩关节平移(平均值(标准差))范围分别为3.3 (2.2)mm (0 kg)至4.1 (1.8)mm (4 kg),以及2.3 (1.5)mm (0 kg)至3.8 (2.2)mm (4 kg)。对于翻译范围,中等至良好的相互作用(类内相关系数ICC[95%置信区间(CI)];外展:0.803 [0.691];0.877);内收:0.705 [0.551];0.813])和内部信度(ICC [95% CI];外展:0.817 [0.712;0.887);内收:0.688 [0.529];0.801])。重复测量之间平移范围的差异无统计学意义(平均差异,间距:外展,- 0.1 mm, p = 0.686;内收,−0.1 mm, p = 0.466;内展:外展0.0 mm, p = 0.888;内收,0.2 mm, p = 0.275)。该方法适用于测量肩胛骨平面上盂肱骨上下平移。
{"title":"Reliability of the Fluoroscopic Assessment of Load-Induced Glenohumeral Translation during a 30° Shoulder Abduction Test","authors":"Eleonora Croci, Marina Künzler, Sean Börlin, F. Eckers, C. Nüesch, D. Baumgartner, A. Müller, A. Mündermann","doi":"10.3390/biomechanics2020020","DOIUrl":"https://doi.org/10.3390/biomechanics2020020","url":null,"abstract":"Rotator cuff tears are often linked to superior translational instability, but a thorough understanding of glenohumeral motion is lacking. This study aimed to assess the reliability of fluoroscopically measured glenohumeral translation during a shoulder abduction test. Ten patients with rotator cuff tears participated in this study. Fluoroscopic images were acquired during 30° abduction and adduction in the scapular plane with and without handheld weights of 2 kg and 4 kg. Images were labelled by two raters, and inferior-superior glenohumeral translation was calculated. During abduction, glenohumeral translation (mean (standard deviation)) ranged from 3.3 (2.2) mm for 0 kg to 4.1 (1.8) mm for 4 kg, and from 2.3 (1.5) mm for 0 kg to 3.8 (2.2) mm for 4 kg for the asymptomatic and symptomatic sides, respectively. For the translation range, moderate to good interrater (intra-class correlation coefficient ICC [95% confidence interval (CI)]; abduction: 0.803 [0.691; 0.877]; adduction: 0.705 [0.551; 0.813]) and intrarater reliabilities (ICC [95% CI]; abduction: 0.817 [0.712; 0.887]; adduction: 0.688 [0.529; 0.801]) were found. Differences in the translation range between the repeated measurements were not statistically significant (mean difference, interrater: abduction, −0.1 mm, p = 0.686; adduction, −0.1 mm, p = 0.466; intrarater: abduction 0.0 mm, p = 0.888; adduction, 0.2 mm, p = 0.275). This method is suitable for measuring inferior-superior glenohumeral translation in the scapular plane.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":"2 1","pages":"255 - 263"},"PeriodicalIF":0.0,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48482031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-17DOI: 10.3390/biomechanics2020019
Arjan Kahlon, Ashwini Sansare, A. Behboodi
Gait analysis has applications in medical diagnosis, biometrics, and development of therapeutic rehabilitation interventions (such as orthotics, prosthetics, and exoskeletons). While offering accurate measurements, gait laboratories are expensive, not scalable, and not easily accessible. In a pandemic-afflicted world, where telemedicine is crucial, there is need for subject-driven data remote collection. This study proposed a remote and purely subject-driven procedure for reproducible and scalable collection of real-life gait data. To evaluate the feasibility of our proposed procedure, the spatiotemporal parameters of gait were compared across two real-life terrains using a smartphone application on a focus population of healthy middle-aged individuals. Previous research validated smartphone motion sensors as accurate instruments for gait analysis, but required highly supervised, controlled environments on smaller sample sizes, thereby limiting application in real-life gait analysis. To this end, a custom-designed mobile application was developed to record lower extremity angular velocities on 69 healthy middle-aged adults; factoring in a subject-driven data submission error rate (DSER) of 17.4%, there were 57 usable data sets for analysis. Comparisons of spatiotemporal gait parameters across primary outcome measures on grass versus asphalt revealed significant measurable increases in gait duration (stride time), valley depth (max swing phase), and peak-to-valley (max stance phase to max swing phase). These results demonstrated the feasibility of using smartphones for a remote and fully subject-driven gait data collection. Additionally, our data analysis showed that even in short trials, a physical environmental load has a substantial and measurable effect on the gait of the understudied middle-aged population.
{"title":"Remote Gait Analysis as a Proxy for Traditional Gait Laboratories: Utilizing Smartphones for Subject-Driven Gait Assessment across Differing Terrains","authors":"Arjan Kahlon, Ashwini Sansare, A. Behboodi","doi":"10.3390/biomechanics2020019","DOIUrl":"https://doi.org/10.3390/biomechanics2020019","url":null,"abstract":"Gait analysis has applications in medical diagnosis, biometrics, and development of therapeutic rehabilitation interventions (such as orthotics, prosthetics, and exoskeletons). While offering accurate measurements, gait laboratories are expensive, not scalable, and not easily accessible. In a pandemic-afflicted world, where telemedicine is crucial, there is need for subject-driven data remote collection. This study proposed a remote and purely subject-driven procedure for reproducible and scalable collection of real-life gait data. To evaluate the feasibility of our proposed procedure, the spatiotemporal parameters of gait were compared across two real-life terrains using a smartphone application on a focus population of healthy middle-aged individuals. Previous research validated smartphone motion sensors as accurate instruments for gait analysis, but required highly supervised, controlled environments on smaller sample sizes, thereby limiting application in real-life gait analysis. To this end, a custom-designed mobile application was developed to record lower extremity angular velocities on 69 healthy middle-aged adults; factoring in a subject-driven data submission error rate (DSER) of 17.4%, there were 57 usable data sets for analysis. Comparisons of spatiotemporal gait parameters across primary outcome measures on grass versus asphalt revealed significant measurable increases in gait duration (stride time), valley depth (max swing phase), and peak-to-valley (max stance phase to max swing phase). These results demonstrated the feasibility of using smartphones for a remote and fully subject-driven gait data collection. Additionally, our data analysis showed that even in short trials, a physical environmental load has a substantial and measurable effect on the gait of the understudied middle-aged population.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41953811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-13DOI: 10.3390/biomechanics2020018
Lincoln Blandford, Emily J. Cushion, Ryan Mahaffey
Cognitive movement control tests are hypothesized to reveal reduced coordination variability, a feature of motor behaviour linked to clinical presentations. Exploration of this proposition via kinematic analysis of test pass and fail conditions is yet to be conducted. Kinematics (3D) were collected as 28 participants were qualitatively rated during nine trials of a cognitive movement control test. Ten female and two male participants passing the test were matched to twelve participants who failed (three males, nine females). Sagittal plane pelvis and knee angles were determined. Peak pelvic deviation and knee flexion maxima/minima were compared between groups. Classification tree analysis explored relationships between test failure and pelvis–knee intersegmental coordination strategy classifications derived from novel and traditional vector coding techniques. Coordination variability waveforms were assessed via SPM. Age, BMI, and knee flexion values did not differ between the groups (p > 0.05); however, participants rated as failing the test displayed greater pelvic deviation (p < 0.05). Classification tree analysis revealed a greater use of pelvic dominant intersegmental coordination strategies from both vector coding techniques (p < 0.001) by fail-group participants. The fail-group also displayed lower coordination variability for novel (p < 0.05), but not traditional (p > 0.05) vector coding technique waveforms, supporting the premise that the testing protocol may act as a qualitative approach to inform on features of motor behavior linked to clinical presentations.
{"title":"Segmental and Intersegmental Coordination Characteristics of a Cognitive Movement Control Test: Quantifying Loss of Movement Choices","authors":"Lincoln Blandford, Emily J. Cushion, Ryan Mahaffey","doi":"10.3390/biomechanics2020018","DOIUrl":"https://doi.org/10.3390/biomechanics2020018","url":null,"abstract":"Cognitive movement control tests are hypothesized to reveal reduced coordination variability, a feature of motor behaviour linked to clinical presentations. Exploration of this proposition via kinematic analysis of test pass and fail conditions is yet to be conducted. Kinematics (3D) were collected as 28 participants were qualitatively rated during nine trials of a cognitive movement control test. Ten female and two male participants passing the test were matched to twelve participants who failed (three males, nine females). Sagittal plane pelvis and knee angles were determined. Peak pelvic deviation and knee flexion maxima/minima were compared between groups. Classification tree analysis explored relationships between test failure and pelvis–knee intersegmental coordination strategy classifications derived from novel and traditional vector coding techniques. Coordination variability waveforms were assessed via SPM. Age, BMI, and knee flexion values did not differ between the groups (p > 0.05); however, participants rated as failing the test displayed greater pelvic deviation (p < 0.05). Classification tree analysis revealed a greater use of pelvic dominant intersegmental coordination strategies from both vector coding techniques (p < 0.001) by fail-group participants. The fail-group also displayed lower coordination variability for novel (p < 0.05), but not traditional (p > 0.05) vector coding technique waveforms, supporting the premise that the testing protocol may act as a qualitative approach to inform on features of motor behavior linked to clinical presentations.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46687136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-01DOI: 10.3390/biomechanics2020017
Li Jin
During locomotion, the foot–ankle system plays an important role for forward progression of the body. The center of pressure (COP) is regarded as the point of the ground reaction force (GRF) vector acting on the foot surface during the stance phase. COP movement trajectory and velocity reflect the stance phase forward progression of the foot segment and the ankle joint motion characteristics. This study aimed to investigate different levels of footwear insole stiffness on COP forward velocity, GRF and ankle joint angles during walking stance phase. Two healthy subjects (one female, one male; age 26.5 ± 6.4 years, height 168.5 ± 2.1 cm, weight 64.9 ± 5.4 kg) participated in this study. Subjects were asked to walk along a 10 m walkway at two different speeds: self–selected normal (SSN) and self–selected fast (SSF). Within each walking speed, subjects were required to walk under two different insole stiffness conditions: (1) normal shoe insole (NSI) from the testing shoe (Nike Free RN Flyknit 2017) used in this study; (2) 1.6 mm thick carbon fiber insole (CFI) fitted within the testing shoe. Stiffer insole (CFI) significantly decreased peak ankle internal rotation angle (p = 0.001) and sagittal plane angle ROM (p = 0.022); additionally, CFI significantly increased peak ankle eversion angle compared to the NSI condition (p = 0.028). In conclusion, increasing footwear insole stiffness would alter stance phase ankle joint motion at SSF walking speed. Additionally, stiffer insoles may tend to decrease COP peak velocity at the initial heel strike and the terminal stance phase. Future research should investigate the combined effects of various insole properties on lower extremity system kinematic and kinetic patterns in various locomotion activities.
{"title":"The Influence of Different Footwear Insole Stiffness on Center of Pressure and Ankle Kinematics during Walking: A Case Report","authors":"Li Jin","doi":"10.3390/biomechanics2020017","DOIUrl":"https://doi.org/10.3390/biomechanics2020017","url":null,"abstract":"During locomotion, the foot–ankle system plays an important role for forward progression of the body. The center of pressure (COP) is regarded as the point of the ground reaction force (GRF) vector acting on the foot surface during the stance phase. COP movement trajectory and velocity reflect the stance phase forward progression of the foot segment and the ankle joint motion characteristics. This study aimed to investigate different levels of footwear insole stiffness on COP forward velocity, GRF and ankle joint angles during walking stance phase. Two healthy subjects (one female, one male; age 26.5 ± 6.4 years, height 168.5 ± 2.1 cm, weight 64.9 ± 5.4 kg) participated in this study. Subjects were asked to walk along a 10 m walkway at two different speeds: self–selected normal (SSN) and self–selected fast (SSF). Within each walking speed, subjects were required to walk under two different insole stiffness conditions: (1) normal shoe insole (NSI) from the testing shoe (Nike Free RN Flyknit 2017) used in this study; (2) 1.6 mm thick carbon fiber insole (CFI) fitted within the testing shoe. Stiffer insole (CFI) significantly decreased peak ankle internal rotation angle (p = 0.001) and sagittal plane angle ROM (p = 0.022); additionally, CFI significantly increased peak ankle eversion angle compared to the NSI condition (p = 0.028). In conclusion, increasing footwear insole stiffness would alter stance phase ankle joint motion at SSF walking speed. Additionally, stiffer insoles may tend to decrease COP peak velocity at the initial heel strike and the terminal stance phase. Future research should investigate the combined effects of various insole properties on lower extremity system kinematic and kinetic patterns in various locomotion activities.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42577313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-01DOI: 10.3390/biomechanics2020016
Rodrigo Valente, André Mourato, M. Brito, J. Xavier, A. Tomás, S. Avril
Ascending Thoracic Aortic Aneurysm (ATAA) is a permanent dilatation of the aorta which is usually related to tissue degeneration, hemodynamic conditions, lifestyle, environmental and genetic factors. As the mechanical conditions can become critical in a dilated aorta, a patient-specific computational model can be very useful to assist clinical decisions in the management of ATAAs. In this article, we model the biomechanical conditions of ATAA by performing Fluid-Structure Interaction (FSI) simulations in the SimVascular open-source software package. The patient-specific geometric model is reconstructed from Computed Tomography scan (CT). The numerical implementation takes into account patient-specific outlet conditions and a temporal flow variation at the model inlet. We performed a mesh convergence analysis on a new mesh reconstruction method in SimVascular and showed that it can significantly reduce the computational cost without impacting the accuracy.
{"title":"Fluid–Structure Interaction Modeling of Ascending Thoracic Aortic Aneurysms in SimVascular","authors":"Rodrigo Valente, André Mourato, M. Brito, J. Xavier, A. Tomás, S. Avril","doi":"10.3390/biomechanics2020016","DOIUrl":"https://doi.org/10.3390/biomechanics2020016","url":null,"abstract":"Ascending Thoracic Aortic Aneurysm (ATAA) is a permanent dilatation of the aorta which is usually related to tissue degeneration, hemodynamic conditions, lifestyle, environmental and genetic factors. As the mechanical conditions can become critical in a dilated aorta, a patient-specific computational model can be very useful to assist clinical decisions in the management of ATAAs. In this article, we model the biomechanical conditions of ATAA by performing Fluid-Structure Interaction (FSI) simulations in the SimVascular open-source software package. The patient-specific geometric model is reconstructed from Computed Tomography scan (CT). The numerical implementation takes into account patient-specific outlet conditions and a temporal flow variation at the model inlet. We performed a mesh convergence analysis on a new mesh reconstruction method in SimVascular and showed that it can significantly reduce the computational cost without impacting the accuracy.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43414651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-14DOI: 10.3390/biomechanics2020015
R. Bonnaire, W. Han, R. Convert, P. Calmels, J. Molimard
Low back pain represents a major economic and societal challenge due to its high prevalence. Lumbar orthoses are one of the recommended treatments. Even if previous results showed their clinical effects, the detailed mode of action is still poorly known, making the device design difficult. A renewed instrumentation and experimental protocol should bring better insight into the lumbar brace–trunk mechanical interaction. This instrumentation should give detailed information on the basic physical or geometrical parameters: the pressure applied on the trunk, the body shape and the strain in the belt. The principal objective of this study was to propose and validate a new measurement protocol, based on pressure mapping systems and full-field shape and strain measurement. The feasibility of the protocol was tested along with its validity and repeatability. The influence of various parameters, which could cause changes in the measurements, was tested with six different belt configurations on one subject. Measurements were also performed to study the impact of posture on pressure and strain. Both pressure and strain appeared to be asymmetric from left to right. The pressure applied by the lumbar belt on the back varies with breathing and with posture. This study showed that full-field measurements were necessary to render the high variability of pressure or strain around the trunk, under recommendations of their use to guarantee a satisfying repeatability.
{"title":"Feasibility of a Full-Field Measurements-Based Protocol for the Biomechanical Study of a Lumbar Belt: A Case Study","authors":"R. Bonnaire, W. Han, R. Convert, P. Calmels, J. Molimard","doi":"10.3390/biomechanics2020015","DOIUrl":"https://doi.org/10.3390/biomechanics2020015","url":null,"abstract":"Low back pain represents a major economic and societal challenge due to its high prevalence. Lumbar orthoses are one of the recommended treatments. Even if previous results showed their clinical effects, the detailed mode of action is still poorly known, making the device design difficult. A renewed instrumentation and experimental protocol should bring better insight into the lumbar brace–trunk mechanical interaction. This instrumentation should give detailed information on the basic physical or geometrical parameters: the pressure applied on the trunk, the body shape and the strain in the belt. The principal objective of this study was to propose and validate a new measurement protocol, based on pressure mapping systems and full-field shape and strain measurement. The feasibility of the protocol was tested along with its validity and repeatability. The influence of various parameters, which could cause changes in the measurements, was tested with six different belt configurations on one subject. Measurements were also performed to study the impact of posture on pressure and strain. Both pressure and strain appeared to be asymmetric from left to right. The pressure applied by the lumbar belt on the back varies with breathing and with posture. This study showed that full-field measurements were necessary to render the high variability of pressure or strain around the trunk, under recommendations of their use to guarantee a satisfying repeatability.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48397665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-08DOI: 10.3390/biomechanics2020014
Neda Alam, D. Newport
Patients with end stage renal disease require some form of vascular access for treatment, with Arterio-Venous Fistulas (avf) being the preferred form available due to better patency rates. However, they continue to present complications after creation, leading to early or late failure. While many studies are examining the flow in patient-specific fistulas, they often neglect the influence of vessel compliance on its hemodynamics. The objective of this study is to investigate the effect of wall compliance on the complex hemodynamics of a patient-specific brachio-cephalic avf and how it differs from a rigid fistula. Particle Image Velocimetry (piv) was used to capture the flow pattern within the fistula for both steady (Re = 1817) and pulsatile (Reav=1817, Remax=2232) flow conditions. The results were compared to rigid model measurements performed under the same Reynolds number. The streamline plots and coefficient of variation results did not differ significantly between the models; however, the non-dimensional velocity and directional variability results did vary between the two fistulas. A difference of approximately 8% was seen between the two models for both steady and pulsatile flow. The findings of this study suggest that to determine the bulk flow, a rigid model is adequate, but to capture the finer details of the flow, a compliant model is necessary.
{"title":"Influence of Wall Compliance on the Flow Patterns in a Patient-Specific Brachio-Cephalic Arterio-Venous Fistula","authors":"Neda Alam, D. Newport","doi":"10.3390/biomechanics2020014","DOIUrl":"https://doi.org/10.3390/biomechanics2020014","url":null,"abstract":"Patients with end stage renal disease require some form of vascular access for treatment, with Arterio-Venous Fistulas (avf) being the preferred form available due to better patency rates. However, they continue to present complications after creation, leading to early or late failure. While many studies are examining the flow in patient-specific fistulas, they often neglect the influence of vessel compliance on its hemodynamics. The objective of this study is to investigate the effect of wall compliance on the complex hemodynamics of a patient-specific brachio-cephalic avf and how it differs from a rigid fistula. Particle Image Velocimetry (piv) was used to capture the flow pattern within the fistula for both steady (Re = 1817) and pulsatile (Reav=1817, Remax=2232) flow conditions. The results were compared to rigid model measurements performed under the same Reynolds number. The streamline plots and coefficient of variation results did not differ significantly between the models; however, the non-dimensional velocity and directional variability results did vary between the two fistulas. A difference of approximately 8% was seen between the two models for both steady and pulsatile flow. The findings of this study suggest that to determine the bulk flow, a rigid model is adequate, but to capture the finer details of the flow, a compliant model is necessary.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46226917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-22DOI: 10.3390/biomechanics2020013
A. Bhattarai, A. Horbach, Manfred Staat, W. Kowalczyk, T. N. Tran
The objective of this paper is to present our findings on the biomechanical aspects of the virgin passive anisotropic hyperelasticity of the porcine colon based on equibiaxial tensile experiments. Firstly, the characterization of the intestine tissues is discussed for a nearly incompressible hyperelastic fiber-reinforced Holzapfel–Gasser–Ogden constitutive model in virgin passive loading conditions. The stability of the evaluated material parameters is checked for the polyconvexity of the adopted strain energy function using positive eigenvalue constraints of the Hessian matrix with MATLAB. The constitutive material description of the intestine with two collagen fibers in the submucosal and muscular layer each has been implemented in the FORTRAN platform of the commercial finite element software LS-DYNA, and two equibiaxial tensile simulations are presented to validate the results with the optical strain images obtained from the experiments. Furthermore, this paper also reviews the existing models of the active smooth muscle cells, but these models have not been computationally studied here. The review part shows that the constitutive models originally developed for the active contraction of skeletal muscle based on Hill’s three-element model, Murphy’s four-state cross-bridge chemical kinetic model and Huxley’s sliding-filament hypothesis, which are mainly used for arteries, are appropriate for numerical contraction numerical analysis of the large intestine.
{"title":"Virgin Passive Colon Biomechanics and a Literature Review of Active Contraction Constitutive Models","authors":"A. Bhattarai, A. Horbach, Manfred Staat, W. Kowalczyk, T. N. Tran","doi":"10.3390/biomechanics2020013","DOIUrl":"https://doi.org/10.3390/biomechanics2020013","url":null,"abstract":"The objective of this paper is to present our findings on the biomechanical aspects of the virgin passive anisotropic hyperelasticity of the porcine colon based on equibiaxial tensile experiments. Firstly, the characterization of the intestine tissues is discussed for a nearly incompressible hyperelastic fiber-reinforced Holzapfel–Gasser–Ogden constitutive model in virgin passive loading conditions. The stability of the evaluated material parameters is checked for the polyconvexity of the adopted strain energy function using positive eigenvalue constraints of the Hessian matrix with MATLAB. The constitutive material description of the intestine with two collagen fibers in the submucosal and muscular layer each has been implemented in the FORTRAN platform of the commercial finite element software LS-DYNA, and two equibiaxial tensile simulations are presented to validate the results with the optical strain images obtained from the experiments. Furthermore, this paper also reviews the existing models of the active smooth muscle cells, but these models have not been computationally studied here. The review part shows that the constitutive models originally developed for the active contraction of skeletal muscle based on Hill’s three-element model, Murphy’s four-state cross-bridge chemical kinetic model and Huxley’s sliding-filament hypothesis, which are mainly used for arteries, are appropriate for numerical contraction numerical analysis of the large intestine.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49070257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-16DOI: 10.3390/biomechanics2010012
L. Steiner, A. Synek, D. Pahr
Finite element (FE) analysis can predict proximal human femoral strength. Automated meshing and identifying subregions with high relevance for strength prediction could reduce the laborious modeling process. Mesh morphing based on free-form registration provides a high level of automation and inherently creates isotopological meshes. The goals of this study were to investigate if FE models based on free-form transformed meshes predict experimental femoral strength as well as manually created FE models and to identify regions and parameters with highest correlation to femoral strength. Subject-specific meshes and FE models were created from a set of quantitative CT images (QCT) using a B-Spline registration-based algorithm. Correlation of FE-predicted bone strength and local parameters with experimental bone strength were investigated. FE models based on transformed meshes closely resembled manually created counterparts, with equally strong correlations with experimental bone strength (R2=0.81 vs. R2=0.80). The regional analysis showed strong correlations (0.6
{"title":"Femoral Bone Strength Prediction Using Isotopological B-Spline-Transformed Meshes","authors":"L. Steiner, A. Synek, D. Pahr","doi":"10.3390/biomechanics2010012","DOIUrl":"https://doi.org/10.3390/biomechanics2010012","url":null,"abstract":"Finite element (FE) analysis can predict proximal human femoral strength. Automated meshing and identifying subregions with high relevance for strength prediction could reduce the laborious modeling process. Mesh morphing based on free-form registration provides a high level of automation and inherently creates isotopological meshes. The goals of this study were to investigate if FE models based on free-form transformed meshes predict experimental femoral strength as well as manually created FE models and to identify regions and parameters with highest correlation to femoral strength. Subject-specific meshes and FE models were created from a set of quantitative CT images (QCT) using a B-Spline registration-based algorithm. Correlation of FE-predicted bone strength and local parameters with experimental bone strength were investigated. FE models based on transformed meshes closely resembled manually created counterparts, with equally strong correlations with experimental bone strength (R2=0.81 vs. R2=0.80). The regional analysis showed strong correlations (0.6<R2<0.7) of experimental strength with local parameters. No subregion or parameter lead to stronger correlation than FE predicted bone strength. B-spline-transformed meshes can be used to create FE models, able to predict femoral bone strength and simplify FE model generation. They can be used to reveal relations of local parameters with failure load.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47298129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-10DOI: 10.3390/biomechanics2010011
Ivanna Kramer, S. Bauer
Finite element (FE) modeling is a commonly used method to investigate the influence of medical devices, such as implants and screws, on the biomechanical behavior of the spine. Another simulation method is multibody simulation (MBS), where the model is composed of several non-deformable bodies. MBS solvers generally require a very short computing time for dynamic tasks, compared with an FE analysis. Considering this computational advantage, in this study, we examine whether parameters for which values are not known a priori can be determined with sufficient accuracy using an MBS model. Therefore, we propose a many-at-a-time sensitivity analysis method that allows us to approximate these a priori unknown parameters without requiring long simulation times. This method enables a high degree of MBS model optimization to be achieved in an iterative process. The sensitivity analysis method was applied to a simplified screw–vertebra model, consisting of an anterior anchor implant screw and vertebral body of C4. An experiment described in the literature was used as the basis for developing and assessing the potential of the method for sensitivity analyses and for validating the model’s action. The optimal model parameters for the MBS model were determined to be c = 823,224 N/m for stiffness and d = 488 Ns/m for damping. The presented method of parameter identification can be used in studies including more complex MBS spine models or to set initial parameter values that are not available as initial values for FE models.
{"title":"Can a Priori Unknown Values of Biomechanical Parameters Be Determined with Sufficient Accuracy in MBS Using Sensitivity Analysis? Analyzing the Characteristics of the Interaction between Cervical Vertebra and Pedicle Screw","authors":"Ivanna Kramer, S. Bauer","doi":"10.3390/biomechanics2010011","DOIUrl":"https://doi.org/10.3390/biomechanics2010011","url":null,"abstract":"Finite element (FE) modeling is a commonly used method to investigate the influence of medical devices, such as implants and screws, on the biomechanical behavior of the spine. Another simulation method is multibody simulation (MBS), where the model is composed of several non-deformable bodies. MBS solvers generally require a very short computing time for dynamic tasks, compared with an FE analysis. Considering this computational advantage, in this study, we examine whether parameters for which values are not known a priori can be determined with sufficient accuracy using an MBS model. Therefore, we propose a many-at-a-time sensitivity analysis method that allows us to approximate these a priori unknown parameters without requiring long simulation times. This method enables a high degree of MBS model optimization to be achieved in an iterative process. The sensitivity analysis method was applied to a simplified screw–vertebra model, consisting of an anterior anchor implant screw and vertebral body of C4. An experiment described in the literature was used as the basis for developing and assessing the potential of the method for sensitivity analyses and for validating the model’s action. The optimal model parameters for the MBS model were determined to be c = 823,224 N/m for stiffness and d = 488 Ns/m for damping. The presented method of parameter identification can be used in studies including more complex MBS spine models or to set initial parameter values that are not available as initial values for FE models.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42266004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}