首页 > 最新文献

Advanced Photonics Research最新文献

英文 中文
High-Power GaN-Based Blue Laser Diodes Degradation Investigation and Anti-aging Solution 大功率氮化镓基蓝色激光二极管的降解研究与抗老化解决方案
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-04 DOI: 10.1002/adpr.202400119
Enming Zhang, Yue Zeng, Wenyu Kang, Zhibai Zhong, Yushou Wang, Tongwei Yan, Shaohua Huang, Zhongying Zhang, Kechuang Lin, Junyong Kang

Gallium nitride (GaN)-based semiconductor laser diodes (LDs) have garnered significant attention due to their promising applications. However, high-power LDs face serious degradation issues that limit their practical use. This study investigates the degradation factors of 437 nm and 6.3 W LDs by comparing light–current–voltage (L–I–V) characteristics, transmission electron microscopy (TEM), cathodoluminescence (CL), and secondary ion mass spectroscopy (SIMS) before and after 1000-h aging. The diffusion of mirror coating from the resonant cavity surface is identified as a key factor contributing to high-power LD degradation, which has not been reported in milliwatt-level LDs. Meanwhile, the mechanisms behind the LD degradation are profiled and summarized together with the diffusion and other factors. On basis of the mechanism exploration, an anti-aging technology for high-power GaN-based LDs is developed by using aluminum nitride for passivation layer and sapphire materials for mirror film. This anti-aging technology has been verified, and a nearly ten-time degradation suppression is achieved from 1000 h. This study elucidates the degradation mechanisms of high-power GaN LDs and provides an effective technology to extend their lifespan, thereby prompting the practical applications of high-power LDs.

基于氮化镓(GaN)的半导体激光二极管(LD)因其广阔的应用前景而备受关注。然而,高功率 LD 面临着严重的降解问题,限制了其实际应用。本研究通过比较老化 1000 小时前后的光-电流-电压(L-I-V)特性、透射电子显微镜(TEM)、阴极发光(CL)和二次离子质谱(SIMS),研究了 437 nm 和 6.3 W LD 的降解因子。研究发现,镜面涂层从谐振腔表面扩散是导致大功率 LD 退化的一个关键因素,而这在毫瓦级 LD 中尚未见报道。同时,对 LD 退化背后的机制进行了剖析,并结合扩散和其他因素进行了总结。在机理探索的基础上,利用氮化铝作为钝化层和蓝宝石材料作为镜面膜,开发出了大功率氮化镓基 LD 的抗老化技术。该研究阐明了大功率氮化镓基 LD 的降解机理,为延长其使用寿命提供了有效技术,从而推动了大功率 LD 的实际应用。
{"title":"High-Power GaN-Based Blue Laser Diodes Degradation Investigation and Anti-aging Solution","authors":"Enming Zhang,&nbsp;Yue Zeng,&nbsp;Wenyu Kang,&nbsp;Zhibai Zhong,&nbsp;Yushou Wang,&nbsp;Tongwei Yan,&nbsp;Shaohua Huang,&nbsp;Zhongying Zhang,&nbsp;Kechuang Lin,&nbsp;Junyong Kang","doi":"10.1002/adpr.202400119","DOIUrl":"https://doi.org/10.1002/adpr.202400119","url":null,"abstract":"<p>Gallium nitride (GaN)-based semiconductor laser diodes (LDs) have garnered significant attention due to their promising applications. However, high-power LDs face serious degradation issues that limit their practical use. This study investigates the degradation factors of 437 nm and 6.3 W LDs by comparing light–current–voltage (L–I–V) characteristics, transmission electron microscopy (TEM), cathodoluminescence (CL), and secondary ion mass spectroscopy (SIMS) before and after 1000-h aging. The diffusion of mirror coating from the resonant cavity surface is identified as a key factor contributing to high-power LD degradation, which has not been reported in milliwatt-level LDs. Meanwhile, the mechanisms behind the LD degradation are profiled and summarized together with the diffusion and other factors. On basis of the mechanism exploration, an anti-aging technology for high-power GaN-based LDs is developed by using aluminum nitride for passivation layer and sapphire materials for mirror film. This anti-aging technology has been verified, and a nearly ten-time degradation suppression is achieved from 1000 h. This study elucidates the degradation mechanisms of high-power GaN LDs and provides an effective technology to extend their lifespan, thereby prompting the practical applications of high-power LDs.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 11","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400119","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximizing the Electromagnetic Efficiency of Spintronic Terahertz Emitters 最大化自旋电子太赫兹发射器的电磁效率
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-04 DOI: 10.1002/adpr.202400064
Pierre Koleják, Geoffrey Lezier, Daniel Vala, Baptiste Mathmann, Lukáš Halagačka, Zuzana Gelnárová, Yannick Dusch, Jean-François Lampin, Nicolas Tiercelin, Kamil Postava, Mathias Vanwolleghem

Optically pumped spintronic terahertz emitters (STEs) have, in less than a decade, strongly impacted terahertz (THz) source technology, by the combination of their Fourier-limited ultrafast response, their phononless emission spectrum and their wavelength-independent operation. However, the intrinsic strength of the inverse spin Hall effect governing these devices introduces a challenge: the optical-to-terahertz conversion efficiency is considerably lower than traditional sources. It is therefore primordial to maximize at least their electromagnetic efficiency independently of the spin dynamics at play. Using a rigorous time-domain treatment of the electromagnetic generation and extraction processes, an optimized design is presented and experimentally confirmed. With respect to the strongest reported spintronic THz emitters it achieves a 250% enhancement of the emitted THz field and therefore an 8 dB increase of emitted power. This experimental achievement brings STE close to the symbolic barrier of mW levels. The design strategy is generically applicable to any kind of ultrafast spin-to-charge conversion (S2C) system. On a broader level, our work highlights how a rigorous handling of the purely electromagnetic aspects of THz spintronic devices can uncover overlooked aspects of their operation and lead to substantial improvements.

光泵浦自旋电子太赫兹发射器(STE)具有傅里叶限制的超快响应、无声子发射光谱和与波长无关的操作等特点,在不到十年的时间里对太赫兹(THz)信号源技术产生了重大影响。然而,制约这些设备的反自旋霍尔效应的内在强度带来了一个挑战:光到太赫兹的转换效率大大低于传统源。因此,在不考虑自旋动力学作用的情况下,至少最大限度地提高电磁效率是最基本的要求。通过对电磁产生和提取过程进行严格的时域处理,提出了一种优化设计,并得到了实验证实。与已报道的最强自旋电子太赫兹发射器相比,它实现了发射太赫兹场 250% 的增强,因此发射功率增加了 8 dB。这一实验成果使 STE 接近毫瓦级的象征性障碍。该设计策略一般适用于任何类型的超快自旋-电荷转换(S2C)系统。在更广泛的层面上,我们的工作突出了如何严格处理太赫兹自旋电子器件的纯电磁方面,从而发现其运行中被忽视的方面,并带来实质性的改进。
{"title":"Maximizing the Electromagnetic Efficiency of Spintronic Terahertz Emitters","authors":"Pierre Koleják,&nbsp;Geoffrey Lezier,&nbsp;Daniel Vala,&nbsp;Baptiste Mathmann,&nbsp;Lukáš Halagačka,&nbsp;Zuzana Gelnárová,&nbsp;Yannick Dusch,&nbsp;Jean-François Lampin,&nbsp;Nicolas Tiercelin,&nbsp;Kamil Postava,&nbsp;Mathias Vanwolleghem","doi":"10.1002/adpr.202400064","DOIUrl":"https://doi.org/10.1002/adpr.202400064","url":null,"abstract":"<p>\u0000Optically pumped spintronic terahertz emitters (STEs) have, in less than a decade, strongly impacted terahertz (THz) source technology, by the combination of their Fourier-limited ultrafast response, their phononless emission spectrum and their wavelength-independent operation. However, the intrinsic strength of the inverse spin Hall effect governing these devices introduces a challenge: the optical-to-terahertz conversion efficiency is considerably lower than traditional sources. It is therefore primordial to maximize at least their electromagnetic efficiency independently of the spin dynamics at play. Using a rigorous time-domain treatment of the electromagnetic generation and extraction processes, an optimized design is presented and experimentally confirmed. With respect to the strongest reported spintronic THz emitters it achieves a 250% enhancement of the emitted THz field and therefore an 8 dB increase of emitted power. This experimental achievement brings STE close to the symbolic barrier of mW levels. The design strategy is generically applicable to any kind of ultrafast spin-to-charge conversion (S2C) system. On a broader level, our work highlights how a rigorous handling of the purely electromagnetic aspects of THz spintronic devices can uncover overlooked aspects of their operation and lead to substantial improvements.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 11","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400064","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements and Challenges of Vacuum-Processed Organic Photodiodes: A Comprehensive Review
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-02 DOI: 10.1002/adpr.202400094
Chan So, Won Jun Pyo, Dae Sung Chung

Organic photodiodes (OPDs) have made remarkable strides and now poised to surpass traditional silicon photodiodes (PDs) in various aspects including linear dynamic range (LDR), detectivity, wavelength selectivity, and versatility.[1] Tunable mechanical and optoelectronic properties of organic semiconductors, coupled with lower process costs, have propelled OPDs into the spotlight across fields such as wearable light fidelity systems, flexible image sensors, and biomedical imaging.[2–5] While most advanced organic imaging systems to date rely on polymer-based solution processes, challenges such as the use of toxic organic solvents and reproducibility issues hinder their commercialization.[6,7] Vacuum-processed OPDs offer a promising alternative, boasting eco-friendliness and compatibility with large-scale fabrication facilities.[8,9] In this review, recent advancements and challenges in vacuum-processed OPDs, an area that has received less attention compared to solution-processed counterparts, are explored. Herein, four primary pathways for development of vacuum-processed OPDs are outlined: 1) ultraviolet-selective OPDs, 2) visible-light-selective OPDs, 3) near-infrared or short-wave-infrared-sensitive OPDs, and 4) addressing challenges such as higher noise currents compared to inorganic PDs. In this review, it is aimed to furnish readers with a comprehensive understanding of vacuum-processed OPDs, spanning from materials design to device engineering.

{"title":"Advancements and Challenges of Vacuum-Processed Organic Photodiodes: A Comprehensive Review","authors":"Chan So,&nbsp;Won Jun Pyo,&nbsp;Dae Sung Chung","doi":"10.1002/adpr.202400094","DOIUrl":"https://doi.org/10.1002/adpr.202400094","url":null,"abstract":"<p>Organic photodiodes (OPDs) have made remarkable strides and now poised to surpass traditional silicon photodiodes (PDs) in various aspects including linear dynamic range (LDR), detectivity, wavelength selectivity, and versatility.<sup>[</sup><sup>1</sup><sup>]</sup> Tunable mechanical and optoelectronic properties of organic semiconductors, coupled with lower process costs, have propelled OPDs into the spotlight across fields such as wearable light fidelity systems, flexible image sensors, and biomedical imaging.<sup>[</sup><sup>2–5</sup><sup>]</sup> While most advanced organic imaging systems to date rely on polymer-based solution processes, challenges such as the use of toxic organic solvents and reproducibility issues hinder their commercialization.<sup>[</sup><sup>6,7</sup><sup>]</sup> Vacuum-processed OPDs offer a promising alternative, boasting eco-friendliness and compatibility with large-scale fabrication facilities.<sup>[</sup><sup>8,9</sup><sup>]</sup> In this review, recent advancements and challenges in vacuum-processed OPDs, an area that has received less attention compared to solution-processed counterparts, are explored. Herein, four primary pathways for development of vacuum-processed OPDs are outlined: 1) ultraviolet-selective OPDs, 2) visible-light-selective OPDs, 3) near-infrared or short-wave-infrared-sensitive OPDs, and 4) addressing challenges such as higher noise currents compared to inorganic PDs. In this review, it is aimed to furnish readers with a comprehensive understanding of vacuum-processed OPDs, spanning from materials design to device engineering.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 2","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400094","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143186383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formation Mechanisms and Fluorescence Properties of Carbon Dots in Coal Burning Dust from Coal-Fired Power Plants 燃煤电厂燃煤粉尘中碳点的形成机理和荧光特性
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-02 DOI: 10.1002/adpr.202400010
Zhexian Zhao, Weizuo Zhang, Jin Zhang, Yuzhao Li, Han Bai, Fangming Zhao, Zhongcai Jin, Ju Tang, Yiming Xiao, Wen Xu, Yanfei Lü

Carbon dots (CDs) show great application potential with their unique and excellent performances. Coal and its derivatives are rich in aromatic ring structure, which is suitable for preparing CDs in microstructure. Coal-burning dust from coal-fired power plants can be utilized as a rich resource to separate and extract CDs. It is shown in the results that there are two main possible mechanisms for the formation of CDs in coal-burning dust. One is the self-assembly of polycyclic aromatic hydrocarbons contained in coal or produced by incomplete combustion of coal. The other mechanism is that the bridge bonds linking different aromatic structures in coal break, which will form CDs with different functional groups when the coals burn at high temperature. Under violet light excitation at 310–340 nm or red light at 610–640 nm, CDs extracted from coal-burning dust can emit purple fluorescence around 410 nm. The mechanism of up-conversion fluorescence emission of CDs is due to a two-photon absorption process. The recycling of CDs from coal-burning dust from coal-fired power plants are not only good to protect environment but will also be helpful for mass production of CDs.

碳点(CD)以其独特而优异的性能显示出巨大的应用潜力。煤及其衍生物富含芳香环结构,适合制备微结构的碳点。燃煤电厂的燃煤粉尘是分离和提取 CD 的丰富资源。研究结果表明,燃煤粉尘中 CD 的形成可能有两种主要机制。一种是煤中含有的或煤不完全燃烧产生的多环芳烃的自组装。另一种机制是煤炭中连接不同芳香结构的桥键断裂,在高温燃烧时会形成具有不同官能团的 CD。在波长为 310-340 纳米的紫光或波长为 610-640 纳米的红光激发下,从燃煤粉尘中提取的 CD 可在波长为 410 纳米左右发出紫色荧光。CD 上转换荧光发射的机理是双光子吸收过程。从燃煤电厂的燃煤粉尘中回收 CD 不仅有利于保护环境,还有助于大规模生产 CD。
{"title":"Formation Mechanisms and Fluorescence Properties of Carbon Dots in Coal Burning Dust from Coal-Fired Power Plants","authors":"Zhexian Zhao,&nbsp;Weizuo Zhang,&nbsp;Jin Zhang,&nbsp;Yuzhao Li,&nbsp;Han Bai,&nbsp;Fangming Zhao,&nbsp;Zhongcai Jin,&nbsp;Ju Tang,&nbsp;Yiming Xiao,&nbsp;Wen Xu,&nbsp;Yanfei Lü","doi":"10.1002/adpr.202400010","DOIUrl":"https://doi.org/10.1002/adpr.202400010","url":null,"abstract":"<p>Carbon dots (CDs) show great application potential with their unique and excellent performances. Coal and its derivatives are rich in aromatic ring structure, which is suitable for preparing CDs in microstructure. Coal-burning dust from coal-fired power plants can be utilized as a rich resource to separate and extract CDs. It is shown in the results that there are two main possible mechanisms for the formation of CDs in coal-burning dust. One is the self-assembly of polycyclic aromatic hydrocarbons contained in coal or produced by incomplete combustion of coal. The other mechanism is that the bridge bonds linking different aromatic structures in coal break, which will form CDs with different functional groups when the coals burn at high temperature. Under violet light excitation at 310–340 nm or red light at 610–640 nm, CDs extracted from coal-burning dust can emit purple fluorescence around 410 nm. The mechanism of up-conversion fluorescence emission of CDs is due to a two-photon absorption process. The recycling of CDs from coal-burning dust from coal-fired power plants are not only good to protect environment but will also be helpful for mass production of CDs.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 10","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation-Training-Based Deep Learning Approach to Microscopic Ghost Imaging 基于模拟训练的微观鬼影成像深度学习方法
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-18 DOI: 10.1002/adpr.202400052
Binyu Li, Yueshu Feng, Cheng Zhou, Siyi Hu, Chunwa Jiang, Feng Yang, Lijun Song, Xue Hou

Herein, deep learning-ghost imaging (DLGI) based on a digital micromirror device is realized to avoid the difficulties of a charge-coupled device (CCD) scientific camera being unable to obtain the sample images in extremely weak illumination conditions and to solve the problem of the inverse relationship between imaging quality and imaging time in practical applications. Deep learning for computational ghost imaging typically requires the collection of a large set of labeled experimental data to train a neural network. Herein, we demonstrate that a practically usable neural network can be prepared based on the simulation results. The acquisition results of the CCD scientific camera and the simulation results with low sampling are used as the training set (1000 observations) and we can complete the data acquisition process within one hour. The results show that the proposed DLGI method can be used to significantly improve the quality of the reconstructed images when the sampling rate is 60%. This method also reduces the imaging time and the memory usage, while simultaneously improving the imaging quality. The imaging results of the proposed DLGI method have great significance for application in clinical diagnosis.

为了避免电荷耦合器件(CCD)科学相机在极弱光照条件下无法获得样品图像的困难,解决实际应用中成像质量与成像时间呈反比关系的问题,实现了基于数字微镜器件的深度学习-幽灵成像(DLGI)。用于计算鬼影成像的深度学习通常需要收集大量标记实验数据来训练神经网络。在此,我们证明了基于仿真结果可以制备出实际可用的神经网络。采用CCD科学相机采集结果和低采样模拟结果作为训练集(1000个观测值),在1小时内完成数据采集过程。结果表明,当采样率为60%时,所提出的DLGI方法可以显著提高重构图像的质量。该方法还减少了成像时间和内存的使用,同时提高了成像质量。该方法的成像结果对临床诊断具有重要意义。
{"title":"Simulation-Training-Based Deep Learning Approach to Microscopic Ghost Imaging","authors":"Binyu Li,&nbsp;Yueshu Feng,&nbsp;Cheng Zhou,&nbsp;Siyi Hu,&nbsp;Chunwa Jiang,&nbsp;Feng Yang,&nbsp;Lijun Song,&nbsp;Xue Hou","doi":"10.1002/adpr.202400052","DOIUrl":"https://doi.org/10.1002/adpr.202400052","url":null,"abstract":"<p>Herein, deep learning-ghost imaging (DLGI) based on a digital micromirror device is realized to avoid the difficulties of a charge-coupled device (CCD) scientific camera being unable to obtain the sample images in extremely weak illumination conditions and to solve the problem of the inverse relationship between imaging quality and imaging time in practical applications. Deep learning for computational ghost imaging typically requires the collection of a large set of labeled experimental data to train a neural network. Herein, we demonstrate that a practically usable neural network can be prepared based on the simulation results. The acquisition results of the CCD scientific camera and the simulation results with low sampling are used as the training set (1000 observations) and we can complete the data acquisition process within one hour. The results show that the proposed DLGI method can be used to significantly improve the quality of the reconstructed images when the sampling rate is 60%. This method also reduces the imaging time and the memory usage, while simultaneously improving the imaging quality. The imaging results of the proposed DLGI method have great significance for application in clinical diagnosis.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 12","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All-Bands-Flat Floquet Topological Photonic Insulators with Microring Lattices 具有微oring 晶格的全带平面浮凸拓扑光子绝缘体
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-04 DOI: 10.1002/adpr.202470021
Hanfa Song, Vien Van

Topological Photonic Insulators

In article number 2400023, Vien Van and Hanfa Song present the design and realization of (2 + 1)D topological photonic insulators hosting all flat bands, which exhibit novel properties such as anomalous Floquet insulator phase, ultra-wide edge mode continuum, super robustness to disorder, and photon caging in compact localized bulk states. These lattices have broadband applications in topologically-protected quantum photonics and programmable photonic circuits.

拓扑光子绝缘体 在编号为 2400023 的文章中,Vien Van 和 Hanfa Song 介绍了 (2 + 1)D 拓扑光子绝缘体的设计与实现,这种绝缘体承载所有平带,具有新颖的特性,如反常的 Floquet 绝缘体相位、超宽边缘模式连续体、对无序的超强鲁棒性,以及在紧凑局部体态中的光子笼。这些晶格可广泛应用于拓扑保护量子光子学和可编程光子电路。
{"title":"All-Bands-Flat Floquet Topological Photonic Insulators with Microring Lattices","authors":"Hanfa Song,&nbsp;Vien Van","doi":"10.1002/adpr.202470021","DOIUrl":"https://doi.org/10.1002/adpr.202470021","url":null,"abstract":"<p><b>Topological Photonic Insulators</b>\u0000 </p><p>In article number 2400023, Vien Van and Hanfa Song present the design and realization of (2 + 1)D topological photonic insulators hosting all flat bands, which exhibit novel properties such as anomalous Floquet insulator phase, ultra-wide edge mode continuum, super robustness to disorder, and photon caging in compact localized bulk states. These lattices have broadband applications in topologically-protected quantum photonics and programmable photonic circuits.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 8","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202470021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of the Internal Quantum Efficiency of III-Nitride Blue Micro-Light-Emitting Diodes by the Hole Accelerator at the Low Current Density 低电流密度下利用空穴加速器提高 III 氮化物蓝色微型发光二极管的内部量子效率
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-04 DOI: 10.1002/adpr.202300262
An-Chi Wei, Sheng-Hsiang Wang, Jyh-Rou Sze, Quoc-Hung Pham

The hole accelerator is proven to benefit the hole injection for traditional light-emitting diodes (LEDs) because the induced electric field provides the holes with more kinetic energy to pass through the electron-blocking layer, enhancing the hole injection efficiency. Herein, the effect of the hole accelerator (HA) layer on the micro-LEDs by modeling the characteristics of the devices with a current density of lower than 10 A cm−2 is investigated. The simulation results show that the appended HA layer brings a knot of the electric field in the HA layer, leading to higher internal quantum efficiency (IQE) than the device without HA under the low current density. The thickness and composition of HA, the quantum number, and the material of quantum barrier are also simulated and analyzed. The simulated radiative, Shockley–Read–Hall, and Auger recombination rates show that the IQE of the micro-LED with the HA layer is higher than that without the HA layer under the current density of lower than 10 A cm−2.

事实证明,空穴加速器有利于传统发光二极管(LED)的空穴注入,因为诱导电场为空穴提供了更多的动能,使其能够穿过电子阻挡层,从而提高了空穴注入效率。本文通过模拟电流密度低于 10 A cm-2 的器件特性,研究了空穴加速器(HA)层对微型发光二极管的影响。模拟结果表明,在低电流密度下,附着的 HA 层会带来 HA 层中的电场结,从而使器件的内部量子效率(IQE)高于不附着 HA 层的器件。此外,还对 HA 的厚度和成分、量子数以及量子势垒的材料进行了模拟和分析。模拟的辐射、肖克利-雷德-霍尔和奥格重组率表明,在低于 10 A cm-2 的电流密度下,有 HA 层的微型 LED 的 IQE 比没有 HA 层的要高。
{"title":"Improvement of the Internal Quantum Efficiency of III-Nitride Blue Micro-Light-Emitting Diodes by the Hole Accelerator at the Low Current Density","authors":"An-Chi Wei,&nbsp;Sheng-Hsiang Wang,&nbsp;Jyh-Rou Sze,&nbsp;Quoc-Hung Pham","doi":"10.1002/adpr.202300262","DOIUrl":"https://doi.org/10.1002/adpr.202300262","url":null,"abstract":"<p>The hole accelerator is proven to benefit the hole injection for traditional light-emitting diodes (LEDs) because the induced electric field provides the holes with more kinetic energy to pass through the electron-blocking layer, enhancing the hole injection efficiency. Herein, the effect of the hole accelerator (HA) layer on the micro-LEDs by modeling the characteristics of the devices with a current density of lower than 10 A cm<sup>−2</sup> is investigated. The simulation results show that the appended HA layer brings a knot of the electric field in the HA layer, leading to higher internal quantum efficiency (IQE) than the device without HA under the low current density. The thickness and composition of HA, the quantum number, and the material of quantum barrier are also simulated and analyzed. The simulated radiative, Shockley–Read–Hall, and Auger recombination rates show that the IQE of the micro-LED with the HA layer is higher than that without the HA layer under the current density of lower than 10 A cm<sup>−2</sup>.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 9","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300262","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upconversion of Infrared Light by Graphitic Microparticles Due to Photoinduced Structural Modification 光诱导结构改性导致石墨微粒对红外光的上转换
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-04 DOI: 10.1002/adpr.202470023
Rohin Sharma, Nishma Bhattarai, Rijan Maharjan, Lilia M. Woods, Nirajan Ojha, Ashim Dhakal

Photoinduced Structural Modification

In article number 2300326, Ashim Dhakal and co-workers show that photo-induced metastable modification of electronic structure in graphite allows for multiphoton processes that can up-convert an O-band infrared excitation to visible-NIR band in graphite powder. Theoretically, this process can upconvert an infrared light near the wavelength of 3 μm to VIS-NIR wavelengths. It opens exciting new avenues for applications in visible light generation and low-noise imaging using infrared light excitation.

光诱导结构修饰 在编号为 2300326 的文章中,Ashim Dhakal 及其合作者展示了光诱导石墨中电子结构的陨变修饰,从而实现了多光子过程,可将石墨粉中的 O 波段红外激发上转换为可见光-近红外波段。从理论上讲,这一过程可将波长为 3 μm 附近的红外线上转换为可见光-近红外波段。它为利用红外光激发可见光生成和低噪声成像的应用开辟了令人兴奋的新途径。
{"title":"Upconversion of Infrared Light by Graphitic Microparticles Due to Photoinduced Structural Modification","authors":"Rohin Sharma,&nbsp;Nishma Bhattarai,&nbsp;Rijan Maharjan,&nbsp;Lilia M. Woods,&nbsp;Nirajan Ojha,&nbsp;Ashim Dhakal","doi":"10.1002/adpr.202470023","DOIUrl":"https://doi.org/10.1002/adpr.202470023","url":null,"abstract":"<p><b>Photoinduced Structural Modification</b>\u0000 </p><p>In article number 2300326, Ashim Dhakal and co-workers show that photo-induced metastable modification of electronic structure in graphite allows for multiphoton processes that can up-convert an O-band infrared excitation to visible-NIR band in graphite powder. Theoretically, this process can upconvert an infrared light near the wavelength of 3 μm to VIS-NIR wavelengths. It opens exciting new avenues for applications in visible light generation and low-noise imaging using infrared light excitation.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 8","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202470023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of Signal-to-Background Ratio in Molecular Vibrational Signal Extraction by Stimulated Emission Depletion Mechanism
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-04 DOI: 10.1002/adpr.202400078
Ge Wang, Lizhen Chen, Qiuqiang Zhan, Guangyou Fang, Yisen Wang

Herein, a novel approach is presented to mitigate the fluorescence interference during the detection of vibrational signal via the stimulated emission depletion (STED). STED is the mechanism commonly employed in optical imaging; however, its application should not be confined solely to this field. To explore additional possibilities, a novel application of STED in vibrational spectroscopy detection is introduced. Vibrational spectroscopy is a widely used technique for the material detection and identification, but its sensitivity is influenced by impurity signals, especially the fluorescence. The proposed method is capable of suppressing fluorescence without influencing vibrational signal. At the low concentration of fluorescent impurities, the signal-to-background ratio of vibrational spectroscopy is 2.6 times as high as that without this method. The introduction of depletion light can enhance the detection of vibrational signals, resulting in more optimal signal detection. A promising new application of STED other than super-resolution imaging is investigated.

{"title":"Enhancement of Signal-to-Background Ratio in Molecular Vibrational Signal Extraction by Stimulated Emission Depletion Mechanism","authors":"Ge Wang,&nbsp;Lizhen Chen,&nbsp;Qiuqiang Zhan,&nbsp;Guangyou Fang,&nbsp;Yisen Wang","doi":"10.1002/adpr.202400078","DOIUrl":"https://doi.org/10.1002/adpr.202400078","url":null,"abstract":"<p>Herein, a novel approach is presented to mitigate the fluorescence interference during the detection of vibrational signal via the stimulated emission depletion (STED). STED is the mechanism commonly employed in optical imaging; however, its application should not be confined solely to this field. To explore additional possibilities, a novel application of STED in vibrational spectroscopy detection is introduced. Vibrational spectroscopy is a widely used technique for the material detection and identification, but its sensitivity is influenced by impurity signals, especially the fluorescence. The proposed method is capable of suppressing fluorescence without influencing vibrational signal. At the low concentration of fluorescent impurities, the signal-to-background ratio of vibrational spectroscopy is 2.6 times as high as that without this method. The introduction of depletion light can enhance the detection of vibrational signals, resulting in more optimal signal detection. A promising new application of STED other than super-resolution imaging is investigated.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400078","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating the Optically Pumped Threshold Fluence of Thin-Film Gain Media Using Arbitrary Excitation Beams 利用任意激发光束估计薄膜增益介质的光泵浦阈值
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-04 DOI: 10.1002/adpr.202400065
Nirav Annavarapu, Iakov Goldberg, Karim Elkhouly, Sarah Hamdad, Jan Genoe, Robert Gehlhaar, Paul Heremans

Optically pumped threshold fluences are a widely reported metric to benchmark the performance of thin-film gain media and lasers. Estimating the threshold fluence for nonhomogeneous beams, such as a circular Gaussian excitation, is not trivial since the average fluence depends on the estimated spot diameter. Using an exemplary lead halide perovskite film, the inversion volume at different pump energies is mapped. It is shown that the peak fluence of an arbitrary spatial beam profile is more relevant at the threshold, as it provides an upper bound to the threshold fluence. Also, simple conversion factors to estimate the peak fluence using Gaussian excitation beams are provided and the methodology to arbitrary profiles is extrapolated. Furthermore, it is advocated for using flat-top or uniform stripe excitations to unambiguously extract the threshold fluence, since these excitations display minor discrepancies between the average and peak fluence, and keep the inversion volume relatively constant during the measurement.

光泵浦阈值影响是一个广泛报道的指标,以基准薄膜增益介质和激光器的性能。估计非均匀光束(如圆形高斯激励)的阈值影响并不容易,因为平均影响取决于估计的光斑直径。利用典型的卤化铅钙钛矿薄膜,绘制了不同泵浦能量下的反转体积图。结果表明,任意空间光束剖面的峰值流量在阈值处更为相关,因为它提供了阈值流量的上界。此外,还提供了使用高斯激励光束估计峰值通量的简单转换因子,并对任意剖面的方法进行了外推。此外,建议使用平顶或均匀条纹激励来明确地提取阈值影响,因为这些激励在平均和峰值影响之间显示出较小的差异,并且在测量过程中保持反转体积相对恒定。
{"title":"Estimating the Optically Pumped Threshold Fluence of Thin-Film Gain Media Using Arbitrary Excitation Beams","authors":"Nirav Annavarapu,&nbsp;Iakov Goldberg,&nbsp;Karim Elkhouly,&nbsp;Sarah Hamdad,&nbsp;Jan Genoe,&nbsp;Robert Gehlhaar,&nbsp;Paul Heremans","doi":"10.1002/adpr.202400065","DOIUrl":"https://doi.org/10.1002/adpr.202400065","url":null,"abstract":"<p>Optically pumped threshold fluences are a widely reported metric to benchmark the performance of thin-film gain media and lasers. Estimating the threshold fluence for nonhomogeneous beams, such as a circular Gaussian excitation, is not trivial since the average fluence depends on the estimated spot diameter. Using an exemplary lead halide perovskite film, the inversion volume at different pump energies is mapped. It is shown that the peak fluence of an arbitrary spatial beam profile is more relevant at the threshold, as it provides an upper bound to the threshold fluence. Also, simple conversion factors to estimate the peak fluence using Gaussian excitation beams are provided and the methodology to arbitrary profiles is extrapolated. Furthermore, it is advocated for using flat-top or uniform stripe excitations to unambiguously extract the threshold fluence, since these excitations display minor discrepancies between the average and peak fluence, and keep the inversion volume relatively constant during the measurement.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 12","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400065","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Photonics Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1