David Osuna Ruiz, Maite Aznarez-Sanado, Pilar Herrera-Plaza, Miguel Beruete
A full numerical study combining artificial intelligence (AI) methods and electromagnetic simulation software on a multilayered structure for radiative cooling (RC) is investigated. The original structure is made of SiO2/Si nanometer-thick layers that make a Bragg mirror for wavelengths in the solar irradiance window (0.3–4 μm). The structures are then optimized in terms of the calculated net cooling power and characterized via the reflected and absorbed incident light as a function of their structural parameters. This investigation provides with optimal designs of beyond-Bragg, all-dielectric, ultra-broadband mirrors that provide net cooling powers in the order of ≈100 W m−2, similar to the best-performing structures in literature. Furthermore, it explains AI's success in producing these structures and enables the analysis of resonant conditions in metal-free multilayers with unconventional layer thickness distributions, offering innovative tools for designing highly efficient structures in RC.
{"title":"Artificial Intelligence-Enhanced Metamaterial Bragg Multilayers for Radiative Cooling","authors":"David Osuna Ruiz, Maite Aznarez-Sanado, Pilar Herrera-Plaza, Miguel Beruete","doi":"10.1002/adpr.202400088","DOIUrl":"https://doi.org/10.1002/adpr.202400088","url":null,"abstract":"<p>A full numerical study combining artificial intelligence (AI) methods and electromagnetic simulation software on a multilayered structure for radiative cooling (RC) is investigated. The original structure is made of SiO<sub>2</sub>/Si nanometer-thick layers that make a Bragg mirror for wavelengths in the solar irradiance window (0.3–4 μm). The structures are then optimized in terms of the calculated net cooling power and characterized via the reflected and absorbed incident light as a function of their structural parameters. This investigation provides with optimal designs of beyond-Bragg, all-dielectric, ultra-broadband mirrors that provide net cooling powers in the order of ≈100 W m<sup>−2</sup>, similar to the best-performing structures in literature. Furthermore, it explains AI's success in producing these structures and enables the analysis of resonant conditions in metal-free multilayers with unconventional layer thickness distributions, offering innovative tools for designing highly efficient structures in RC.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 2","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400088","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143186619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The compact and broadband optical switch with a large port count is demanded with the increasing communication capacity. In this article, a universal method for modeling the 1 × N switch using multimode interferometer (MMI) through transmission matrixes is proposed. Herein, the reasons for the narrowing of the operating bandwidth switch are analyzed. As a proof of concept, a wide bandwidth 1 × 4 switch, which has an insertion loss lower than 23.7 dB, and a cross talk better than −10 dB at 1550 nm are simulated, designed, and fabricated. The cross talk throughout the C band is lower than −8.5 dB. According to the experimental result, the 1 × 4 switch with four-equal-length modulating arms shows a 32 nm bandwidth for −10 dB cross talk which is 13 times larger than traditional switch. The switch realizes a multi-port logic optical switch by modulation. The 1 × N switch based on the generalized Mach–Zehnder interferometer (GMZI) structure reduce the footprint significantly compared with the 1 × N switch consisting of a 1 × 2 switch cascade. It is believed that 1 × N switch based on GMZI structures is a promising solution to increase integration density.
{"title":"1 × N All-Logic Optical Switch Based on Polymer Platform Using Multimode Interferometer","authors":"Guoyan Zeng, Daming Zhang, Fei Wang, Xibin Wang, Yuexin Yin","doi":"10.1002/adpr.202400118","DOIUrl":"https://doi.org/10.1002/adpr.202400118","url":null,"abstract":"<p>The compact and broadband optical switch with a large port count is demanded with the increasing communication capacity. In this article, a universal method for modeling the 1 × <i>N</i> switch using multimode interferometer (MMI) through transmission matrixes is proposed. Herein, the reasons for the narrowing of the operating bandwidth switch are analyzed. As a proof of concept, a wide bandwidth 1 × 4 switch, which has an insertion loss lower than 23.7 dB, and a cross talk better than −10 dB at 1550 nm are simulated, designed, and fabricated. The cross talk throughout the C band is lower than −8.5 dB. According to the experimental result, the 1 × 4 switch with four-equal-length modulating arms shows a 32 nm bandwidth for −10 dB cross talk which is 13 times larger than traditional switch. The switch realizes a multi-port logic optical switch by modulation. The 1 × <i>N</i> switch based on the generalized Mach–Zehnder interferometer (GMZI) structure reduce the footprint significantly compared with the 1 × <i>N</i> switch consisting of a 1 × 2 switch cascade. It is believed that 1 × <i>N</i> switch based on GMZI structures is a promising solution to increase integration density.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400118","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143113433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}