首页 > 最新文献

Advanced Photonics Research最新文献

英文 中文
Optimizing SiGe–SiO2 Visible–Short-Wave Infrared Photoresponse by Modulating Interplay Between Strain and Defects Through Annealing 通过退火调节应变和缺陷之间的相互作用优化 SiGe-SiO2 可见短波红外光响应
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-19 DOI: 10.1002/adpr.202300316
Muhammad Taha Sultan, Ionel Stavarache, Andrei Manolescu, Unnar Bjarni Arnalds, Valentin Serban Teodorescu, Halldor Gudfinnur Svavarsson, Snorri Ingvarsson, Magdalena Lidia Ciurea

SiGe-SiO2-based structures present high interest for their high photosensitivity from visible to short-wavelength infrared. Herein, two postdeposition annealing procedures, that is, rapid thermal annealing (RTA) and rapid-like furnace annealing (FA), are compared. Both RTA and FA are performed at 600 °C for 1 min for SiGe nanocrystals (NCs) formation in SiO2 matrix in Si/SiO2/SiGe/SiO2 structures deposited by magnetron sputtering. The FA imitates RTA resulting in enhanced spectral response. X-ray diffraction, transmission electron microscopy, and Raman spectroscopy are carried out showing Ge-rich SiGe NCs with 11.3 ± 1.2 nm size for RTA and 9.4 ± 0.8 nm for FA. Photocurrent spectra for both structures show several peaks that are annealing dependent. The photocurrent intensity for FA samples is ≈7 times higher than RTA samples while cutoff wavelengths are slightly different, that is, 1365 nm for FA and 1375 nm for RTA. The FA structures show (at −1.5 V) over 4 A W−1 responsivity at 730 nm, 6.4 × 107 Jones detectivity at 735 nm, and 2.2 × 107 Jones at about 1210 nm. FA structures contain small SiGe NCs with incorporated residual strain, while RTA ones are formed of columnar SiGe NCs separated by SiGeOx amorphous regions and show increased tensile strain in the SiGe.

基于 SiGe-SiO2 的结构因其从可见光到短波红外线的高光敏性而备受关注。本文比较了两种沉积后退火程序,即快速热退火(RTA)和快速类炉退火(FA)。在磁控溅射沉积的 Si/SiO2/SiGe/SiO2 结构中,在 SiO2 基体中形成 SiGe 纳米晶体(NCs)时,RTA 和 FA 均在 600 °C 下进行,时间均为 1 分钟。FA 模仿了 RTA,从而增强了光谱响应。X 射线衍射、透射电子显微镜和拉曼光谱显示,RTA 的富锗硅锗 NCs 尺寸为 11.3 ± 1.2 nm,FA 的富锗硅锗 NCs 尺寸为 9.4 ± 0.8 nm。两种结构的光电流光谱都显示出与退火有关的几个峰值。FA 样品的光电流强度是 RTA 样品的 7 倍,而截止波长略有不同,FA 为 1365 纳米,RTA 为 1375 纳米。FA 结构在 730 纳米波长处显示出(-1.5 V 时)超过 4 A W-1 的响应率,在 735 纳米波长处显示出 6.4 × 107 琼斯检测率,在约 1210 纳米波长处显示出 2.2 × 107 琼斯检测率。FA结构包含含有残余应变的小型SiGe NC,而RTA结构则由被SiGeOx非晶区分隔的柱状SiGe NC组成,并显示出SiGe中增加的拉伸应变。
{"title":"Optimizing SiGe–SiO2 Visible–Short-Wave Infrared Photoresponse by Modulating Interplay Between Strain and Defects Through Annealing","authors":"Muhammad Taha Sultan,&nbsp;Ionel Stavarache,&nbsp;Andrei Manolescu,&nbsp;Unnar Bjarni Arnalds,&nbsp;Valentin Serban Teodorescu,&nbsp;Halldor Gudfinnur Svavarsson,&nbsp;Snorri Ingvarsson,&nbsp;Magdalena Lidia Ciurea","doi":"10.1002/adpr.202300316","DOIUrl":"https://doi.org/10.1002/adpr.202300316","url":null,"abstract":"<p>SiGe-SiO<sub>2</sub>-based structures present high interest for their high photosensitivity from visible to short-wavelength infrared. Herein, two postdeposition annealing procedures, that is, rapid thermal annealing (RTA) and rapid-like furnace annealing (FA), are compared. Both RTA and FA are performed at 600 °C for 1 min for SiGe nanocrystals (NCs) formation in SiO<sub>2</sub> matrix in Si/SiO<sub>2</sub>/SiGe/SiO<sub>2</sub> structures deposited by magnetron sputtering. The FA imitates RTA resulting in enhanced spectral response. X-ray diffraction, transmission electron microscopy, and Raman spectroscopy are carried out showing Ge-rich SiGe NCs with 11.3 ± 1.2 nm size for RTA and 9.4 ± 0.8 nm for FA. Photocurrent spectra for both structures show several peaks that are annealing dependent. The photocurrent intensity for FA samples is ≈7 times higher than RTA samples while cutoff wavelengths are slightly different, that is, 1365 nm for FA and 1375 nm for RTA. The FA structures show (at −1.5 V) over 4 A W<sup>−1</sup> responsivity at 730 nm, 6.4 × 10<sup>7</sup> Jones detectivity at 735 nm, and 2.2 × 10<sup>7</sup> Jones at about 1210 nm. FA structures contain small SiGe NCs with incorporated residual strain, while RTA ones are formed of columnar SiGe NCs separated by SiGeO<sub><i>x</i></sub> amorphous regions and show increased tensile strain in the SiGe.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300316","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Widening the Gamut of Structural Colors of Gold via Insulator–Metal Bilayer Coatings 通过绝缘体-金属双层涂层拓宽金的结构颜色范围
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-19 DOI: 10.1002/adpr.202300324
Md Abdur Rahman, Simon Wredh, Darya Burak, Joel K. W. Yang, So-Hye Cho, Seung Yong Lee, Sang Hoon Kim, Ji Young Byun

Tuning the color of Au has been a longstanding problem in the luxury industry. Conventional approaches, involving Au alloying, compromise purity and demand distinct alloy compositions for each hue. This study demonstrates a lithography-free method for generating structural colors on a gold surface by adjusting the thickness of titanium dioxide, a high-index dielectric. While color tuneability is limited if TiO2 is coated directly on the Au surface, a range of vivid colors can be generated if a 50−100 nm thick AuAl2 underlayer is used. AuAl2, an accepted alloy for purple gold, broadens the color gamut, providing a protective coating without diminishing gold purity. The reflectance dip of the bilayer structure exhibits a significant red shift with increasing thickness of the TiO2 layer, allowing diverse colors by TiO2 insulator tuning. Simulation studies corroborate experimental results, affirming that coating a TiO2 layer on the AuAl2 underlayer yields a wide range of colors. This method, based on thin-film interference, shows promise for widespread use, offering a broad spectrum of structural colors in an industry striving for diverse Au color representation.

调整金的颜色一直是奢侈品行业的老大难问题。涉及金合金化的传统方法会影响纯度,而且每种色调都需要不同的合金成分。本研究展示了一种无需光刻的方法,通过调整高指数电介质二氧化钛的厚度,在金表面生成结构色。虽然直接在金表面涂覆二氧化钛会限制颜色的可调节性,但如果使用 50-100 纳米厚的 AuAl2 底层,就能产生一系列鲜艳的颜色。AuAl2 是一种公认的紫金合金,可扩大色域,提供保护涂层,同时不会降低金的纯度。随着二氧化钛层厚度的增加,双层结构的反射率倾角会出现明显的红移,从而通过二氧化钛绝缘体的调整实现了色彩的多样化。模拟研究证实了实验结果,肯定了在 AuAl2 底层涂覆 TiO2 层可产生多种颜色。这种基于薄膜干涉的方法有望得到广泛应用,为追求金颜色表现多样性的行业提供广泛的结构色谱。
{"title":"Widening the Gamut of Structural Colors of Gold via Insulator–Metal Bilayer Coatings","authors":"Md Abdur Rahman,&nbsp;Simon Wredh,&nbsp;Darya Burak,&nbsp;Joel K. W. Yang,&nbsp;So-Hye Cho,&nbsp;Seung Yong Lee,&nbsp;Sang Hoon Kim,&nbsp;Ji Young Byun","doi":"10.1002/adpr.202300324","DOIUrl":"https://doi.org/10.1002/adpr.202300324","url":null,"abstract":"<p>\u0000Tuning the color of Au has been a longstanding problem in the luxury industry. Conventional approaches, involving Au alloying, compromise purity and demand distinct alloy compositions for each hue. This study demonstrates a lithography-free method for generating structural colors on a gold surface by adjusting the thickness of titanium dioxide, a high-index dielectric. While color tuneability is limited if TiO<sub>2</sub> is coated directly on the Au surface, a range of vivid colors can be generated if a 50−100 nm thick AuAl<sub>2</sub> underlayer is used. AuAl<sub>2</sub>, an accepted alloy for purple gold, broadens the color gamut, providing a protective coating without diminishing gold purity. The reflectance dip of the bilayer structure exhibits a significant red shift with increasing thickness of the TiO<sub>2</sub> layer, allowing diverse colors by TiO<sub>2</sub> insulator tuning. Simulation studies corroborate experimental results, affirming that coating a TiO<sub>2</sub> layer on the AuAl<sub>2</sub> underlayer yields a wide range of colors. This method, based on thin-film interference, shows promise for widespread use, offering a broad spectrum of structural colors in an industry striving for diverse Au color representation.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300324","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upconversion of Infrared Light by Graphitic Microparticles Due to Photoinduced Structural Modification 光诱导结构改性导致石墨微粒对红外光的上转换
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-19 DOI: 10.1002/adpr.202300326
Rohin Sharma, Nishma Bhattarai, Rijan Maharjan, Lilia M. Woods, Nirajan Ojha, Ashim Dhakal

Recent reports of upconversion and white light emission from graphitic particles warrant an explanation of the physics behind the process. A model is offered, wherein the upconversion is facilitated by photoinduced electronic structure modification allowing for multiphoton processes. As per the prediction of the model, it is experimentally shown that graphite upconverts infrared light centered around 1.31 μm (0.95 eV) to broadband white light centered around 0.85 μm (1.46 eV). The results suggest that upconversion from shortwave infrared (≈3 μm, 0.45 eV) to visible region may be possible. The experiments show that the population dynamics of the electronic states involved in this upconversion process occur in the timescale of milliseconds.

最近关于石墨颗粒的上转换和白光发射的报道要求对这一过程背后的物理学原理进行解释。我们提出了一个模型,其中上转换是由光诱导的电子结构改变促成的,从而允许多光子过程。根据该模型的预测,实验表明,石墨可将以 1.31 μm(0.95 eV)为中心的红外光上转换为以 0.85 μm(1.46 eV)为中心的宽带白光。结果表明,从短波红外线(≈3 μm,0.45 eV)上转换到可见光区域是可能的。实验表明,参与这一上转换过程的电子态的种群动态变化的时间尺度为毫秒级。
{"title":"Upconversion of Infrared Light by Graphitic Microparticles Due to Photoinduced Structural Modification","authors":"Rohin Sharma,&nbsp;Nishma Bhattarai,&nbsp;Rijan Maharjan,&nbsp;Lilia M. Woods,&nbsp;Nirajan Ojha,&nbsp;Ashim Dhakal","doi":"10.1002/adpr.202300326","DOIUrl":"https://doi.org/10.1002/adpr.202300326","url":null,"abstract":"<p>Recent reports of upconversion and white light emission from graphitic particles warrant an explanation of the physics behind the process. A model is offered, wherein the upconversion is facilitated by photoinduced electronic structure modification allowing for multiphoton processes. As per the prediction of the model, it is experimentally shown that graphite upconverts infrared light centered around 1.31 μm (0.95 eV) to broadband white light centered around 0.85 μm (1.46 eV). The results suggest that upconversion from shortwave infrared (≈3 μm, 0.45 eV) to visible region may be possible. The experiments show that the population dynamics of the electronic states involved in this upconversion process occur in the timescale of milliseconds.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300326","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Broadband Diffractive Neural Networks Enabling Classification of Visible Wavelengths 可对可见光波长进行分类的宽带衍射神经网络
IF 3.7 Pub Date : 2024-06-12 DOI: 10.1002/adpr.202470016
Ying Zhi Cheong, Litty Thekkekara, Madhu Bhaskaran, Blanca del Rosal, Sharath Sriram

Diffractive Neural Networks

In article number 2300310, Ying Zhi Cheong, Blanca del Rosal, Sharath Sriram, and co-workers propose and demonstrate a microscale multi-layer diffractive neural network approach that classifies various wavelengths in the visible spectrum. This miniaturised classification approach, achieved through two-photon polymerization, has potential application in medical diagnosis to material science, enabling rapid detection of analytes based on the presence of optical extinction bands at specific wavelengths.

衍射神经网络 在编号为 2300310 的文章中,Ying Zhi Cheong、Blanca del Rosal、Sharath Sriram 及其合作者提出并展示了一种微型多层衍射神经网络方法,可对可见光谱中的各种波长进行分类。这种通过双光子聚合实现的微型分类方法可应用于医疗诊断和材料科学领域,根据特定波长的光学消光带的存在情况快速检测分析物。
{"title":"Broadband Diffractive Neural Networks Enabling Classification of Visible Wavelengths","authors":"Ying Zhi Cheong,&nbsp;Litty Thekkekara,&nbsp;Madhu Bhaskaran,&nbsp;Blanca del Rosal,&nbsp;Sharath Sriram","doi":"10.1002/adpr.202470016","DOIUrl":"https://doi.org/10.1002/adpr.202470016","url":null,"abstract":"<p><b>Diffractive Neural Networks</b>\u0000 </p><p>In article number 2300310, Ying Zhi Cheong, Blanca del Rosal, Sharath Sriram, and co-workers propose and demonstrate a microscale multi-layer diffractive neural network approach that classifies various wavelengths in the visible spectrum. This miniaturised classification approach, achieved through two-photon polymerization, has potential application in medical diagnosis to material science, enabling rapid detection of analytes based on the presence of optical extinction bands at specific wavelengths.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202470016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Molecular Engineering for Viologen-Based Electrochromic Materials: A Mini-Review 基于病毒的电致变色材料分子工程的最新进展:微型综述
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-12 DOI: 10.1002/adpr.202400016
Bebin Ambrose, Murugan Krishnan, Kalaivanan Ramamurthy, Murugavel Kathiresan

Viologens, with their unique redox-active properties, have garnered increasing attention in the development of electrochromic devices. This review focuses on key strategies in molecular design, synthesis methodologies, and tailored functionalities that have propelled the field forward from 2019 to the present. The convergence of these approaches has led to the construction of viologen-based electrochromic materials with enhanced performance, stability, and responsiveness. The review not only examines the current state of the field but also explores promising outlooks and opportunities, including tailored applications, environmental sustainability, and integration with emerging technologies. The synergy between molecular engineering and viologen-based electrochromic materials holds significant promise, shaping the future of dynamic, responsive materials in diverse technological domains. This review serves as a valuable resource for researchers, offering insights into recent breakthroughs and inspiring further advancements in this rapidly evolving field.

病毒原具有独特的氧化还原活性特性,在电致变色设备的开发中日益受到关注。本综述重点介绍分子设计、合成方法和定制功能方面的关键策略,这些策略推动了该领域从 2019 年至今的发展。这些方法的汇聚使得基于紫胶的电致变色材料的性能、稳定性和响应性得到了增强。本综述不仅研究了该领域的现状,还探讨了前景广阔的前景和机遇,包括定制应用、环境可持续性以及与新兴技术的整合。分子工程与基于紫胶的电致变色材料之间的协同作用前景广阔,将在不同技术领域塑造动态响应材料的未来。这篇综述为研究人员提供了宝贵的资源,让他们深入了解最近取得的突破,并激励他们在这一快速发展的领域取得更大的进步。
{"title":"Recent Advances in Molecular Engineering for Viologen-Based Electrochromic Materials: A Mini-Review","authors":"Bebin Ambrose,&nbsp;Murugan Krishnan,&nbsp;Kalaivanan Ramamurthy,&nbsp;Murugavel Kathiresan","doi":"10.1002/adpr.202400016","DOIUrl":"10.1002/adpr.202400016","url":null,"abstract":"<p>Viologens, with their unique redox-active properties, have garnered increasing attention in the development of electrochromic devices. This review focuses on key strategies in molecular design, synthesis methodologies, and tailored functionalities that have propelled the field forward from 2019 to the present. The convergence of these approaches has led to the construction of viologen-based electrochromic materials with enhanced performance, stability, and responsiveness. The review not only examines the current state of the field but also explores promising outlooks and opportunities, including tailored applications, environmental sustainability, and integration with emerging technologies. The synergy between molecular engineering and viologen-based electrochromic materials holds significant promise, shaping the future of dynamic, responsive materials in diverse technological domains. This review serves as a valuable resource for researchers, offering insights into recent breakthroughs and inspiring further advancements in this rapidly evolving field.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141352141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress on Coherent Perovskites Emitters: From Light-Emitting Diodes under High Current Density Operation to Laser Diodes 相干 Perovskites 发射器的研究进展:从高电流密度下的发光二极管到激光二极管
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-12 DOI: 10.1002/adpr.202400033
Gayoung Lee, Yejin Jun, Hyeonji Lee, Kwangdong Roh

Perovskites exhibit appealing optical and electrical properties, making them attractive candidates for efficient luminescent materials with low-cost and straightforward fabrication processes. Their versatility is highlighted by the ability to deposit perovskite thin films on various substrates, including silicon, glass, sapphire, and flexible substrates, enabling potential monolithic integration on silicon for applications such as photonic integrated circuits, high-speed communication. Extensive studies on perovskite light-emitting diodes have shown external quantum efficiencies exceeding 20% across a wide spectral range from deep blue to near-infrared, with chirality. Additionally, perovskite-based lasing action has been achieved under pulsed optical excitation and continuous-wave operation, as well as in functional diode structures. However, realizing electrically driven perovskite laser diodes for practical applications requires the injection of intense current densities. This review provides a comprehensive overview of the historical progress in perovskite lasers and light-emitting didoes, along with important design considerations essential for their development.

过氧化物具有诱人的光学和电学特性,使其成为具有低成本和直接制造工艺的高效发光材料的理想候选材料。它们的多功能性突出表现在能够在各种基底(包括硅、玻璃、蓝宝石和柔性基底)上沉积包晶体薄膜,从而有可能在硅上实现单片集成,用于光子集成电路和高速通信等应用。对包晶石发光二极管的广泛研究表明,在从深蓝到近红外的宽光谱范围内,其外部量子效率超过 20%,并具有手性。此外,在脉冲光激发、连续波操作以及功能二极管结构中,都实现了基于磷灰石的激光作用。然而,要在实际应用中实现电驱动包晶体激光二极管,需要注入高密度的电流。本综述全面概述了包晶体激光器和发光二极管的历史进程,以及对其发展至关重要的重要设计考虑因素。
{"title":"Progress on Coherent Perovskites Emitters: From Light-Emitting Diodes under High Current Density Operation to Laser Diodes","authors":"Gayoung Lee,&nbsp;Yejin Jun,&nbsp;Hyeonji Lee,&nbsp;Kwangdong Roh","doi":"10.1002/adpr.202400033","DOIUrl":"10.1002/adpr.202400033","url":null,"abstract":"<p>Perovskites exhibit appealing optical and electrical properties, making them attractive candidates for efficient luminescent materials with low-cost and straightforward fabrication processes. Their versatility is highlighted by the ability to deposit perovskite thin films on various substrates, including silicon, glass, sapphire, and flexible substrates, enabling potential monolithic integration on silicon for applications such as photonic integrated circuits, high-speed communication. Extensive studies on perovskite light-emitting diodes have shown external quantum efficiencies exceeding 20% across a wide spectral range from deep blue to near-infrared, with chirality. Additionally, perovskite-based lasing action has been achieved under pulsed optical excitation and continuous-wave operation, as well as in functional diode structures. However, realizing electrically driven perovskite laser diodes for practical applications requires the injection of intense current densities. This review provides a comprehensive overview of the historical progress in perovskite lasers and light-emitting didoes, along with important design considerations essential for their development.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141353685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pressure-Induced Successive Phase Transitions and Optical Properties in Lu2SiO5 Lu2SiO5 中压力诱导的连续相变和光学特性
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-02 DOI: 10.1002/adpr.202300319
Wenming Qi, Anwar Hushur, Lin He, Rabigul Tursun, Min Gao

Herein, lutecium silicate is used as a rock example to investigate its two high-pressure phases (7.4 GPa: HP-II and 25.3 GPa: HP-III) and lattice dynamics by in situ high-pressure Raman scattering up to 35.1 GPa. The evidence for a highly symmetrical insulator HP-III phase is obtained. Importantly, the high-pressure structure (metastable phases) after pressure quenching is also intercepted, indicating pressure-induced permanent densification. These findings provide Raman evidence for pressure-induced successive phase transitions of highly symmetric insulators intercepted in prototype Lu2SiO5 and physical insights to explain the self-regulation of rare earth-rich regions in facilitating highly effective global carbon cycling.

本文以硅酸镥岩为例,通过高达 35.1 GPa 的原位高压拉曼散射研究其两种高压相(7.4 GPa:HP-II 和 25.3 GPa:HP-III)和晶格动力学。结果证明存在高度对称的绝缘体 HP-III 相。重要的是,还截获了压力淬火后的高压结构(可转移相),表明了压力诱导的永久致密化。这些发现为在原型 Lu2SiO5 中截取高度对称绝缘体的压力诱导连续相变提供了拉曼证据,并为解释富稀土区域在促进高效全球碳循环方面的自我调节提供了物理见解。
{"title":"Pressure-Induced Successive Phase Transitions and Optical Properties in Lu2SiO5","authors":"Wenming Qi,&nbsp;Anwar Hushur,&nbsp;Lin He,&nbsp;Rabigul Tursun,&nbsp;Min Gao","doi":"10.1002/adpr.202300319","DOIUrl":"10.1002/adpr.202300319","url":null,"abstract":"<p>Herein, lutecium silicate is used as a rock example to investigate its two high-pressure phases (7.4 GPa: HP-II and 25.3 GPa: HP-III) and lattice dynamics by in situ high-pressure Raman scattering up to 35.1 GPa. The evidence for a highly symmetrical insulator HP-III phase is obtained. Importantly, the high-pressure structure (metastable phases) after pressure quenching is also intercepted, indicating pressure-induced permanent densification. These findings provide Raman evidence for pressure-induced successive phase transitions of highly symmetric insulators intercepted in prototype Lu<sub>2</sub>SiO<sub>5</sub> and physical insights to explain the self-regulation of rare earth-rich regions in facilitating highly effective global carbon cycling.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300319","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141272944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast Terahertz Superconductor Van der Waals Metamaterial Photonic Switch 超快太赫兹超导体范德华超材料光子开关
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-02 DOI: 10.1002/adpr.202400045
Kaveh Delfanazari

The high-temperature layered superconductor (HTS) BSCCO is one of the key quantum material platforms in THz science and technology. Compact, stable, and reliable BSCCO THz photonic integrated circuit components can be developed to effectively and efficiently control and manipulate THz wave radiation, especially for future communication systems and network applications. Herein, the design, simulation, and modeling of ultrafast THz metamaterial photonic integrated circuits are reported on a few nanometer-thick HTS BSCCO van der Waals (vdWs), capable of the active modulation of phase with constant transmission coefficient over a narrow-frequency range. Meanwhile, the metamaterial circuit works as an amplitude modulator without significantly changing the phase in a different frequency band. Under the application of ultrashort optical pulses, the transient modulation dynamics of the THz metamaterial offer a fast-switching timescale of 50 ps. The dynamics of picosecond light–matter interaction, Cooper pairs breaking, photoinduced quasiparticles generation and recombination, phonon bottleneck effect, and emission and relaxation of bosons in BSCCO vdW metamaterial arrays are discussed for the potential application of multifunctional superconducting photonic integrated circuits in communication and quantum technologies.

高温层状超导体(HTS)BSCCO 是太赫兹科学与技术领域的关键量子材料平台之一。开发紧凑、稳定、可靠的 BSCCO 太赫兹光子集成电路元件,可有效控制和操纵太赫兹波辐射,尤其适用于未来的通信系统和网络应用。本文报告了超快太赫兹超材料光子集成电路的设计、仿真和建模,该集成电路基于几纳米厚的 HTS BSCCO 范德华(vdWs),能够在窄频率范围内以恒定的传输系数主动调制相位。同时,超材料电路可作为振幅调制器工作,而不会在不同频段显著改变相位。在超短光脉冲的作用下,太赫兹超材料的瞬态调制动力学具有 50 ps 的快速切换时间尺度。本文讨论了 BSCCO vdW 超材料阵列中皮秒光物质相互作用、库珀对断裂、光诱导的准粒子产生和重组、声子瓶颈效应以及玻色子的发射和弛豫等动力学问题,以探讨多功能超导光子集成电路在通信和量子技术中的潜在应用。
{"title":"Ultrafast Terahertz Superconductor Van der Waals Metamaterial Photonic Switch","authors":"Kaveh Delfanazari","doi":"10.1002/adpr.202400045","DOIUrl":"https://doi.org/10.1002/adpr.202400045","url":null,"abstract":"<p>The high-temperature layered superconductor (HTS) BSCCO is one of the key quantum material platforms in THz science and technology. Compact, stable, and reliable BSCCO THz photonic integrated circuit components can be developed to effectively and efficiently control and manipulate THz wave radiation, especially for future communication systems and network applications. Herein, the design, simulation, and modeling of ultrafast THz metamaterial photonic integrated circuits are reported on a few nanometer-thick HTS BSCCO van der Waals (vdWs), capable of the active modulation of phase with constant transmission coefficient over a narrow-frequency range. Meanwhile, the metamaterial circuit works as an amplitude modulator without significantly changing the phase in a different frequency band. Under the application of ultrashort optical pulses, the transient modulation dynamics of the THz metamaterial offer a fast-switching timescale of 50 ps. The dynamics of picosecond light–matter interaction, Cooper pairs breaking, photoinduced quasiparticles generation and recombination, phonon bottleneck effect, and emission and relaxation of bosons in BSCCO vdW metamaterial arrays are discussed for the potential application of multifunctional superconducting photonic integrated circuits in communication and quantum technologies.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vortex-Beam Multiplexing Emitter Using Advanced Manufactured Leaky Cables 使用先进制造泄漏电缆的涡束复用发射器
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-26 DOI: 10.1002/adpr.202400001
Feiyang Deng, Kwai-Man Luk, Wenjian Sun, Ka Fai Chan

Although orbital angular momentum (OAM) is extensively explored and researched in various scientific domains, its practical application in wireless communications still faces numerous challenges. Notably, existing OAM beam generation technologies need to meet the diversified demands of modern wireless communication, such as miniaturization, cost-effectiveness, and system integration. Driven by the immense potential of OAM in communication systems, in this work, an innovative method based on leaky cables capable of simultaneously generating multiple vortex beams, overcoming a series of implementation issues associated with multiplexing emitters, is introduced. A design prototype is fabricated and tested, and the measurement results align closely with the simulations, validating the multifunctionality and practicality of the method. Moreover, the proposed strategy can seamlessly extend to optical frequencies using the concept of leaky fibers. In this method, not only efficient spatial utilization and excellent isolation are realized but also high cost-effectiveness is possessed. Compared to previous strategies, this technique may have an impact on simplifying the establishment of communication system platforms based on OAM multiplexing.

虽然轨道角动量(OAM)在各个科学领域都得到了广泛的探索和研究,但其在无线通信领域的实际应用仍面临诸多挑战。值得注意的是,现有的轨道角动量波束生成技术需要满足现代无线通信的多样化需求,如微型化、成本效益和系统集成。鉴于 OAM 在通信系统中的巨大潜力,本文介绍了一种基于泄漏电缆的创新方法,该方法能够同时产生多个涡旋波束,克服了与多路发射器相关的一系列实施问题。我们制作并测试了设计原型,测量结果与模拟结果非常吻合,验证了该方法的多功能性和实用性。此外,利用泄漏光纤的概念,所提出的策略可以无缝扩展到光学频率。在这种方法中,不仅实现了高效的空间利用和出色的隔离,还具有很高的成本效益。与之前的策略相比,该技术可能会对简化基于 OAM 复用的通信系统平台的建立产生影响。
{"title":"Vortex-Beam Multiplexing Emitter Using Advanced Manufactured Leaky Cables","authors":"Feiyang Deng,&nbsp;Kwai-Man Luk,&nbsp;Wenjian Sun,&nbsp;Ka Fai Chan","doi":"10.1002/adpr.202400001","DOIUrl":"https://doi.org/10.1002/adpr.202400001","url":null,"abstract":"<p>Although orbital angular momentum (OAM) is extensively explored and researched in various scientific domains, its practical application in wireless communications still faces numerous challenges. Notably, existing OAM beam generation technologies need to meet the diversified demands of modern wireless communication, such as miniaturization, cost-effectiveness, and system integration. Driven by the immense potential of OAM in communication systems, in this work, an innovative method based on leaky cables capable of simultaneously generating multiple vortex beams, overcoming a series of implementation issues associated with multiplexing emitters, is introduced. A design prototype is fabricated and tested, and the measurement results align closely with the simulations, validating the multifunctionality and practicality of the method. Moreover, the proposed strategy can seamlessly extend to optical frequencies using the concept of leaky fibers. In this method, not only efficient spatial utilization and excellent isolation are realized but also high cost-effectiveness is possessed. Compared to previous strategies, this technique may have an impact on simplifying the establishment of communication system platforms based on OAM multiplexing.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All-Bands-Flat Floquet Topological Photonic Insulators with Microring Lattices 具有微oring 晶格的全带平面浮凸拓扑光子绝缘体
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-26 DOI: 10.1002/adpr.202400023
Hanfa Song, Vien Van

Coupled microring lattices are versatile photonic systems that can be used to realize various topological phases of matter. In two-dimensional (2D) microring lattices, the periodic and unidirectional circulation of light in each microring gives rise to a time-like dimension, so that the lattice emulates a (2 + 1)D system with much richer topological behaviors than static 2D lattices. Accurate treatment of these systems requires a departure from the static tight-binding model of coupled resonators and take into account the periodic coupling sequence of light in the lattice network. This article provides an overview of the theory and design of (2 + 1)D microring lattices for realizing Floquet topological photonic insulators (TPIs). Particular focus is placed on the microring Lieb lattice with perfect couplings, which emulates an anomalous Floquet insulator with all flat bands. Such a system exhibits some unique properties, including wide edge mode continuum exceeding a Floquet–Brillouin zone, super-robustness to lattice disorder, Aharonov–Bohm (AB) caging and compact localized flat-band states that can be used to realize high-quality factor topological resonators. All-bands-flat Floquet–Lieb microring lattices provide a versatile platform for investigating topological physics as well as potential applications in realizing topologically-protected photonic devices.

耦合微晶格是一种多功能光子系统,可用于实现物质的各种拓扑相。在二维(2D)微晶格中,光在每个微晶格中的周期性单向循环产生了类时间维度,因此晶格模拟了一个(2 + 1)D 系统,其拓扑行为比静态的 2D 晶格丰富得多。要准确处理这些系统,就必须摆脱耦合谐振器的静态紧束模型,并考虑到晶格网络中光的周期性耦合序列。本文概述了用于实现 Floquet 拓扑光子绝缘体 (TPI) 的 (2 + 1)D 微菱晶格的理论和设计。文章特别强调了具有完美耦合的微oring Lieb 晶格,它模拟了具有所有平带的反常 Floquet 绝缘体。这种系统表现出一些独特的特性,包括超过弗洛克-布里渊区的宽边缘模式连续性、对晶格无序的超稳健性、阿哈诺夫-玻姆(AB)笼和紧凑的局部平带态,可用于实现高质量因子拓扑谐振器。全带扁平 Floquet-Lieb 微oring 晶格为研究拓扑物理以及实现拓扑保护光子器件的潜在应用提供了一个多功能平台。
{"title":"All-Bands-Flat Floquet Topological Photonic Insulators with Microring Lattices","authors":"Hanfa Song,&nbsp;Vien Van","doi":"10.1002/adpr.202400023","DOIUrl":"https://doi.org/10.1002/adpr.202400023","url":null,"abstract":"<p>\u0000Coupled microring lattices are versatile photonic systems that can be used to realize various topological phases of matter. In two-dimensional (2D) microring lattices, the periodic and unidirectional circulation of light in each microring gives rise to a time-like dimension, so that the lattice emulates a (2 + 1)D system with much richer topological behaviors than static 2D lattices. Accurate treatment of these systems requires a departure from the static tight-binding model of coupled resonators and take into account the periodic coupling sequence of light in the lattice network. This article provides an overview of the theory and design of (2 + 1)D microring lattices for realizing Floquet topological photonic insulators (TPIs). Particular focus is placed on the microring Lieb lattice with perfect couplings, which emulates an anomalous Floquet insulator with all flat bands. Such a system exhibits some unique properties, including wide edge mode continuum exceeding a Floquet–Brillouin zone, super-robustness to lattice disorder, Aharonov–Bohm (AB) caging and compact localized flat-band states that can be used to realize high-quality factor topological resonators. All-bands-flat Floquet–Lieb microring lattices provide a versatile platform for investigating topological physics as well as potential applications in realizing topologically-protected photonic devices.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Photonics Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1