Colloidal quantum dots (CQDs) are nanocrystals synthesized in solution, boasting remarkable optical properties and notable electronic characteristics, such as size-tunable bandgaps and high photoluminescence quantum yield. These features, coupled with solution processability, position CQDs as potential candidates for cost-effective and high-performance optoelectronic devices. However, several technological challenges hinder the full exploitation of CQDs in optoelectronics. Among these is the need for long insulating organic ligands in liquid-phase synthesis, which restrict efficient charge injection and transport in quantum dot (QD) films. Furthermore, the high surface-to-volume ratios and core–shell structures prompt complexities in terms of doping and modifying electronic properties. The colloidal nature of quantum dots (QDs) also raises challenges regarding controlled deposition and patterning, which are critical for device fabrication. In this review, the imperative is outlined to tailor CQDs for optoelectronic applications, the limitations that obstruct the implementation of desired modifications are elaborated on, and the specific hurdles confronting electronic coupling, targeted doping, and precision patterning of CQDs are focused on. Additionally, herein, a summary of the solutions proposed to date is offered, insights are shared on the discussed topics, and areas warranting future investigation are highlighted.
{"title":"Tailoring Electronic Properties of Colloidal Quantum Dots for Efficient Optoelectronics","authors":"Tanveer Ahmed, Hao-Chung Kuo, Der-Hsien Lien","doi":"10.1002/adpr.202300216","DOIUrl":"10.1002/adpr.202300216","url":null,"abstract":"<p>Colloidal quantum dots (CQDs) are nanocrystals synthesized in solution, boasting remarkable optical properties and notable electronic characteristics, such as size-tunable bandgaps and high photoluminescence quantum yield. These features, coupled with solution processability, position CQDs as potential candidates for cost-effective and high-performance optoelectronic devices. However, several technological challenges hinder the full exploitation of CQDs in optoelectronics. Among these is the need for long insulating organic ligands in liquid-phase synthesis, which restrict efficient charge injection and transport in quantum dot (QD) films. Furthermore, the high surface-to-volume ratios and core–shell structures prompt complexities in terms of doping and modifying electronic properties. The colloidal nature of quantum dots (QDs) also raises challenges regarding controlled deposition and patterning, which are critical for device fabrication. In this review, the imperative is outlined to tailor CQDs for optoelectronic applications, the limitations that obstruct the implementation of desired modifications are elaborated on, and the specific hurdles confronting electronic coupling, targeted doping, and precision patterning of CQDs are focused on. Additionally, herein, a summary of the solutions proposed to date is offered, insights are shared on the discussed topics, and areas warranting future investigation are highlighted.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300216","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139443734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuhe Zhang, Han Ye, Lei Chen, Jing Li, Yumin Liu, Zhihui Chen
High-dimensional multiplexing technology is of importance in the on-chip photonic interconnections and challenging to design within ultracompact footprint. Herein, high-dimensional demultiplexers are proposed and demonstrated to enable wavelength-division and mode-division simultaneously. The functional regions of digital metamaterials are obtained by inverse design individually and are cascaded to work as high-dimensional demultiplexers. The gradient-based inverse design is carried out with an efficient method combining finite-element method, density method, and method of moving asymptotes. The performances are simulated by 3D finite difference time domain with silicon-on-insulator configuration. The proposed demultiplexer with four-channel has ultracompact footprint of 4.1 × 3.65 μm2. Its average transmission efficiency is 38.7% and contrast ratios are higher than 13.0 dB. Besides, the proposed demultiplexer with six-channel has a footprint of 4.55 × 5.55 μm2. Its average transmission efficiency is 24.3% and contrast ratios are higher than 11.8 dB.
{"title":"Integrated Hybrid Mode-Wavelength Demultiplexers Based on Cascaded Digital Metamaterials","authors":"Shuhe Zhang, Han Ye, Lei Chen, Jing Li, Yumin Liu, Zhihui Chen","doi":"10.1002/adpr.202300264","DOIUrl":"10.1002/adpr.202300264","url":null,"abstract":"<p>High-dimensional multiplexing technology is of importance in the on-chip photonic interconnections and challenging to design within ultracompact footprint. Herein, high-dimensional demultiplexers are proposed and demonstrated to enable wavelength-division and mode-division simultaneously. The functional regions of digital metamaterials are obtained by inverse design individually and are cascaded to work as high-dimensional demultiplexers. The gradient-based inverse design is carried out with an efficient method combining finite-element method, density method, and method of moving asymptotes. The performances are simulated by 3D finite difference time domain with silicon-on-insulator configuration. The proposed demultiplexer with four-channel has ultracompact footprint of 4.1 × 3.65 μm<sup>2</sup>. Its average transmission efficiency is 38.7% and contrast ratios are higher than 13.0 dB. Besides, the proposed demultiplexer with six-channel has a footprint of 4.55 × 5.55 μm<sup>2</sup>. Its average transmission efficiency is 24.3% and contrast ratios are higher than 11.8 dB.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300264","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139442178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Strain engineering is one of the leading mechanical ways to tune the optical properties of monolayer transition metal dichalcogenides among different techniques. Here, uniaxial strain is applied on exfoliated 1L-WSe2 flakes transferred on flexible polycarbonate substrates to study the strain tuning of upconversion photoluminescence. It is demonstrated that the peak position of upconversion photoluminescence is redshifted by around 20 nm as the applied uniaxial strain increases from 0% to 1.17%, while the intensity of upconversion photoluminescence increases exponentially for the upconversion energy difference ranging from −155 to −32 meV. The linear and sublinear power dependence of upconversion photoluminescence is observed for different excitation wavelengths with and without uniaxial strain, suggesting the multiphonon-assisted mechanism in one-photon regime for the upconversion process. These results offer the potential to advance 2D material-based optical upconversion applications in night vision, strain-tunable infrared detection, and flexible optoelectronics.
{"title":"Uniaxial Strain Tuning of Upconversion Photoluminescence in Monolayer WSe2","authors":"Shrawan Roy, Xiaodong Yang, Jie Gao","doi":"10.1002/adpr.202300220","DOIUrl":"10.1002/adpr.202300220","url":null,"abstract":"<p>Strain engineering is one of the leading mechanical ways to tune the optical properties of monolayer transition metal dichalcogenides among different techniques. Here, uniaxial strain is applied on exfoliated 1L-WSe<sub>2</sub> flakes transferred on flexible polycarbonate substrates to study the strain tuning of upconversion photoluminescence. It is demonstrated that the peak position of upconversion photoluminescence is redshifted by around 20 nm as the applied uniaxial strain increases from 0% to 1.17%, while the intensity of upconversion photoluminescence increases exponentially for the upconversion energy difference ranging from −155 to −32 meV. The linear and sublinear power dependence of upconversion photoluminescence is observed for different excitation wavelengths with and without uniaxial strain, suggesting the multiphonon-assisted mechanism in one-photon regime for the upconversion process. These results offer the potential to advance 2D material-based optical upconversion applications in night vision, strain-tunable infrared detection, and flexible optoelectronics.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300220","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139441892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Herein, the optical properties of the azimuthally radially polarized beam (ARPB), a superposition of an azimuthally polarized beam and a radially polarized beam, which can be tuned to exhibit maximum chirality at a given energy density, are investigated. This condition is called “optimal chiral light” since it represents the maximum possible local chirality at a given energy density. The transverse fields of an ARPB dominate in the transverse plane but vanish on the beam axis, where the magnetic and electric fields are purely longitudinal, leading to an optical chirality density and an energy density that stem solely from the longitudinal field components on the beam axis, where the linear and angular momentum densities vanish. The ARPB does not have a phase variation around the beam axis and nonetheless exhibits a power flow around the beam axis that causes a longitudinal orbital angular momentum density. Herein, a concise notation for the ARPB is introduced and field quantities are provided, especially for the optimally chiral configuration. The ARPB shows promise for precise 1D chirality probing and enantioseparation of chiral particles along the beam axis, relying solely on its longitudinal electric and magnetic fields. Herein, a setup is provided to generate ARPBs with controlled chirality and orbital angular momentum.
{"title":"The Combination of the Azimuthally and Radially Polarized Beams: Helicity and Momentum Densities, Generation, and Optimal Chiral Light","authors":"Albert Herrero-Parareda, Filippo Capolino","doi":"10.1002/adpr.202300265","DOIUrl":"10.1002/adpr.202300265","url":null,"abstract":"<p>Herein, the optical properties of the azimuthally radially polarized beam (ARPB), a superposition of an azimuthally polarized beam and a radially polarized beam, which can be tuned to exhibit maximum chirality at a given energy density, are investigated. This condition is called “optimal chiral light” since it represents the maximum possible local chirality at a given energy density. The transverse fields of an ARPB dominate in the transverse plane but vanish on the beam axis, where the magnetic and electric fields are purely longitudinal, leading to an optical chirality density and an energy density that stem solely from the longitudinal field components on the beam axis, where the linear and angular momentum densities vanish. The ARPB does not have a phase variation around the beam axis and nonetheless exhibits a power flow around the beam axis that causes a longitudinal orbital angular momentum density. Herein, a concise notation for the ARPB is introduced and field quantities are provided, especially for the optimally chiral configuration. The ARPB shows promise for precise 1D chirality probing and enantioseparation of chiral particles along the beam axis, relying solely on its longitudinal electric and magnetic fields. Herein, a setup is provided to generate ARPBs with controlled chirality and orbital angular momentum.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300265","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139446564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karsten Hinrichs, Naveen Shetty, Sergey Kubatkin, Per Malmberg, Samuel Lara-Avila, Andreas Furchner, Jörg Rappich
Field manipulations of bands in the infrared spectra of thin films are studied by Karsten Hinrichs and co-workers (see article number 2300212). This work demonstrates the necessity of optical analyses for gaining a detailed understanding of band properties and their relation to the materials dielectric functions, the measurement geometry, the thickness, structure and morphology of the film as well as the polarization of the probing electromagnetic fields.