首页 > 最新文献

Advanced Photonics Research最新文献

英文 中文
Advancements and Challenges of Vacuum-Processed Organic Photodiodes: A Comprehensive Review
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-02 DOI: 10.1002/adpr.202400094
Chan So, Won Jun Pyo, Dae Sung Chung

Organic photodiodes (OPDs) have made remarkable strides and now poised to surpass traditional silicon photodiodes (PDs) in various aspects including linear dynamic range (LDR), detectivity, wavelength selectivity, and versatility.[1] Tunable mechanical and optoelectronic properties of organic semiconductors, coupled with lower process costs, have propelled OPDs into the spotlight across fields such as wearable light fidelity systems, flexible image sensors, and biomedical imaging.[2–5] While most advanced organic imaging systems to date rely on polymer-based solution processes, challenges such as the use of toxic organic solvents and reproducibility issues hinder their commercialization.[6,7] Vacuum-processed OPDs offer a promising alternative, boasting eco-friendliness and compatibility with large-scale fabrication facilities.[8,9] In this review, recent advancements and challenges in vacuum-processed OPDs, an area that has received less attention compared to solution-processed counterparts, are explored. Herein, four primary pathways for development of vacuum-processed OPDs are outlined: 1) ultraviolet-selective OPDs, 2) visible-light-selective OPDs, 3) near-infrared or short-wave-infrared-sensitive OPDs, and 4) addressing challenges such as higher noise currents compared to inorganic PDs. In this review, it is aimed to furnish readers with a comprehensive understanding of vacuum-processed OPDs, spanning from materials design to device engineering.

{"title":"Advancements and Challenges of Vacuum-Processed Organic Photodiodes: A Comprehensive Review","authors":"Chan So,&nbsp;Won Jun Pyo,&nbsp;Dae Sung Chung","doi":"10.1002/adpr.202400094","DOIUrl":"https://doi.org/10.1002/adpr.202400094","url":null,"abstract":"<p>Organic photodiodes (OPDs) have made remarkable strides and now poised to surpass traditional silicon photodiodes (PDs) in various aspects including linear dynamic range (LDR), detectivity, wavelength selectivity, and versatility.<sup>[</sup><sup>1</sup><sup>]</sup> Tunable mechanical and optoelectronic properties of organic semiconductors, coupled with lower process costs, have propelled OPDs into the spotlight across fields such as wearable light fidelity systems, flexible image sensors, and biomedical imaging.<sup>[</sup><sup>2–5</sup><sup>]</sup> While most advanced organic imaging systems to date rely on polymer-based solution processes, challenges such as the use of toxic organic solvents and reproducibility issues hinder their commercialization.<sup>[</sup><sup>6,7</sup><sup>]</sup> Vacuum-processed OPDs offer a promising alternative, boasting eco-friendliness and compatibility with large-scale fabrication facilities.<sup>[</sup><sup>8,9</sup><sup>]</sup> In this review, recent advancements and challenges in vacuum-processed OPDs, an area that has received less attention compared to solution-processed counterparts, are explored. Herein, four primary pathways for development of vacuum-processed OPDs are outlined: 1) ultraviolet-selective OPDs, 2) visible-light-selective OPDs, 3) near-infrared or short-wave-infrared-sensitive OPDs, and 4) addressing challenges such as higher noise currents compared to inorganic PDs. In this review, it is aimed to furnish readers with a comprehensive understanding of vacuum-processed OPDs, spanning from materials design to device engineering.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 2","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400094","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143186383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formation Mechanisms and Fluorescence Properties of Carbon Dots in Coal Burning Dust from Coal-Fired Power Plants 燃煤电厂燃煤粉尘中碳点的形成机理和荧光特性
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-02 DOI: 10.1002/adpr.202400010
Zhexian Zhao, Weizuo Zhang, Jin Zhang, Yuzhao Li, Han Bai, Fangming Zhao, Zhongcai Jin, Ju Tang, Yiming Xiao, Wen Xu, Yanfei Lü

Carbon dots (CDs) show great application potential with their unique and excellent performances. Coal and its derivatives are rich in aromatic ring structure, which is suitable for preparing CDs in microstructure. Coal-burning dust from coal-fired power plants can be utilized as a rich resource to separate and extract CDs. It is shown in the results that there are two main possible mechanisms for the formation of CDs in coal-burning dust. One is the self-assembly of polycyclic aromatic hydrocarbons contained in coal or produced by incomplete combustion of coal. The other mechanism is that the bridge bonds linking different aromatic structures in coal break, which will form CDs with different functional groups when the coals burn at high temperature. Under violet light excitation at 310–340 nm or red light at 610–640 nm, CDs extracted from coal-burning dust can emit purple fluorescence around 410 nm. The mechanism of up-conversion fluorescence emission of CDs is due to a two-photon absorption process. The recycling of CDs from coal-burning dust from coal-fired power plants are not only good to protect environment but will also be helpful for mass production of CDs.

碳点(CD)以其独特而优异的性能显示出巨大的应用潜力。煤及其衍生物富含芳香环结构,适合制备微结构的碳点。燃煤电厂的燃煤粉尘是分离和提取 CD 的丰富资源。研究结果表明,燃煤粉尘中 CD 的形成可能有两种主要机制。一种是煤中含有的或煤不完全燃烧产生的多环芳烃的自组装。另一种机制是煤炭中连接不同芳香结构的桥键断裂,在高温燃烧时会形成具有不同官能团的 CD。在波长为 310-340 纳米的紫光或波长为 610-640 纳米的红光激发下,从燃煤粉尘中提取的 CD 可在波长为 410 纳米左右发出紫色荧光。CD 上转换荧光发射的机理是双光子吸收过程。从燃煤电厂的燃煤粉尘中回收 CD 不仅有利于保护环境,还有助于大规模生产 CD。
{"title":"Formation Mechanisms and Fluorescence Properties of Carbon Dots in Coal Burning Dust from Coal-Fired Power Plants","authors":"Zhexian Zhao,&nbsp;Weizuo Zhang,&nbsp;Jin Zhang,&nbsp;Yuzhao Li,&nbsp;Han Bai,&nbsp;Fangming Zhao,&nbsp;Zhongcai Jin,&nbsp;Ju Tang,&nbsp;Yiming Xiao,&nbsp;Wen Xu,&nbsp;Yanfei Lü","doi":"10.1002/adpr.202400010","DOIUrl":"https://doi.org/10.1002/adpr.202400010","url":null,"abstract":"<p>Carbon dots (CDs) show great application potential with their unique and excellent performances. Coal and its derivatives are rich in aromatic ring structure, which is suitable for preparing CDs in microstructure. Coal-burning dust from coal-fired power plants can be utilized as a rich resource to separate and extract CDs. It is shown in the results that there are two main possible mechanisms for the formation of CDs in coal-burning dust. One is the self-assembly of polycyclic aromatic hydrocarbons contained in coal or produced by incomplete combustion of coal. The other mechanism is that the bridge bonds linking different aromatic structures in coal break, which will form CDs with different functional groups when the coals burn at high temperature. Under violet light excitation at 310–340 nm or red light at 610–640 nm, CDs extracted from coal-burning dust can emit purple fluorescence around 410 nm. The mechanism of up-conversion fluorescence emission of CDs is due to a two-photon absorption process. The recycling of CDs from coal-burning dust from coal-fired power plants are not only good to protect environment but will also be helpful for mass production of CDs.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 10","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation-Training-Based Deep Learning Approach to Microscopic Ghost Imaging 基于模拟训练的微观鬼影成像深度学习方法
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-18 DOI: 10.1002/adpr.202400052
Binyu Li, Yueshu Feng, Cheng Zhou, Siyi Hu, Chunwa Jiang, Feng Yang, Lijun Song, Xue Hou

Herein, deep learning-ghost imaging (DLGI) based on a digital micromirror device is realized to avoid the difficulties of a charge-coupled device (CCD) scientific camera being unable to obtain the sample images in extremely weak illumination conditions and to solve the problem of the inverse relationship between imaging quality and imaging time in practical applications. Deep learning for computational ghost imaging typically requires the collection of a large set of labeled experimental data to train a neural network. Herein, we demonstrate that a practically usable neural network can be prepared based on the simulation results. The acquisition results of the CCD scientific camera and the simulation results with low sampling are used as the training set (1000 observations) and we can complete the data acquisition process within one hour. The results show that the proposed DLGI method can be used to significantly improve the quality of the reconstructed images when the sampling rate is 60%. This method also reduces the imaging time and the memory usage, while simultaneously improving the imaging quality. The imaging results of the proposed DLGI method have great significance for application in clinical diagnosis.

为了避免电荷耦合器件(CCD)科学相机在极弱光照条件下无法获得样品图像的困难,解决实际应用中成像质量与成像时间呈反比关系的问题,实现了基于数字微镜器件的深度学习-幽灵成像(DLGI)。用于计算鬼影成像的深度学习通常需要收集大量标记实验数据来训练神经网络。在此,我们证明了基于仿真结果可以制备出实际可用的神经网络。采用CCD科学相机采集结果和低采样模拟结果作为训练集(1000个观测值),在1小时内完成数据采集过程。结果表明,当采样率为60%时,所提出的DLGI方法可以显著提高重构图像的质量。该方法还减少了成像时间和内存的使用,同时提高了成像质量。该方法的成像结果对临床诊断具有重要意义。
{"title":"Simulation-Training-Based Deep Learning Approach to Microscopic Ghost Imaging","authors":"Binyu Li,&nbsp;Yueshu Feng,&nbsp;Cheng Zhou,&nbsp;Siyi Hu,&nbsp;Chunwa Jiang,&nbsp;Feng Yang,&nbsp;Lijun Song,&nbsp;Xue Hou","doi":"10.1002/adpr.202400052","DOIUrl":"https://doi.org/10.1002/adpr.202400052","url":null,"abstract":"<p>Herein, deep learning-ghost imaging (DLGI) based on a digital micromirror device is realized to avoid the difficulties of a charge-coupled device (CCD) scientific camera being unable to obtain the sample images in extremely weak illumination conditions and to solve the problem of the inverse relationship between imaging quality and imaging time in practical applications. Deep learning for computational ghost imaging typically requires the collection of a large set of labeled experimental data to train a neural network. Herein, we demonstrate that a practically usable neural network can be prepared based on the simulation results. The acquisition results of the CCD scientific camera and the simulation results with low sampling are used as the training set (1000 observations) and we can complete the data acquisition process within one hour. The results show that the proposed DLGI method can be used to significantly improve the quality of the reconstructed images when the sampling rate is 60%. This method also reduces the imaging time and the memory usage, while simultaneously improving the imaging quality. The imaging results of the proposed DLGI method have great significance for application in clinical diagnosis.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 12","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Electrochromic Devices: From Multicolor to Flexible Applications
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-18 DOI: 10.1002/adpr.202400103
Hyun Mok Cho, Yong Jin Hwang, Hyo Seok Oh, Hyeon Seong Hwang, Kitae Kim, Se-Um Kim, Jun-Hee Na

With increasing demand for energy saving and environmental sustainability, electrochromic devices (ECDs) are considered as emerging display devices with low energy consumption. While various reflective-type displays produce images with low energy, achieving full color displays often involves much device complexity and nonflexibility. Multicolor ECDs aim to realize full color reflective-type displays, surpassing the current monochromic type or limited coloration capabilities in a 1D color space. Enhancing device flexibility is also highly desirable for use of ECDs in wearable and flexible electronics for health monitoring and advanced textiles with easy visualization. In this review, recent advances in multicolor and flexible ECDs are examined. Several primary strategies to achieve multicolor ECD are described, including material modifications, color overlay, and dye-mediated colorations. In addition, recent developments in flexible ECDs are explored, emphasizing novel materials and fabrication processes that improve mechanical durability and reliability under deformation. It is expected that this review will provide a comprehensive understanding of multicolor and flexible ECDs for applications in smart windows, displays, and wearable electronics.

随着人们对节能和环境可持续性的要求越来越高,电致变色器件(ECD)被认为是新兴的低能耗显示设备。虽然各种反射型显示器能以低能耗生成图像,但要实现全彩显示,往往需要大量复杂且不灵活的设备。多色 ECD 的目标是实现全彩反射型显示器,超越目前的单色型或一维色彩空间中有限的着色能力。提高设备的灵活性也是将 ECD 应用于可穿戴和柔性电子产品(用于健康监测)和先进纺织品(易于可视化)的强烈愿望。本综述探讨了多色柔性 ECD 的最新进展。文中介绍了实现多色 ECD 的几种主要策略,包括材料改性、颜色叠加和染料媒介着色。此外,还探讨了柔性 ECD 的最新发展,强调了可提高机械耐用性和变形可靠性的新型材料和制造工艺。希望本综述能让读者全面了解多色柔性 ECD 在智能窗户、显示器和可穿戴电子设备中的应用。
{"title":"Recent Advances in Electrochromic Devices: From Multicolor to Flexible Applications","authors":"Hyun Mok Cho,&nbsp;Yong Jin Hwang,&nbsp;Hyo Seok Oh,&nbsp;Hyeon Seong Hwang,&nbsp;Kitae Kim,&nbsp;Se-Um Kim,&nbsp;Jun-Hee Na","doi":"10.1002/adpr.202400103","DOIUrl":"https://doi.org/10.1002/adpr.202400103","url":null,"abstract":"<p>\u0000With increasing demand for energy saving and environmental sustainability, electrochromic devices (ECDs) are considered as emerging display devices with low energy consumption. While various reflective-type displays produce images with low energy, achieving full color displays often involves much device complexity and nonflexibility. Multicolor ECDs aim to realize full color reflective-type displays, surpassing the current monochromic type or limited coloration capabilities in a 1D color space. Enhancing device flexibility is also highly desirable for use of ECDs in wearable and flexible electronics for health monitoring and advanced textiles with easy visualization. In this review, recent advances in multicolor and flexible ECDs are examined. Several primary strategies to achieve multicolor ECD are described, including material modifications, color overlay, and dye-mediated colorations. In addition, recent developments in flexible ECDs are explored, emphasizing novel materials and fabrication processes that improve mechanical durability and reliability under deformation. It is expected that this review will provide a comprehensive understanding of multicolor and flexible ECDs for applications in smart windows, displays, and wearable electronics.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143530627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Active Control of Bound States in the Continuum in Toroidal Metasurfaces
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-08 DOI: 10.1002/adpr.202400070
Fedor V. Kovalev, Andrey E. Miroshnichenko, Alexey A. Basharin, Hannes Toepfer, Ilya V. Shadrivov

The remarkable properties of toroidal metasurfaces, featuring ultrahigh-Q bound states in the continuum (BIC) resonances and nonradiating anapole modes, have garnered significant attention. The active manipulation of quasi-BIC resonance characteristics offers substantial potential for advancing tunable metasurfaces. This study explores explicitly the application of vanadium dioxide, a phase change material widely used in active photonics and room-temperature bolometric detectors, to control quasi-BIC resonances in toroidal metasurfaces. The phase change transition of vanadium dioxide occurs in a narrow temperature range, providing a large variation in material resistivity. Through heating thin film patches of vanadium dioxide integrated into a metasurface comprising gold split-ring resonators on a sapphire substrate, remarkable control over the amplitude and frequency of quasi-BIC resonances is achieved due to their high sensitivity to losses present in the system. Breaking the symmetry of meta-atoms reveals enhanced tunability. The predicted maximum change in the quasi-BIC resonance amplitude reaches 14 dB with a temperature variation of ≈10 °C.

{"title":"Active Control of Bound States in the Continuum in Toroidal Metasurfaces","authors":"Fedor V. Kovalev,&nbsp;Andrey E. Miroshnichenko,&nbsp;Alexey A. Basharin,&nbsp;Hannes Toepfer,&nbsp;Ilya V. Shadrivov","doi":"10.1002/adpr.202400070","DOIUrl":"https://doi.org/10.1002/adpr.202400070","url":null,"abstract":"<p>The remarkable properties of toroidal metasurfaces, featuring ultrahigh-Q bound states in the continuum (BIC) resonances and nonradiating anapole modes, have garnered significant attention. The active manipulation of quasi-BIC resonance characteristics offers substantial potential for advancing tunable metasurfaces. This study explores explicitly the application of vanadium dioxide, a phase change material widely used in active photonics and room-temperature bolometric detectors, to control quasi-BIC resonances in toroidal metasurfaces. The phase change transition of vanadium dioxide occurs in a narrow temperature range, providing a large variation in material resistivity. Through heating thin film patches of vanadium dioxide integrated into a metasurface comprising gold split-ring resonators on a sapphire substrate, remarkable control over the amplitude and frequency of quasi-BIC resonances is achieved due to their high sensitivity to losses present in the system. Breaking the symmetry of meta-atoms reveals enhanced tunability. The predicted maximum change in the quasi-BIC resonance amplitude reaches 14 dB with a temperature variation of ≈10 °C.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143530421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All-Bands-Flat Floquet Topological Photonic Insulators with Microring Lattices 具有微oring 晶格的全带平面浮凸拓扑光子绝缘体
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-04 DOI: 10.1002/adpr.202470021
Hanfa Song, Vien Van

Topological Photonic Insulators

In article number 2400023, Vien Van and Hanfa Song present the design and realization of (2 + 1)D topological photonic insulators hosting all flat bands, which exhibit novel properties such as anomalous Floquet insulator phase, ultra-wide edge mode continuum, super robustness to disorder, and photon caging in compact localized bulk states. These lattices have broadband applications in topologically-protected quantum photonics and programmable photonic circuits.

拓扑光子绝缘体 在编号为 2400023 的文章中,Vien Van 和 Hanfa Song 介绍了 (2 + 1)D 拓扑光子绝缘体的设计与实现,这种绝缘体承载所有平带,具有新颖的特性,如反常的 Floquet 绝缘体相位、超宽边缘模式连续体、对无序的超强鲁棒性,以及在紧凑局部体态中的光子笼。这些晶格可广泛应用于拓扑保护量子光子学和可编程光子电路。
{"title":"All-Bands-Flat Floquet Topological Photonic Insulators with Microring Lattices","authors":"Hanfa Song,&nbsp;Vien Van","doi":"10.1002/adpr.202470021","DOIUrl":"https://doi.org/10.1002/adpr.202470021","url":null,"abstract":"<p><b>Topological Photonic Insulators</b>\u0000 </p><p>In article number 2400023, Vien Van and Hanfa Song present the design and realization of (2 + 1)D topological photonic insulators hosting all flat bands, which exhibit novel properties such as anomalous Floquet insulator phase, ultra-wide edge mode continuum, super robustness to disorder, and photon caging in compact localized bulk states. These lattices have broadband applications in topologically-protected quantum photonics and programmable photonic circuits.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 8","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202470021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of the Internal Quantum Efficiency of III-Nitride Blue Micro-Light-Emitting Diodes by the Hole Accelerator at the Low Current Density 低电流密度下利用空穴加速器提高 III 氮化物蓝色微型发光二极管的内部量子效率
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-04 DOI: 10.1002/adpr.202300262
An-Chi Wei, Sheng-Hsiang Wang, Jyh-Rou Sze, Quoc-Hung Pham

The hole accelerator is proven to benefit the hole injection for traditional light-emitting diodes (LEDs) because the induced electric field provides the holes with more kinetic energy to pass through the electron-blocking layer, enhancing the hole injection efficiency. Herein, the effect of the hole accelerator (HA) layer on the micro-LEDs by modeling the characteristics of the devices with a current density of lower than 10 A cm−2 is investigated. The simulation results show that the appended HA layer brings a knot of the electric field in the HA layer, leading to higher internal quantum efficiency (IQE) than the device without HA under the low current density. The thickness and composition of HA, the quantum number, and the material of quantum barrier are also simulated and analyzed. The simulated radiative, Shockley–Read–Hall, and Auger recombination rates show that the IQE of the micro-LED with the HA layer is higher than that without the HA layer under the current density of lower than 10 A cm−2.

事实证明,空穴加速器有利于传统发光二极管(LED)的空穴注入,因为诱导电场为空穴提供了更多的动能,使其能够穿过电子阻挡层,从而提高了空穴注入效率。本文通过模拟电流密度低于 10 A cm-2 的器件特性,研究了空穴加速器(HA)层对微型发光二极管的影响。模拟结果表明,在低电流密度下,附着的 HA 层会带来 HA 层中的电场结,从而使器件的内部量子效率(IQE)高于不附着 HA 层的器件。此外,还对 HA 的厚度和成分、量子数以及量子势垒的材料进行了模拟和分析。模拟的辐射、肖克利-雷德-霍尔和奥格重组率表明,在低于 10 A cm-2 的电流密度下,有 HA 层的微型 LED 的 IQE 比没有 HA 层的要高。
{"title":"Improvement of the Internal Quantum Efficiency of III-Nitride Blue Micro-Light-Emitting Diodes by the Hole Accelerator at the Low Current Density","authors":"An-Chi Wei,&nbsp;Sheng-Hsiang Wang,&nbsp;Jyh-Rou Sze,&nbsp;Quoc-Hung Pham","doi":"10.1002/adpr.202300262","DOIUrl":"https://doi.org/10.1002/adpr.202300262","url":null,"abstract":"<p>The hole accelerator is proven to benefit the hole injection for traditional light-emitting diodes (LEDs) because the induced electric field provides the holes with more kinetic energy to pass through the electron-blocking layer, enhancing the hole injection efficiency. Herein, the effect of the hole accelerator (HA) layer on the micro-LEDs by modeling the characteristics of the devices with a current density of lower than 10 A cm<sup>−2</sup> is investigated. The simulation results show that the appended HA layer brings a knot of the electric field in the HA layer, leading to higher internal quantum efficiency (IQE) than the device without HA under the low current density. The thickness and composition of HA, the quantum number, and the material of quantum barrier are also simulated and analyzed. The simulated radiative, Shockley–Read–Hall, and Auger recombination rates show that the IQE of the micro-LED with the HA layer is higher than that without the HA layer under the current density of lower than 10 A cm<sup>−2</sup>.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 9","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300262","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upconversion of Infrared Light by Graphitic Microparticles Due to Photoinduced Structural Modification 光诱导结构改性导致石墨微粒对红外光的上转换
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-04 DOI: 10.1002/adpr.202470023
Rohin Sharma, Nishma Bhattarai, Rijan Maharjan, Lilia M. Woods, Nirajan Ojha, Ashim Dhakal

Photoinduced Structural Modification

In article number 2300326, Ashim Dhakal and co-workers show that photo-induced metastable modification of electronic structure in graphite allows for multiphoton processes that can up-convert an O-band infrared excitation to visible-NIR band in graphite powder. Theoretically, this process can upconvert an infrared light near the wavelength of 3 μm to VIS-NIR wavelengths. It opens exciting new avenues for applications in visible light generation and low-noise imaging using infrared light excitation.

光诱导结构修饰 在编号为 2300326 的文章中,Ashim Dhakal 及其合作者展示了光诱导石墨中电子结构的陨变修饰,从而实现了多光子过程,可将石墨粉中的 O 波段红外激发上转换为可见光-近红外波段。从理论上讲,这一过程可将波长为 3 μm 附近的红外线上转换为可见光-近红外波段。它为利用红外光激发可见光生成和低噪声成像的应用开辟了令人兴奋的新途径。
{"title":"Upconversion of Infrared Light by Graphitic Microparticles Due to Photoinduced Structural Modification","authors":"Rohin Sharma,&nbsp;Nishma Bhattarai,&nbsp;Rijan Maharjan,&nbsp;Lilia M. Woods,&nbsp;Nirajan Ojha,&nbsp;Ashim Dhakal","doi":"10.1002/adpr.202470023","DOIUrl":"https://doi.org/10.1002/adpr.202470023","url":null,"abstract":"<p><b>Photoinduced Structural Modification</b>\u0000 </p><p>In article number 2300326, Ashim Dhakal and co-workers show that photo-induced metastable modification of electronic structure in graphite allows for multiphoton processes that can up-convert an O-band infrared excitation to visible-NIR band in graphite powder. Theoretically, this process can upconvert an infrared light near the wavelength of 3 μm to VIS-NIR wavelengths. It opens exciting new avenues for applications in visible light generation and low-noise imaging using infrared light excitation.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 8","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202470023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of Signal-to-Background Ratio in Molecular Vibrational Signal Extraction by Stimulated Emission Depletion Mechanism
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-04 DOI: 10.1002/adpr.202400078
Ge Wang, Lizhen Chen, Qiuqiang Zhan, Guangyou Fang, Yisen Wang

Herein, a novel approach is presented to mitigate the fluorescence interference during the detection of vibrational signal via the stimulated emission depletion (STED). STED is the mechanism commonly employed in optical imaging; however, its application should not be confined solely to this field. To explore additional possibilities, a novel application of STED in vibrational spectroscopy detection is introduced. Vibrational spectroscopy is a widely used technique for the material detection and identification, but its sensitivity is influenced by impurity signals, especially the fluorescence. The proposed method is capable of suppressing fluorescence without influencing vibrational signal. At the low concentration of fluorescent impurities, the signal-to-background ratio of vibrational spectroscopy is 2.6 times as high as that without this method. The introduction of depletion light can enhance the detection of vibrational signals, resulting in more optimal signal detection. A promising new application of STED other than super-resolution imaging is investigated.

{"title":"Enhancement of Signal-to-Background Ratio in Molecular Vibrational Signal Extraction by Stimulated Emission Depletion Mechanism","authors":"Ge Wang,&nbsp;Lizhen Chen,&nbsp;Qiuqiang Zhan,&nbsp;Guangyou Fang,&nbsp;Yisen Wang","doi":"10.1002/adpr.202400078","DOIUrl":"https://doi.org/10.1002/adpr.202400078","url":null,"abstract":"<p>Herein, a novel approach is presented to mitigate the fluorescence interference during the detection of vibrational signal via the stimulated emission depletion (STED). STED is the mechanism commonly employed in optical imaging; however, its application should not be confined solely to this field. To explore additional possibilities, a novel application of STED in vibrational spectroscopy detection is introduced. Vibrational spectroscopy is a widely used technique for the material detection and identification, but its sensitivity is influenced by impurity signals, especially the fluorescence. The proposed method is capable of suppressing fluorescence without influencing vibrational signal. At the low concentration of fluorescent impurities, the signal-to-background ratio of vibrational spectroscopy is 2.6 times as high as that without this method. The introduction of depletion light can enhance the detection of vibrational signals, resulting in more optimal signal detection. A promising new application of STED other than super-resolution imaging is investigated.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400078","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating the Optically Pumped Threshold Fluence of Thin-Film Gain Media Using Arbitrary Excitation Beams 利用任意激发光束估计薄膜增益介质的光泵浦阈值
IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-04 DOI: 10.1002/adpr.202400065
Nirav Annavarapu, Iakov Goldberg, Karim Elkhouly, Sarah Hamdad, Jan Genoe, Robert Gehlhaar, Paul Heremans

Optically pumped threshold fluences are a widely reported metric to benchmark the performance of thin-film gain media and lasers. Estimating the threshold fluence for nonhomogeneous beams, such as a circular Gaussian excitation, is not trivial since the average fluence depends on the estimated spot diameter. Using an exemplary lead halide perovskite film, the inversion volume at different pump energies is mapped. It is shown that the peak fluence of an arbitrary spatial beam profile is more relevant at the threshold, as it provides an upper bound to the threshold fluence. Also, simple conversion factors to estimate the peak fluence using Gaussian excitation beams are provided and the methodology to arbitrary profiles is extrapolated. Furthermore, it is advocated for using flat-top or uniform stripe excitations to unambiguously extract the threshold fluence, since these excitations display minor discrepancies between the average and peak fluence, and keep the inversion volume relatively constant during the measurement.

光泵浦阈值影响是一个广泛报道的指标,以基准薄膜增益介质和激光器的性能。估计非均匀光束(如圆形高斯激励)的阈值影响并不容易,因为平均影响取决于估计的光斑直径。利用典型的卤化铅钙钛矿薄膜,绘制了不同泵浦能量下的反转体积图。结果表明,任意空间光束剖面的峰值流量在阈值处更为相关,因为它提供了阈值流量的上界。此外,还提供了使用高斯激励光束估计峰值通量的简单转换因子,并对任意剖面的方法进行了外推。此外,建议使用平顶或均匀条纹激励来明确地提取阈值影响,因为这些激励在平均和峰值影响之间显示出较小的差异,并且在测量过程中保持反转体积相对恒定。
{"title":"Estimating the Optically Pumped Threshold Fluence of Thin-Film Gain Media Using Arbitrary Excitation Beams","authors":"Nirav Annavarapu,&nbsp;Iakov Goldberg,&nbsp;Karim Elkhouly,&nbsp;Sarah Hamdad,&nbsp;Jan Genoe,&nbsp;Robert Gehlhaar,&nbsp;Paul Heremans","doi":"10.1002/adpr.202400065","DOIUrl":"https://doi.org/10.1002/adpr.202400065","url":null,"abstract":"<p>Optically pumped threshold fluences are a widely reported metric to benchmark the performance of thin-film gain media and lasers. Estimating the threshold fluence for nonhomogeneous beams, such as a circular Gaussian excitation, is not trivial since the average fluence depends on the estimated spot diameter. Using an exemplary lead halide perovskite film, the inversion volume at different pump energies is mapped. It is shown that the peak fluence of an arbitrary spatial beam profile is more relevant at the threshold, as it provides an upper bound to the threshold fluence. Also, simple conversion factors to estimate the peak fluence using Gaussian excitation beams are provided and the methodology to arbitrary profiles is extrapolated. Furthermore, it is advocated for using flat-top or uniform stripe excitations to unambiguously extract the threshold fluence, since these excitations display minor discrepancies between the average and peak fluence, and keep the inversion volume relatively constant during the measurement.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 12","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400065","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Photonics Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1