Khaldoon Alshouiliy, Sujan Ray, A. Al-Ghamdi, D. Agrawal
Big data is currently a huge industry that has grown significantly every year. Big data is being used by machine learning and deep learning algorithm to study, analyze and parse big data and then drive useful and beneficial results. However, most of the real datasets are collected through different organizations and social media and mainly fall under the category of Big Data applications. One of the biggest and most drawbacks of such datasets is an imbalance representation of samples from different categories. In such case, the classifiers and deep learning techniques are not capable of handling issues like these. A majority of existing works tend to overlook these issues. Typical data balancing methods in the literature resort to data resampling whether it is under sampling a majority class samples or oversampling the minority class of samples. In this work, we focus on the minority sample and ignore the majority ones. Many researchers have done many works as most of the work suffers from over sampling or form the generated noise in the dataset. Additionally, works are either suitable for either big data or small data. Moreover, some other work suffers from a long processing time as complicated algorithms are used with many steps to fix the imbalance problem. Therefore, we introduce a new algorithm that deals with all these issues. We have created a short example to explain briefly how the SMOTE works and why we need to enhance the SMOTE and we have done this by using a very well-known imbalance dataset that we downloaded from the Kaggle website. We collect the results by using Azure machine learning platform. Then, we compare the results to see that the model is functional just good with SMOTE and way better than without it.
{"title":"Enhancing Imbalanced Dataset by Utilizing (K-NN Based SMOTE_3D Algorithm)","authors":"Khaldoon Alshouiliy, Sujan Ray, A. Al-Ghamdi, D. Agrawal","doi":"10.17352/ARA.000002","DOIUrl":"https://doi.org/10.17352/ARA.000002","url":null,"abstract":"Big data is currently a huge industry that has grown significantly every year. Big data is being used by machine learning and deep learning algorithm to study, analyze and parse big data and then drive useful and beneficial results. However, most of the real datasets are collected through different organizations and social media and mainly fall under the category of Big Data applications. One of the biggest and most drawbacks of such datasets is an imbalance representation of samples from different categories. In such case, the classifiers and deep learning techniques are not capable of handling issues like these. A majority of existing works tend to overlook these issues. Typical data balancing methods in the literature resort to data resampling whether it is under sampling a majority class samples or oversampling the minority class of samples. In this work, we focus on the minority sample and ignore the majority ones. Many researchers have done many works as most of the work suffers from over sampling or form the generated noise in the dataset. Additionally, works are either suitable for either big data or small data. Moreover, some other work suffers from a long processing time as complicated algorithms are used with many steps to fix the imbalance problem. Therefore, we introduce a new algorithm that deals with all these issues. We have created a short example to explain briefly how the SMOTE works and why we need to enhance the SMOTE and we have done this by using a very well-known imbalance dataset that we downloaded from the Kaggle website. We collect the results by using Azure machine learning platform. Then, we compare the results to see that the model is functional just good with SMOTE and way better than without it.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"4 1","pages":"001-006"},"PeriodicalIF":0.0,"publicationDate":"2020-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42631685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-01DOI: 10.11591/ijra.v9i1.pp26-33
Mohamed Benyassi, A. Brouri
Received Apr 23, 2019 Revised Jul 5, 2019 Accepted Oct 6, 2019 In this paper, an identification method is proposed to determine the nonlinear systems parameters. The proposed nonlinear systems can be described by Wiener systems. This structure of models consists of series of linear dynamic element and a nonlinearity block. Both the linear and nonlinear parts are nonparametric. In particular, the linear subsystem of structure entirely unknown. The considered nonlinearity function is of hard type. This latter can have a dead zone or with preload. These nonlinear systems have been confirmed by several practical applications. The suggested approach involves easily generated excitation signals.
{"title":"Estimation of nonlinear systems parameters","authors":"Mohamed Benyassi, A. Brouri","doi":"10.11591/ijra.v9i1.pp26-33","DOIUrl":"https://doi.org/10.11591/ijra.v9i1.pp26-33","url":null,"abstract":"Received Apr 23, 2019 Revised Jul 5, 2019 Accepted Oct 6, 2019 In this paper, an identification method is proposed to determine the nonlinear systems parameters. The proposed nonlinear systems can be described by Wiener systems. This structure of models consists of series of linear dynamic element and a nonlinearity block. Both the linear and nonlinear parts are nonparametric. In particular, the linear subsystem of structure entirely unknown. The considered nonlinearity function is of hard type. This latter can have a dead zone or with preload. These nonlinear systems have been confirmed by several practical applications. The suggested approach involves easily generated excitation signals.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"9 1","pages":"26"},"PeriodicalIF":0.0,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43013691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-01DOI: 10.11591/ijra.v9i1.pp51-61
P. Padmalatha, Susy Thomas
In this paper, a variable structure control law is proposed for discrete time sliding mode control so as to reduce both reaching time and quasi sliding mode band reduction. This new law is composed of two different sliding variable dynamics; one to achieve fast reaching and the other to counter its effect on widening the quasi sliding mode band. This is accomplished by introducing a boundary layer around the sliding surface about which the transformation of the sliding variable dynamics takes place. This provides the flexibility to choose the initial dynamics in such a way as to speed up the reaching phase and then at the boundary transform this dynamics to one that reduces the quasi sliding mode band. Thus, the law effectively coalesces the advantageous traits of hitherto proposed reaching laws that succeed in either the reduction of reaching phase or the elimination of quasi sliding mode band. The effectiveness of the proposed reaching law is validated through simulations.
{"title":"Discrete time reaching law based variable structure control for fast reaching with reduced chattering","authors":"P. Padmalatha, Susy Thomas","doi":"10.11591/ijra.v9i1.pp51-61","DOIUrl":"https://doi.org/10.11591/ijra.v9i1.pp51-61","url":null,"abstract":"In this paper, a variable structure control law is proposed for discrete time sliding mode control so as to reduce both reaching time and quasi sliding mode band reduction. This new law is composed of two different sliding variable dynamics; one to achieve fast reaching and the other to counter its effect on widening the quasi sliding mode band. This is accomplished by introducing a boundary layer around the sliding surface about which the transformation of the sliding variable dynamics takes place. This provides the flexibility to choose the initial dynamics in such a way as to speed up the reaching phase and then at the boundary transform this dynamics to one that reduces the quasi sliding mode band. Thus, the law effectively coalesces the advantageous traits of hitherto proposed reaching laws that succeed in either the reduction of reaching phase or the elimination of quasi sliding mode band. The effectiveness of the proposed reaching law is validated through simulations.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"9 1","pages":"51"},"PeriodicalIF":0.0,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48853548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-01DOI: 10.11591/ijra.v9i1.pp6-16
A. Suresh, G. Udupa, Dhruv Gaba
For colonization in deep space we need to explore the feasibility of a bioregenerative system in microgravity or artificial gravity environments. The process has various complexities form ranging to biological obstacles to engineering limitations of the spacecraft. Concentration of microbes in the confinements of a spacecraft can be fatal for the crew. In this paper, a solution to the elevated microbial levels by farming using robots is discussed. The soft robotic arm is made up of Asymmetric Flexible Pneumatic Actuator (AFPA). The AFPA under internal pressure will curve in the direction of the side having greater thickness as the expansion of the thinner side (outside radius) will be more than thicker side (inside radius) due to differential expansion and moment induced due to eccentricity. Simulation results demonstrate that bending based on AFPA can meet the designed requirement of application. The AFPA is used for five fingers of the robotic hand. The safe, soft touch and gentle motion of the bellow (AFPA) gives the feel of real human hand. The internal pressure of the AFPA is controlled using a solenoid valve which is interfaced using an Arduino microcontroller for hand like moves. The bending of the fingers and degree of freedom (DOF) of the joints of the hand is controlled using an IMU and flex sensor. Wireless connection of the hand and the control system is implemented using XBee pro 60mW with a range of 1 miles.The pneumatic soft robotic hand is made up of solenoid valve, Mini Compressor, AFPA bellow, and Servos. This soft robotic hand has many advantages such as good adaptability, simple structure, small size, high flexibility and less energy loss. As an extension Manual control of the robot using a virtual reality environment and well as some possible aspects of an automated farming systems can be considered as future additions.
对于深空殖民,我们需要探索在微重力或人工重力环境中建立生物再生系统的可行性。这个过程有各种各样的复杂性,从生物障碍到航天器的工程限制。航天器密闭空间中的微生物浓度对机组人员来说可能是致命的。在本文中,讨论了使用机器人耕种来解决微生物水平升高的问题。软机械臂由非对称柔性气动执行器(AFPA)组成。内压下的AFPA将向厚度较大的一侧弯曲,因为较薄一侧(外半径)的膨胀将大于较厚一侧(内半径),这是由于偏心引起的差异膨胀和力矩。仿真结果表明,基于AFPA的弯曲可以满足设计的应用要求。AFPA用于机械手的五个手指。波纹管(AFPA)的安全、柔软的触感和轻柔的动作给人一种真正人手的感觉。AFPA的内部压力由一个电磁阀控制,该电磁阀通过Arduino微控制器接口进行手动移动。手指的弯曲和手的关节的自由度(DOF)使用IMU和柔性传感器来控制。手和控制系统的无线连接使用XBee pro 60mW实现,续航里程为1英里。气动软机械手由电磁阀、迷你压缩机、AFPA波纹管和伺服系统组成。这种柔性机械手具有适应性强、结构简单、体积小、灵活性高、能量损失小等优点。作为扩展,使用虚拟现实环境以及自动化农业系统的一些可能方面对机器人进行手动控制可以被视为未来的补充。
{"title":"Design and development of soft robotic hand for vertical farming in spacecraft","authors":"A. Suresh, G. Udupa, Dhruv Gaba","doi":"10.11591/ijra.v9i1.pp6-16","DOIUrl":"https://doi.org/10.11591/ijra.v9i1.pp6-16","url":null,"abstract":"For colonization in deep space we need to explore the feasibility of a bioregenerative system in microgravity or artificial gravity environments. The process has various complexities form ranging to biological obstacles to engineering limitations of the spacecraft. Concentration of microbes in the confinements of a spacecraft can be fatal for the crew. In this paper, a solution to the elevated microbial levels by farming using robots is discussed. The soft robotic arm is made up of Asymmetric Flexible Pneumatic Actuator (AFPA). The AFPA under internal pressure will curve in the direction of the side having greater thickness as the expansion of the thinner side (outside radius) will be more than thicker side (inside radius) due to differential expansion and moment induced due to eccentricity. Simulation results demonstrate that bending based on AFPA can meet the designed requirement of application. The AFPA is used for five fingers of the robotic hand. The safe, soft touch and gentle motion of the bellow (AFPA) gives the feel of real human hand. The internal pressure of the AFPA is controlled using a solenoid valve which is interfaced using an Arduino microcontroller for hand like moves. The bending of the fingers and degree of freedom (DOF) of the joints of the hand is controlled using an IMU and flex sensor. Wireless connection of the hand and the control system is implemented using XBee pro 60mW with a range of 1 miles.The pneumatic soft robotic hand is made up of solenoid valve, Mini Compressor, AFPA bellow, and Servos. This soft robotic hand has many advantages such as good adaptability, simple structure, small size, high flexibility and less energy loss. As an extension Manual control of the robot using a virtual reality environment and well as some possible aspects of an automated farming systems can be considered as future additions.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"9 1","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47771724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-01DOI: 10.11591/ijra.v9i1.pp17-25
G. Ilewicz, A. Harlecki
Received Oct 13, 2019 Revised Dec 27, 2019 Accepted Jan 12, 2020 The slender structures of a medical robot may have a tendency to buckling when a force equal to the critical Euler force and an additional disturbance will work on their structures. In this work, eigenvalue problem that describes the linear buckling is under consideration. The main goal of the article is to check when linear buckling phenomenon appears in construction of a medical robot with serial chain due to the fact that for safety reasons of a robot’s work, it is necessary to answer the question, whether the buckling may occur in the robot’s structure. For this purpose, a numerical calculation model was defined by using the finite element method. The values of load factor coefficients that are eigenvalue are determinated and also the eigenvectors that have shapes of deformation for the next eigenvalues are presented. The multi-criteria optimization model was determined to aim for the minimum mass of the effector and the buckling coefficient, from which the Euler force results, for the maximum. The solution was obtained on the basis of Pareto fronts and the MOGA genetic algorithm.
{"title":"Multi-objective optimization and linear buckling of serial chain of a medical robot tool for soft tissue surgery","authors":"G. Ilewicz, A. Harlecki","doi":"10.11591/ijra.v9i1.pp17-25","DOIUrl":"https://doi.org/10.11591/ijra.v9i1.pp17-25","url":null,"abstract":"Received Oct 13, 2019 Revised Dec 27, 2019 Accepted Jan 12, 2020 The slender structures of a medical robot may have a tendency to buckling when a force equal to the critical Euler force and an additional disturbance will work on their structures. In this work, eigenvalue problem that describes the linear buckling is under consideration. The main goal of the article is to check when linear buckling phenomenon appears in construction of a medical robot with serial chain due to the fact that for safety reasons of a robot’s work, it is necessary to answer the question, whether the buckling may occur in the robot’s structure. For this purpose, a numerical calculation model was defined by using the finite element method. The values of load factor coefficients that are eigenvalue are determinated and also the eigenvectors that have shapes of deformation for the next eigenvalues are presented. The multi-criteria optimization model was determined to aim for the minimum mass of the effector and the buckling coefficient, from which the Euler force results, for the maximum. The solution was obtained on the basis of Pareto fronts and the MOGA genetic algorithm.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"9 1","pages":"17"},"PeriodicalIF":0.0,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47041061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, many researchers have proposed a series of algorithms based on convolutional neural networks and achieved good performances in the field of object detection and recognition. For humanoid robots, they are designed to assist or replace people in completing a series of anthropomorphic tasks, and their ability to recognize and grasp surrounding objects is the most basic requirement.
{"title":"Optimized Convolutional Neural Network-Based Object Recognition for Humanoid Robot","authors":"Xiao Ming, Xiao Nanfeng, Zeng Mengjun, Yuan Qunyong","doi":"10.36959/673/363","DOIUrl":"https://doi.org/10.36959/673/363","url":null,"abstract":"In recent years, many researchers have proposed a series of algorithms based on convolutional neural networks and achieved good performances in the field of object detection and recognition. For humanoid robots, they are designed to assist or replace people in completing a series of anthropomorphic tasks, and their ability to recognize and grasp surrounding objects is the most basic requirement.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42785624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-02-20DOI: 10.15406/IRATJ.2020.06.00199
Ulyanov Sergey, Ulyanov Viktor
The extraction of knowledge from a new movement types is based on studding of mathematical model benchmarks. The robotic unicycle motion is one of such type of “benchmark movements” (benchmark model of nonlinear mechanics),1–5 described as nonlinear nonholonomic, global unstable dynamic system. Related research of such dynamic systems is interesting for nonlinear mechanics (to develop a new method of nonlinear effects research) and for modern control theory (to deve1op a new intelligent control algorithms).
{"title":"Intelligent robust control system of robotic unicycle based on the end-to-end soft computing technology","authors":"Ulyanov Sergey, Ulyanov Viktor","doi":"10.15406/IRATJ.2020.06.00199","DOIUrl":"https://doi.org/10.15406/IRATJ.2020.06.00199","url":null,"abstract":"The extraction of knowledge from a new movement types is based on studding of mathematical model benchmarks. The robotic unicycle motion is one of such type of “benchmark movements” (benchmark model of nonlinear mechanics),1–5 described as nonlinear nonholonomic, global unstable dynamic system. Related research of such dynamic systems is interesting for nonlinear mechanics (to develop a new method of nonlinear effects research) and for modern control theory (to deve1op a new intelligent control algorithms).","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"6 1","pages":"20-41"},"PeriodicalIF":0.0,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42005810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-02-07DOI: 10.15226/2473-3032/4/1/00140
K. Nuntiya, C. Seksan, T. Dechathanat, W. Fasai, S. Pramot, A. Ismail
Robots have been widely used to replace human labors in the manufacturing factories, especially when dealing with hazardous environments such as chemicals, heat, etc. Other objective including ensuring consistent quality taking advantages of continuous operation of the robots. However, one major hindrance is the high initial investment of the robots despite the benefit acquired when the robots is used. Often, the skeptical opinion of the investors winding down the proposal. Therefore, the simulation of process improvement activities especially on the robot-based production process is a subject of great interest, which requires low to no-cost without jeopardizing the investor trust. In the ceramic factory, different value products are produced. Finding the highest benefit from robotics is something to consider. In this study, a simulation software, namely FlexSim is analyzed and simulated to optimize the painting process by robots.
{"title":"A Simulation Model To Optimize The Painting Robots","authors":"K. Nuntiya, C. Seksan, T. Dechathanat, W. Fasai, S. Pramot, A. Ismail","doi":"10.15226/2473-3032/4/1/00140","DOIUrl":"https://doi.org/10.15226/2473-3032/4/1/00140","url":null,"abstract":"Robots have been widely used to replace human labors in the manufacturing factories, especially when dealing with hazardous environments such as chemicals, heat, etc. Other objective including ensuring consistent quality taking advantages of continuous operation of the robots. However, one major hindrance is the high initial investment of the robots despite the benefit acquired when the robots is used. Often, the skeptical opinion of the investors winding down the proposal. Therefore, the simulation of process improvement activities especially on the robot-based production process is a subject of great interest, which requires low to no-cost without jeopardizing the investor trust. In the ceramic factory, different value products are produced. Finding the highest benefit from robotics is something to consider. In this study, a simulation software, namely FlexSim is analyzed and simulated to optimize the painting process by robots.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"4 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47477021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mazhari Arash Alex, Hunter Daniel, Teodorescu Mircea
In this paper, various methods of bio-inspired locomotion are investigated with the objective of designing a robotic system to transport a payload via the convention of repeatable jump gliding. The authors provide the mission objective of transporting a payload over a stepped incline, and propose a winged bipedal robot parameterized under the bounding requisites that such a system be capable of exploiting the joint locomotive implications of jumping and gliding for a series of controlled flights and subsequent landings.
{"title":"A Robotic Transportation System via Hybrid Jump-Gliding Locomotion","authors":"Mazhari Arash Alex, Hunter Daniel, Teodorescu Mircea","doi":"10.36959/673/362","DOIUrl":"https://doi.org/10.36959/673/362","url":null,"abstract":"In this paper, various methods of bio-inspired locomotion are investigated with the objective of designing a robotic system to transport a payload via the convention of repeatable jump gliding. The authors provide the mission objective of transporting a payload over a stepped incline, and propose a winged bipedal robot parameterized under the bounding requisites that such a system be capable of exploiting the joint locomotive implications of jumping and gliding for a series of controlled flights and subsequent landings.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48857946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-22DOI: 10.13140/RG.2.2.12434.17608
A. Alsayed, M. Nabawy, A. Yunusa‐Kaltungo, Mark K. Quinn, F. Arvin
{"title":"World's First Drone-Assisted Safety Inspection and Monitoring System for Confined Spaces in Cement Plants","authors":"A. Alsayed, M. Nabawy, A. Yunusa‐Kaltungo, Mark K. Quinn, F. Arvin","doi":"10.13140/RG.2.2.12434.17608","DOIUrl":"https://doi.org/10.13140/RG.2.2.12434.17608","url":null,"abstract":"","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46599602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}