首页 > 最新文献

IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation最新文献

英文 中文
Unified Intrinsic and Extrinsic Camera and LiDAR Calibration under Uncertainties 不确定条件下相机和激光雷达内、外统一标定
Julius Kummerle, Tilman Kuhner
Many approaches for camera and LiDAR calibration are presented in literature but none of them estimates all intrinsic and extrinsic parameters simultaneously and therefore optimally in a probabilistic sense.In this work, we present a method to simultaneously estimate intrinsic and extrinsic parameters of cameras and LiDARs in a unified problem. We derive a probabilistic formulation that enables flawless integration of different measurement types without hand-tuned weights. An arbitrary number of cameras and LiDARs can be calibrated simultaneously. Measurements are not required to be time-synchronized. The method is designed to work with any camera model.In evaluation, we show that additional LiDAR measurements significantly improve intrinsic camera calibration. Further, we show on real data that our method achieves state-of-the-art calibration precision with high reliability.
文献中提出了许多相机和激光雷达校准方法,但没有一种方法可以同时估计所有的内在和外在参数,因此在概率意义上是最优的。在这项工作中,我们提出了一种在统一问题中同时估计相机和激光雷达的内在和外在参数的方法。我们推导了一个概率公式,使不同测量类型的完美集成无需手动调整权重。可以同时校准任意数量的摄像机和激光雷达。测量不需要时间同步。该方法适用于任何相机模型。在评估中,我们表明额外的LiDAR测量显着改善了相机的固有校准。此外,我们在实际数据上表明,我们的方法达到了最先进的校准精度和高可靠性。
{"title":"Unified Intrinsic and Extrinsic Camera and LiDAR Calibration under Uncertainties","authors":"Julius Kummerle, Tilman Kuhner","doi":"10.1109/ICRA40945.2020.9197496","DOIUrl":"https://doi.org/10.1109/ICRA40945.2020.9197496","url":null,"abstract":"Many approaches for camera and LiDAR calibration are presented in literature but none of them estimates all intrinsic and extrinsic parameters simultaneously and therefore optimally in a probabilistic sense.In this work, we present a method to simultaneously estimate intrinsic and extrinsic parameters of cameras and LiDARs in a unified problem. We derive a probabilistic formulation that enables flawless integration of different measurement types without hand-tuned weights. An arbitrary number of cameras and LiDARs can be calibrated simultaneously. Measurements are not required to be time-synchronized. The method is designed to work with any camera model.In evaluation, we show that additional LiDAR measurements significantly improve intrinsic camera calibration. Further, we show on real data that our method achieves state-of-the-art calibration precision with high reliability.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86291431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Contact Stability Analysis of Magnetically-Actuated Robotic Catheter Under Surface Motion. 磁动机器人导管在表面运动下的接触稳定性分析
Ran Hao, Tipakorn Greigarn, M Cenk Çavuşoğlu

Contact force quality is one of the most critical factors for safe and effective lesion formation during cardiac ablation. The contact force and contact stability plays important roles in determining the lesion size and creating a gap-free lesion. In this paper, the contact stability of a novel magnetic resonance imaging (MRI)-actuated robotic catheter under tissue surface motion is studied. The robotic catheter is modeled using a pseudo-rigid-body model, and the contact model under surface constraint is provided. Two contact force control schemes to improve the contact stability of the catheter under heart surface motions are proposed and their performance are evaluated in simulation.

接触力质量是心脏消融过程中安全有效地形成病灶的最关键因素之一。接触力和接触稳定性在决定病灶大小和形成无间隙病灶方面起着重要作用。本文研究了新型磁共振成像(MRI)驱动机器人导管在组织表面运动时的接触稳定性。利用伪刚体模型对机器人导管进行建模,并提供了表面约束下的接触模型。提出了两种接触力控制方案,以提高导管在心脏表面运动下的接触稳定性,并对其性能进行了仿真评估。
{"title":"Contact Stability Analysis of Magnetically-Actuated Robotic Catheter Under Surface Motion.","authors":"Ran Hao, Tipakorn Greigarn, M Cenk Çavuşoğlu","doi":"10.1109/icra40945.2020.9196951","DOIUrl":"10.1109/icra40945.2020.9196951","url":null,"abstract":"<p><p>Contact force quality is one of the most critical factors for safe and effective lesion formation during cardiac ablation. The contact force and contact stability plays important roles in determining the lesion size and creating a gap-free lesion. In this paper, the contact stability of a novel magnetic resonance imaging (MRI)-actuated robotic catheter under tissue surface motion is studied. The robotic catheter is modeled using a pseudo-rigid-body model, and the contact model under surface constraint is provided. Two contact force control schemes to improve the contact stability of the catheter under heart surface motions are proposed and their performance are evaluated in simulation.</p>","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197595/pdf/nihms-1705040.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39010750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Analysis of a Synergy-Inspired Three-Fingered Hand 协同启发的三指手的设计与分析
Chen Wenrui, Xia Zhilan, Lu Jingwen, Zhao Zilong, W. Yao-nan
Hand synergy from neuroscience provides an effective tool for anthropomorphic hands to realize versatile grasping with simple planning and control. This paper aims to extend the synergy-inspired design from anthropomorphic hands to multi-fingered robot hands. The synergy-inspired hands are not necessarily humanoid in morphology but perform primary characteristics and functions similar to the human hand. At first, the biomechanics of hand synergy is investigated. Three biomechanical characteristics of the human hand synergy are explored as a basis for the mechanical simplification of the robot hands. Secondly, according to the synergy characteristics, a three-fingered hand is designed, and its kinematic model is developed for the analysis of some typical grasping and manipulation functions. Finally, a prototype is developed and preliminary grasping experiments validate the effectiveness of the design and analysis.
神经科学的手协同作用为拟人手提供了有效的工具,通过简单的规划和控制实现多功能抓取。本文旨在将协同启发设计从拟人手扩展到多指机器人手。受协同作用启发的手在形态上不一定是类人的,但其主要特征和功能与人的手相似。首先,对手协同的生物力学进行了研究。探讨了人手协同作用的三个生物力学特征,为机器人手的力学简化奠定了基础。其次,根据三指手的协同特性,设计了三指手,建立了三指手的运动学模型,分析了三指手的典型抓取和操作功能。最后,开发了样机并进行了初步的抓取实验,验证了设计和分析的有效性。
{"title":"Design and Analysis of a Synergy-Inspired Three-Fingered Hand","authors":"Chen Wenrui, Xia Zhilan, Lu Jingwen, Zhao Zilong, W. Yao-nan","doi":"10.1109/ICRA40945.2020.9196901","DOIUrl":"https://doi.org/10.1109/ICRA40945.2020.9196901","url":null,"abstract":"Hand synergy from neuroscience provides an effective tool for anthropomorphic hands to realize versatile grasping with simple planning and control. This paper aims to extend the synergy-inspired design from anthropomorphic hands to multi-fingered robot hands. The synergy-inspired hands are not necessarily humanoid in morphology but perform primary characteristics and functions similar to the human hand. At first, the biomechanics of hand synergy is investigated. Three biomechanical characteristics of the human hand synergy are explored as a basis for the mechanical simplification of the robot hands. Secondly, according to the synergy characteristics, a three-fingered hand is designed, and its kinematic model is developed for the analysis of some typical grasping and manipulation functions. Finally, a prototype is developed and preliminary grasping experiments validate the effectiveness of the design and analysis.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87985244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
High-Resolution Optical Fiber Shape Sensing of Continuum Robots: A Comparative Study. 连续体机器人高分辨率光纤形状传感的比较研究。
Frederic Monet, Shahriar Sefati, Pierre Lorre, Arthur Poiffaut, Samuel Kadoury, Mehran Armand, Iulian Iordachita, Raman Kashyap

Flexible medical instruments, such as Continuum Dexterous Manipulators (CDM), constitute an important class of tools for minimally invasive surgery. Accurate CDM shape reconstruction during surgery is of great importance, yet a challenging task. Fiber Bragg grating (FBG) sensors have demonstrated great potential in shape sensing and consequently tip position estimation of CDMs. However, due to the limited number of sensing locations, these sensors can only accurately recover basic shapes, and become unreliable in the presence of obstacles or many inflection points such as s-bends. Optical Frequency Domain Reflectometry (OFDR), on the other hand, can achieve much higher spatial resolution, and can therefore accurately reconstruct more complex shapes. Additionally, Random Optical Gratings by Ultraviolet laser Exposure (ROGUEs) can be written in the fibers to increase signal to noise ratio of the sensors. In this comparison study, the tip position error is used as a metric to compare both FBG and OFDR shape reconstructions for a 35 mm long CDM developed for orthopedic surgeries, using a pair of stereo cameras as ground truth. Three sets of experiments were conducted to measure the accuracy of each technique in various surgical scenarios. The tip position error for the OFDR (and FBG) technique was found to be 0.32 (0.83) mm in free-bending environment, 0.41 (0.80) mm when interacting with obstacles, and 0.45 (2.27) mm in s-bending. Moreover, the maximum tip position error remains sub-millimeter for the OFDR reconstruction, while it reaches 3.40 mm for FBG reconstruction. These results propose a cost-effective, robust and more accurate alternative to FBG sensors for reconstructing complex CDM shapes.

柔性医疗器械,如连续体灵巧操纵器(CDM),是一类重要的微创手术工具。手术中准确的CDM形状重建非常重要,但也是一项具有挑战性的任务。光纤布拉格光栅(FBG)传感器在CDMs的形状传感和尖端位置估计方面显示出巨大的潜力。然而,由于传感位置的数量有限,这些传感器只能准确地恢复基本形状,并且在存在障碍物或许多拐点(如s型弯道)时变得不可靠。另一方面,光频域反射法(OFDR)可以实现更高的空间分辨率,因此可以准确地重建更复杂的形状。此外,还可以在光纤中写入紫外激光曝光随机光栅(ROGUEs),以提高传感器的信噪比。在这项比较研究中,使用一对立体摄像机作为地面真值,使用尖端位置误差作为度量来比较用于骨科手术的35mm长的CDM的FBG和OFDR形状重建。进行了三组实验来测量每种技术在不同手术情况下的准确性。OFDR(和FBG)技术的尖端位置误差在自由弯曲环境中为0.32 (0.83)mm,在与障碍物相互作用时为0.41 (0.80)mm,在s弯曲环境中为0.45 (2.27)mm。此外,OFDR重建的最大尖端位置误差保持在亚毫米,而FBG重建的最大尖端位置误差达到3.40 mm。这些结果为重建复杂CDM形状的FBG传感器提供了一种具有成本效益,鲁棒性和更精确的替代方案。
{"title":"High-Resolution Optical Fiber Shape Sensing of Continuum Robots: A Comparative Study.","authors":"Frederic Monet,&nbsp;Shahriar Sefati,&nbsp;Pierre Lorre,&nbsp;Arthur Poiffaut,&nbsp;Samuel Kadoury,&nbsp;Mehran Armand,&nbsp;Iulian Iordachita,&nbsp;Raman Kashyap","doi":"10.1109/icra40945.2020.9197454","DOIUrl":"https://doi.org/10.1109/icra40945.2020.9197454","url":null,"abstract":"<p><p>Flexible medical instruments, such as Continuum Dexterous Manipulators (CDM), constitute an important class of tools for minimally invasive surgery. Accurate CDM shape reconstruction during surgery is of great importance, yet a challenging task. Fiber Bragg grating (FBG) sensors have demonstrated great potential in shape sensing and consequently tip position estimation of CDMs. However, due to the limited number of sensing locations, these sensors can only accurately recover basic shapes, and become unreliable in the presence of obstacles or many inflection points such as s-bends. Optical Frequency Domain Reflectometry (OFDR), on the other hand, can achieve much higher spatial resolution, and can therefore accurately reconstruct more complex shapes. Additionally, Random Optical Gratings by Ultraviolet laser Exposure (ROGUEs) can be written in the fibers to increase signal to noise ratio of the sensors. In this comparison study, the tip position error is used as a metric to compare both FBG and OFDR shape reconstructions for a 35 mm long CDM developed for orthopedic surgeries, using a pair of stereo cameras as ground truth. Three sets of experiments were conducted to measure the accuracy of each technique in various surgical scenarios. The tip position error for the OFDR (and FBG) technique was found to be 0.32 (0.83) mm in free-bending environment, 0.41 (0.80) mm when interacting with obstacles, and 0.45 (2.27) mm in s-bending. Moreover, the maximum tip position error remains sub-millimeter for the OFDR reconstruction, while it reaches 3.40 mm for FBG reconstruction. These results propose a cost-effective, robust and more accurate alternative to FBG sensors for reconstructing complex CDM shapes.</p>","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/icra40945.2020.9197454","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39335086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Autonomously Navigating a Surgical Tool Inside the Eye by Learning from Demonstration. 通过示范学习在眼内自主导航手术工具。
Ji Woong Kim, Changyan He, Muller Urias, Peter Gehlbach, Gregory D Hager, Iulian Iordachita, Marin Kobilarov

A fundamental challenge in retinal surgery is safely navigating a surgical tool to a desired goal position on the retinal surface while avoiding damage to surrounding tissues, a procedure that typically requires tens-of-microns accuracy. In practice, the surgeon relies on depth-estimation skills to localize the tool-tip with respect to the retina in order to perform the tool-navigation task, which can be prone to human error. To alleviate such uncertainty, prior work has introduced ways to assist the surgeon by estimating the tool-tip distance to the retina and providing haptic or auditory feedback. However, automating the tool-navigation task itself remains unsolved and largely unexplored. Such a capability, if reliably automated, could serve as a building block to streamline complex procedures and reduce the chance for tissue damage. Towards this end, we propose to automate the tool-navigation task by learning to mimic expert demonstrations of the task. Specifically, a deep network is trained to imitate expert trajectories toward various locations on the retina based on recorded visual servoing to a given goal specified by the user. The proposed autonomous navigation system is evaluated in simulation and in physical experiments using a silicone eye phantom. We show that the network can reliably navigate a needle surgical tool to various desired locations within 137 μm accuracy in physical experiments and 94 μm in simulation on average, and generalizes well to unseen situations such as in the presence of auxiliary surgical tools, variable eye backgrounds, and brightness conditions.

视网膜手术的一个基本挑战是如何安全地将手术工具导航到视网膜表面所需的目标位置,同时避免损伤周围组织,这一过程通常需要几十微米的精度。在实践中,外科医生依靠深度估计技能来定位工具尖相对于视网膜的位置,以执行工具导航任务,这很容易出现人为错误。为了减轻这种不确定性,先前的工作已经引入了一些方法,通过估计工具尖端到视网膜的距离来帮助外科医生,并提供触觉或听觉反馈。然而,自动化工具导航任务本身仍然没有得到解决,而且在很大程度上没有被探索过。这种能力,如果可靠地自动化,可以作为简化复杂程序的基石,减少组织损伤的机会。为此,我们建议通过学习模仿任务的专家演示来自动化工具导航任务。具体地说,一个深度网络被训练来模仿专家轨迹到视网膜上的不同位置,基于记录的视觉伺服到用户指定的给定目标。在仿真和物理实验中对所提出的自主导航系统进行了评估。我们表明,该网络可以可靠地将针头手术工具导航到各种所需位置,在物理实验中精度为137 μm,在模拟中平均精度为94 μm,并且可以很好地推广到不可见的情况,例如存在辅助手术工具,可变眼睛背景和亮度条件。
{"title":"Autonomously Navigating a Surgical Tool Inside the Eye by Learning from Demonstration.","authors":"Ji Woong Kim,&nbsp;Changyan He,&nbsp;Muller Urias,&nbsp;Peter Gehlbach,&nbsp;Gregory D Hager,&nbsp;Iulian Iordachita,&nbsp;Marin Kobilarov","doi":"10.1109/icra40945.2020.9196537","DOIUrl":"https://doi.org/10.1109/icra40945.2020.9196537","url":null,"abstract":"<p><p>A fundamental challenge in retinal surgery is safely navigating a surgical tool to a desired goal position on the retinal surface while avoiding damage to surrounding tissues, a procedure that typically requires tens-of-microns accuracy. In practice, the surgeon relies on depth-estimation skills to localize the tool-tip with respect to the retina in order to perform the tool-navigation task, which can be prone to human error. To alleviate such uncertainty, prior work has introduced ways to assist the surgeon by estimating the tool-tip distance to the retina and providing haptic or auditory feedback. However, automating the tool-navigation task itself remains unsolved and largely unexplored. Such a capability, if reliably automated, could serve as a building block to streamline complex procedures and reduce the chance for tissue damage. Towards this end, we propose to automate the tool-navigation task by learning to mimic expert demonstrations of the task. Specifically, a deep network is trained to imitate expert trajectories toward various locations on the retina based on recorded visual servoing to a given goal specified by the user. The proposed autonomous navigation system is evaluated in simulation and in physical experiments using a silicone eye phantom. We show that the network can reliably navigate a needle surgical tool to various desired locations within 137 <i>μm</i> accuracy in physical experiments and 94 <i>μm</i> in simulation on average, and generalizes well to unseen situations such as in the presence of auxiliary surgical tools, variable eye backgrounds, and brightness conditions.</p>","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/icra40945.2020.9196537","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39520516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Enhancing Imbalanced Dataset by Utilizing (K-NN Based SMOTE_3D Algorithm) 利用(基于K-NN的SMOTE_3D算法)增强不平衡数据集
Khaldoon Alshouiliy, Sujan Ray, A. Al-Ghamdi, D. Agrawal
Big data is currently a huge industry that has grown significantly every year. Big data is being used by machine learning and deep learning algorithm to study, analyze and parse big data and then drive useful and beneficial results. However, most of the real datasets are collected through different organizations and social media and mainly fall under the category of Big Data applications. One of the biggest and most drawbacks of such datasets is an imbalance representation of samples from different categories. In such case, the classifiers and deep learning techniques are not capable of handling issues like these. A majority of existing works tend to overlook these issues. Typical data balancing methods in the literature resort to data resampling whether it is under sampling a majority class samples or oversampling the minority class of samples. In this work, we focus on the minority sample and ignore the majority ones. Many researchers have done many works as most of the work suffers from over sampling or form the generated noise in the dataset. Additionally, works are either suitable for either big data or small data. Moreover, some other work suffers from a long processing time as complicated algorithms are used with many steps to fix the imbalance problem. Therefore, we introduce a new algorithm that deals with all these issues. We have created a short example to explain briefly how the SMOTE works and why we need to enhance the SMOTE and we have done this by using a very well-known imbalance dataset that we downloaded from the Kaggle website. We collect the results by using Azure machine learning platform. Then, we compare the results to see that the model is functional just good with SMOTE and way better than without it.
大数据目前是一个巨大的行业,每年都在显著增长。机器学习和深度学习算法正在使用大数据来研究、分析和解析大数据,然后得出有用和有益的结果。然而,大多数真实数据集是通过不同的组织和社交媒体收集的,主要属于大数据应用程序的范畴。这种数据集最大也是最缺点之一是来自不同类别的样本的不平衡表示。在这种情况下,分类器和深度学习技术无法处理此类问题。现有的大多数作品往往忽略了这些问题。文献中的典型数据平衡方法采用数据重采样,无论是对多数类样本的欠采样还是对少数类样本的过采样。在这项工作中,我们专注于少数样本,而忽略了多数样本。许多研究人员已经做了许多工作,因为大多数工作都存在过度采样或在数据集中形成生成的噪声的问题。此外,作品要么适合大数据,要么适合小数据。此外,由于使用复杂的算法和许多步骤来解决不平衡问题,一些其他工作的处理时间很长。因此,我们引入了一种新的算法来处理所有这些问题。我们创建了一个简短的例子来简要解释SMOTE是如何工作的,以及为什么我们需要增强SMOTE,我们通过使用从Kaggle网站下载的一个非常著名的不平衡数据集来做到这一点。我们使用Azure机器学习平台收集结果。然后,我们比较了结果,发现有了SMOTE,模型的功能就很好,而且比没有SMOTE要好得多。
{"title":"Enhancing Imbalanced Dataset by Utilizing (K-NN Based SMOTE_3D Algorithm)","authors":"Khaldoon Alshouiliy, Sujan Ray, A. Al-Ghamdi, D. Agrawal","doi":"10.17352/ARA.000002","DOIUrl":"https://doi.org/10.17352/ARA.000002","url":null,"abstract":"Big data is currently a huge industry that has grown significantly every year. Big data is being used by machine learning and deep learning algorithm to study, analyze and parse big data and then drive useful and beneficial results. However, most of the real datasets are collected through different organizations and social media and mainly fall under the category of Big Data applications. One of the biggest and most drawbacks of such datasets is an imbalance representation of samples from different categories. In such case, the classifiers and deep learning techniques are not capable of handling issues like these. A majority of existing works tend to overlook these issues. Typical data balancing methods in the literature resort to data resampling whether it is under sampling a majority class samples or oversampling the minority class of samples. In this work, we focus on the minority sample and ignore the majority ones. Many researchers have done many works as most of the work suffers from over sampling or form the generated noise in the dataset. Additionally, works are either suitable for either big data or small data. Moreover, some other work suffers from a long processing time as complicated algorithms are used with many steps to fix the imbalance problem. Therefore, we introduce a new algorithm that deals with all these issues. We have created a short example to explain briefly how the SMOTE works and why we need to enhance the SMOTE and we have done this by using a very well-known imbalance dataset that we downloaded from the Kaggle website. We collect the results by using Azure machine learning platform. Then, we compare the results to see that the model is functional just good with SMOTE and way better than without it.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42631685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Estimation of nonlinear systems parameters 非线性系统参数的估计
Mohamed Benyassi, A. Brouri
Received Apr 23, 2019 Revised Jul 5, 2019 Accepted Oct 6, 2019 In this paper, an identification method is proposed to determine the nonlinear systems parameters. The proposed nonlinear systems can be described by Wiener systems. This structure of models consists of series of linear dynamic element and a nonlinearity block. Both the linear and nonlinear parts are nonparametric. In particular, the linear subsystem of structure entirely unknown. The considered nonlinearity function is of hard type. This latter can have a dead zone or with preload. These nonlinear systems have been confirmed by several practical applications. The suggested approach involves easily generated excitation signals.
本文提出了一种非线性系统参数的辨识方法。所提出的非线性系统可以用维纳系统来描述。该模型结构由一系列线性动力单元和非线性块组成。线性部分和非线性部分都是非参数的。特别是线性子系统的结构完全未知。所考虑的非线性函数是硬型的。后者可以有一个死区或预加载。这些非线性系统已被几个实际应用所证实。建议的方法包括容易产生的激励信号。
{"title":"Estimation of nonlinear systems parameters","authors":"Mohamed Benyassi, A. Brouri","doi":"10.11591/ijra.v9i1.pp26-33","DOIUrl":"https://doi.org/10.11591/ijra.v9i1.pp26-33","url":null,"abstract":"Received Apr 23, 2019 Revised Jul 5, 2019 Accepted Oct 6, 2019 In this paper, an identification method is proposed to determine the nonlinear systems parameters. The proposed nonlinear systems can be described by Wiener systems. This structure of models consists of series of linear dynamic element and a nonlinearity block. Both the linear and nonlinear parts are nonparametric. In particular, the linear subsystem of structure entirely unknown. The considered nonlinearity function is of hard type. This latter can have a dead zone or with preload. These nonlinear systems have been confirmed by several practical applications. The suggested approach involves easily generated excitation signals.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43013691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discrete time reaching law based variable structure control for fast reaching with reduced chattering 基于离散时间趋近律的变结构快速趋近控制
P. Padmalatha, Susy Thomas
In this paper, a variable structure control law is proposed for discrete time sliding mode control so as to reduce both reaching time and quasi sliding mode band reduction. This new law is composed of two different sliding variable dynamics; one to achieve fast reaching and the other to counter its effect on widening the quasi sliding mode band. This is accomplished by introducing a boundary layer around the sliding surface about which the transformation of the sliding variable dynamics takes place. This provides the flexibility to choose the initial dynamics in such a way as to speed up the reaching phase and then at the boundary transform this dynamics to one that reduces the quasi sliding mode band. Thus, the law effectively coalesces the advantageous traits of hitherto proposed reaching laws that succeed in either the reduction of reaching phase or the elimination of quasi sliding mode band. The effectiveness of the proposed reaching law is validated through simulations.
本文提出了一种离散时间滑模控制的变结构控制律,以减少到达时间和准滑模带的减少。这个新定律由两种不同的滑动变量动力学组成;一个用于实现快速到达,另一个用于抵消其对加宽准滑动模带的影响。这是通过在滑动表面周围引入边界层来实现的,围绕该边界层进行滑动变量动力学的变换。这提供了选择初始动力学的灵活性,以加快到达阶段,然后在边界处将该动力学转换为减少准滑动模式带的动力学。因此,该定律有效地结合了迄今为止提出的到达定律的有利特性,这些到达定律成功地减少了到达相位或消除了准滑动模带。通过仿真验证了所提出的趋近律的有效性。
{"title":"Discrete time reaching law based variable structure control for fast reaching with reduced chattering","authors":"P. Padmalatha, Susy Thomas","doi":"10.11591/ijra.v9i1.pp51-61","DOIUrl":"https://doi.org/10.11591/ijra.v9i1.pp51-61","url":null,"abstract":"In this paper, a variable structure control law is proposed for discrete time sliding mode control so as to reduce both reaching time and quasi sliding mode band reduction. This new law is composed of two different sliding variable dynamics; one to achieve fast reaching and the other to counter its effect on widening the quasi sliding mode band. This is accomplished by introducing a boundary layer around the sliding surface about which the transformation of the sliding variable dynamics takes place. This provides the flexibility to choose the initial dynamics in such a way as to speed up the reaching phase and then at the boundary transform this dynamics to one that reduces the quasi sliding mode band. Thus, the law effectively coalesces the advantageous traits of hitherto proposed reaching laws that succeed in either the reduction of reaching phase or the elimination of quasi sliding mode band. The effectiveness of the proposed reaching law is validated through simulations.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48853548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Design and development of soft robotic hand for vertical farming in spacecraft 航天器垂直农业用柔性机械手的设计与研制
A. Suresh, G. Udupa, Dhruv Gaba
For colonization in deep space we need to explore the feasibility of a bioregenerative system in microgravity or artificial gravity environments. The process has various complexities form ranging to biological obstacles to engineering limitations of the spacecraft. Concentration of microbes in the confinements of a spacecraft can be fatal for the crew. In this paper, a solution to the elevated microbial levels by farming using robots is discussed. The soft robotic arm is made up of Asymmetric Flexible Pneumatic Actuator (AFPA). The AFPA under internal pressure will curve in the direction of the side having greater thickness as the expansion of the thinner side (outside radius) will be more than thicker side (inside radius) due to differential expansion and moment induced due to eccentricity. Simulation results demonstrate that bending based on AFPA can meet the designed requirement of application. The AFPA is used for five fingers of the robotic hand. The safe, soft touch and gentle motion of the bellow (AFPA) gives the feel of real human hand. The internal pressure of the AFPA is controlled using a solenoid valve which is interfaced using an Arduino microcontroller for hand like moves. The bending of the fingers and degree of freedom (DOF) of the joints of the hand is controlled using an IMU and flex sensor. Wireless connection of the hand and the control system is implemented using XBee pro 60mW with a range of 1 miles.The pneumatic soft robotic hand is made up of solenoid valve, Mini Compressor, AFPA bellow, and Servos. This soft robotic hand has many advantages such as good adaptability, simple structure, small size, high flexibility and less energy loss. As an extension Manual control of the robot using a virtual reality environment and well as some possible aspects of an automated farming systems can be considered as future additions.
对于深空殖民,我们需要探索在微重力或人工重力环境中建立生物再生系统的可行性。这个过程有各种各样的复杂性,从生物障碍到航天器的工程限制。航天器密闭空间中的微生物浓度对机组人员来说可能是致命的。在本文中,讨论了使用机器人耕种来解决微生物水平升高的问题。软机械臂由非对称柔性气动执行器(AFPA)组成。内压下的AFPA将向厚度较大的一侧弯曲,因为较薄一侧(外半径)的膨胀将大于较厚一侧(内半径),这是由于偏心引起的差异膨胀和力矩。仿真结果表明,基于AFPA的弯曲可以满足设计的应用要求。AFPA用于机械手的五个手指。波纹管(AFPA)的安全、柔软的触感和轻柔的动作给人一种真正人手的感觉。AFPA的内部压力由一个电磁阀控制,该电磁阀通过Arduino微控制器接口进行手动移动。手指的弯曲和手的关节的自由度(DOF)使用IMU和柔性传感器来控制。手和控制系统的无线连接使用XBee pro 60mW实现,续航里程为1英里。气动软机械手由电磁阀、迷你压缩机、AFPA波纹管和伺服系统组成。这种柔性机械手具有适应性强、结构简单、体积小、灵活性高、能量损失小等优点。作为扩展,使用虚拟现实环境以及自动化农业系统的一些可能方面对机器人进行手动控制可以被视为未来的补充。
{"title":"Design and development of soft robotic hand for vertical farming in spacecraft","authors":"A. Suresh, G. Udupa, Dhruv Gaba","doi":"10.11591/ijra.v9i1.pp6-16","DOIUrl":"https://doi.org/10.11591/ijra.v9i1.pp6-16","url":null,"abstract":"For colonization in deep space we need to explore the feasibility of a bioregenerative system in microgravity or artificial gravity environments. The process has various complexities form ranging to biological obstacles to engineering limitations of the spacecraft. Concentration of microbes in the confinements of a spacecraft can be fatal for the crew. In this paper, a solution to the elevated microbial levels by farming using robots is discussed. The soft robotic arm is made up of Asymmetric Flexible Pneumatic Actuator (AFPA). The AFPA under internal pressure will curve in the direction of the side having greater thickness as the expansion of the thinner side (outside radius) will be more than thicker side (inside radius) due to differential expansion and moment induced due to eccentricity. Simulation results demonstrate that bending based on AFPA can meet the designed requirement of application. The AFPA is used for five fingers of the robotic hand. The safe, soft touch and gentle motion of the bellow (AFPA) gives the feel of real human hand. The internal pressure of the AFPA is controlled using a solenoid valve which is interfaced using an Arduino microcontroller for hand like moves. The bending of the fingers and degree of freedom (DOF) of the joints of the hand is controlled using an IMU and flex sensor. Wireless connection of the hand and the control system is implemented using XBee pro 60mW with a range of 1 miles.The pneumatic soft robotic hand is made up of solenoid valve, Mini Compressor, AFPA bellow, and Servos. This soft robotic hand has many advantages such as good adaptability, simple structure, small size, high flexibility and less energy loss. As an extension Manual control of the robot using a virtual reality environment and well as some possible aspects of an automated farming systems can be considered as future additions.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47771724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Multi-objective optimization and linear buckling of serial chain of a medical robot tool for soft tissue surgery 一种用于软组织手术的医疗机器人工具系列链的多目标优化和线性屈曲
G. Ilewicz, A. Harlecki
Received Oct 13, 2019 Revised Dec 27, 2019 Accepted Jan 12, 2020 The slender structures of a medical robot may have a tendency to buckling when a force equal to the critical Euler force and an additional disturbance will work on their structures. In this work, eigenvalue problem that describes the linear buckling is under consideration. The main goal of the article is to check when linear buckling phenomenon appears in construction of a medical robot with serial chain due to the fact that for safety reasons of a robot’s work, it is necessary to answer the question, whether the buckling may occur in the robot’s structure. For this purpose, a numerical calculation model was defined by using the finite element method. The values of load factor coefficients that are eigenvalue are determinated and also the eigenvectors that have shapes of deformation for the next eigenvalues are presented. The multi-criteria optimization model was determined to aim for the minimum mass of the effector and the buckling coefficient, from which the Euler force results, for the maximum. The solution was obtained on the basis of Pareto fronts and the MOGA genetic algorithm.
接收日期2019年10月13日修订日期2019年12月27日接受日期2020年1月12日当等于临界欧拉力的力和额外的扰动作用于医疗机器人的细长结构时,其结构可能有屈曲的趋势。在这项工作中,描述线性屈曲的特征值问题正在考虑之中。本文的主要目的是检查具有串联链的医疗机器人在结构中何时出现线性屈曲现象,因为出于机器人工作的安全原因,有必要回答机器人结构中是否会出现屈曲的问题。为此,使用有限元方法定义了一个数值计算模型。确定了作为特征值的载荷系数的值,并给出了下一个特征值的具有变形形状的特征向量。确定了多准则优化模型,以使效应器的质量最小,并使产生欧拉力的屈曲系数最大。在Pareto前沿和MOGA遗传算法的基础上得到了解。
{"title":"Multi-objective optimization and linear buckling of serial chain of a medical robot tool for soft tissue surgery","authors":"G. Ilewicz, A. Harlecki","doi":"10.11591/ijra.v9i1.pp17-25","DOIUrl":"https://doi.org/10.11591/ijra.v9i1.pp17-25","url":null,"abstract":"Received Oct 13, 2019 Revised Dec 27, 2019 Accepted Jan 12, 2020 The slender structures of a medical robot may have a tendency to buckling when a force equal to the critical Euler force and an additional disturbance will work on their structures. In this work, eigenvalue problem that describes the linear buckling is under consideration. The main goal of the article is to check when linear buckling phenomenon appears in construction of a medical robot with serial chain due to the fact that for safety reasons of a robot’s work, it is necessary to answer the question, whether the buckling may occur in the robot’s structure. For this purpose, a numerical calculation model was defined by using the finite element method. The values of load factor coefficients that are eigenvalue are determinated and also the eigenvectors that have shapes of deformation for the next eigenvalues are presented. The multi-criteria optimization model was determined to aim for the minimum mass of the effector and the buckling coefficient, from which the Euler force results, for the maximum. The solution was obtained on the basis of Pareto fronts and the MOGA genetic algorithm.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47041061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1