Pub Date : 2025-06-19DOI: 10.1109/LMWT.2025.3579399
Xinyi Chen;Qianyin Xiang
This letter introduces a group delay controller (GDC) based on reflective tunable filter with tunable frequency and tunable group delay. The wideband nonlinear conversion of the reflective low-pass delay network to the reflective bandpass delay network was studied, and the deterioration of tunable group delay response was analyzed. Asymmetric tuned reflective topology with self-coupling coefficients was used to compensate for the flatness of the in-band group delay. As a demonstration, a reflective tunable group delay circuit was designed based on tunable quarter-wavelength microstrip resonator and feeding network with tunable external quality factor ($Q_{e}$ ). The measurements show that the GDC can be tuned from 8 to 20 ns, with a tunable center frequency from 0.8 to 1 GHz.
{"title":"A Novel Group Delay Controller Based on Reflective Tunable Filter","authors":"Xinyi Chen;Qianyin Xiang","doi":"10.1109/LMWT.2025.3579399","DOIUrl":"https://doi.org/10.1109/LMWT.2025.3579399","url":null,"abstract":"This letter introduces a group delay controller (GDC) based on reflective tunable filter with tunable frequency and tunable group delay. The wideband nonlinear conversion of the reflective low-pass delay network to the reflective bandpass delay network was studied, and the deterioration of tunable group delay response was analyzed. Asymmetric tuned reflective topology with self-coupling coefficients was used to compensate for the flatness of the in-band group delay. As a demonstration, a reflective tunable group delay circuit was designed based on tunable quarter-wavelength microstrip resonator and feeding network with tunable external quality factor (<inline-formula> <tex-math>$Q_{e}$ </tex-math></inline-formula>). The measurements show that the GDC can be tuned from 8 to 20 ns, with a tunable center frequency from 0.8 to 1 GHz.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 9","pages":"1300-1303"},"PeriodicalIF":3.4,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145078600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This letter presents a K-band power amplifier (PA) monolithic microwave integrated circuit (MMIC) with frequency reconfigurable operation in a 0.15-$mu text {m}$ GaN-on-SiC process. The proposed reconfigurable PA (RPA) is composed of a broadband output power stage and a driver stage with a reconfigurable interstage matching network (ISMN). Frequency reconfiguration is achieved by combining and embedding a switch-loaded coupled line (SLCL) and a switch-loaded transmission line (SLTL) inductor within the ISMN. The operating frequency band of the proposed RPA can be changed using the switch device in ISMN. Measurements results indicate that the proposed RPA features a maximum power-added efficiency (PAE) of 26.5% and an output power of over 30 dBm at a lower frequency band (19.5–21.5 GHz). When configured at a higher frequency operating mode, the RPA achieves a maximum PAE of 21% and an output power over 30 dBm at 23.5–25.5 GHz. The modulation tests are performed using a 100-MHz 64-QAM modulated signal with 6.09-dB peak-to-average power ratio (PAPR). The proposed RPA achieves better than −27.5-dBc adjacent channel leakage ratio (ACLR) at 19.5 GHz and −29 dBc at 24.5 GHz without digital predistortion (DPD), respectively.
{"title":"A K-Band Reconfigurable GaN Power Amplifier Using Switch-Loaded Coupled Line","authors":"Xin He;Haoshen Zhu;Dingyuan Zeng;Zhikai Hu;Shaowei Liao;Quan Xue","doi":"10.1109/LMWT.2025.3578417","DOIUrl":"https://doi.org/10.1109/LMWT.2025.3578417","url":null,"abstract":"This letter presents a K-band power amplifier (PA) monolithic microwave integrated circuit (MMIC) with frequency reconfigurable operation in a 0.15-<inline-formula> <tex-math>$mu text {m}$ </tex-math></inline-formula> GaN-on-SiC process. The proposed reconfigurable PA (RPA) is composed of a broadband output power stage and a driver stage with a reconfigurable interstage matching network (ISMN). Frequency reconfiguration is achieved by combining and embedding a switch-loaded coupled line (SLCL) and a switch-loaded transmission line (SLTL) inductor within the ISMN. The operating frequency band of the proposed RPA can be changed using the switch device in ISMN. Measurements results indicate that the proposed RPA features a maximum power-added efficiency (PAE) of 26.5% and an output power of over 30 dBm at a lower frequency band (19.5–21.5 GHz). When configured at a higher frequency operating mode, the RPA achieves a maximum PAE of 21% and an output power over 30 dBm at 23.5–25.5 GHz. The modulation tests are performed using a 100-MHz 64-QAM modulated signal with 6.09-dB peak-to-average power ratio (PAPR). The proposed RPA achieves better than −27.5-dBc adjacent channel leakage ratio (ACLR) at 19.5 GHz and −29 dBc at 24.5 GHz without digital predistortion (DPD), respectively.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 9","pages":"1408-1411"},"PeriodicalIF":3.4,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145078684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-18DOI: 10.1109/LMWT.2025.3578244
M. Baranowski;A. Pons-Abenza;I. Arregui;T. Lopetegi;G. Álvarez-Botero;A. Lamecki;M. A. G. Laso;P. Martin-Iglesias
In this letter, a novel design for a 3-D-printed, self-supported coaxial-line X-band filter is presented. The filter is intended for Earth observation (EO) data downlink systems, where it must effectively reject signals in a wide frequency range. The filter design incorporates a 15th-order low-pass filter structure with a smooth profile, integrated with a short bandpass section with four $lambda /4$ short-circuited stubs. The optimization of the low-pass section is attained by means of shape deformation, including the inner and outer coaxial conductors, and leads to a wide rejection band up to around 40 GHz, to suppress the third harmonic and other undesired out-of-band frequencies. A prototype was fabricated in one piece in an aluminum alloy using selective laser melting (SLM) and measured, exhibiting excellent agreement with simulations. In terms of out-of-band performance, the proposed coaxial-line filter is superior to other related state-of-the-art solutions.
{"title":"A 3-D-Printing-Oriented Coaxial-Line Filter With Wide Out-of-Band Rejection","authors":"M. Baranowski;A. Pons-Abenza;I. Arregui;T. Lopetegi;G. Álvarez-Botero;A. Lamecki;M. A. G. Laso;P. Martin-Iglesias","doi":"10.1109/LMWT.2025.3578244","DOIUrl":"https://doi.org/10.1109/LMWT.2025.3578244","url":null,"abstract":"In this letter, a novel design for a 3-D-printed, self-supported coaxial-line X-band filter is presented. The filter is intended for Earth observation (EO) data downlink systems, where it must effectively reject signals in a wide frequency range. The filter design incorporates a 15th-order low-pass filter structure with a smooth profile, integrated with a short bandpass section with four <inline-formula> <tex-math>$lambda /4$ </tex-math></inline-formula> short-circuited stubs. The optimization of the low-pass section is attained by means of shape deformation, including the inner and outer coaxial conductors, and leads to a wide rejection band up to around 40 GHz, to suppress the third harmonic and other undesired out-of-band frequencies. A prototype was fabricated in one piece in an aluminum alloy using selective laser melting (SLM) and measured, exhibiting excellent agreement with simulations. In terms of out-of-band performance, the proposed coaxial-line filter is superior to other related state-of-the-art solutions.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 9","pages":"1292-1295"},"PeriodicalIF":3.4,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145078605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-18DOI: 10.1109/LMWT.2025.3578707
Xinyu Zhang;Yongle Wu;Wei Zhao;Shiyu Xie;Zhuoyin Chen;Weimin Wang
This letter presents a compact dual-band filtering power divider (DBFPD) based on a novel dual-$pi $ -type matching circuit (MC). The proposed dual-$pi $ -type MC achieves precise dual-band matching through analytical design, and integrated hybrid resonators (HRs) significantly enhance the bandwidth of passbands. Three independently controllable transmission zeros (TZs) of DBFPD improve stopband rejection and frequency selectivity. To validate the design, a DBFPD working at 8.9 and 21.6 GHz with a compact size of $1.9times 3.1$ mm2 is fabricated and measured using integrated passive device (IPD). The design achieves low insertion loss (IL) and wide bandwidth, with minimum ILs of 0.43 and 0.47 dB and 3-dB bandwidths of 50% and 33.5%, respectively.
{"title":"A Novel IPD-Based Dual-Band Filtering Power Divider Chip Across X-Band and K-Band","authors":"Xinyu Zhang;Yongle Wu;Wei Zhao;Shiyu Xie;Zhuoyin Chen;Weimin Wang","doi":"10.1109/LMWT.2025.3578707","DOIUrl":"https://doi.org/10.1109/LMWT.2025.3578707","url":null,"abstract":"This letter presents a compact dual-band filtering power divider (DBFPD) based on a novel dual-<inline-formula> <tex-math>$pi $ </tex-math></inline-formula>-type matching circuit (MC). The proposed dual-<inline-formula> <tex-math>$pi $ </tex-math></inline-formula>-type MC achieves precise dual-band matching through analytical design, and integrated hybrid resonators (HRs) significantly enhance the bandwidth of passbands. Three independently controllable transmission zeros (TZs) of DBFPD improve stopband rejection and frequency selectivity. To validate the design, a DBFPD working at 8.9 and 21.6 GHz with a compact size of <inline-formula> <tex-math>$1.9times 3.1$ </tex-math></inline-formula> mm<sup>2</sup> is fabricated and measured using integrated passive device (IPD). The design achieves low insertion loss (IL) and wide bandwidth, with minimum ILs of 0.43 and 0.47 dB and 3-dB bandwidths of 50% and 33.5%, respectively.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 9","pages":"1420-1423"},"PeriodicalIF":3.4,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145078604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-17DOI: 10.1109/LMWT.2025.3577359
Meicheng Liu;Yuefeng Hou;Zhenshuai Fu;Shuang Zheng;Tianjie Guo;Liqi Yang;Jin Wu;Kaixue Ma
This letter reports a 7-bit 360° multifunction reconfigurable phase shifter (RPS) with independently tuned transmission and reflection modes. The proposed RPS is a promising candidate for multibit reconfigurable intelligent surfaces (RISs) with high gain and full-space coverage. First, the novel topology and design method of the multifunction RPS are proposed in this letter for the first time. The proposed RPS can provide time-division independent 360° transmission and reflection phase tuning with a single shared reflection-type phase shifter topology. Second, in the transmission mode, a two-step phase extraction method is adopted, obtaining a 360° phase shift with low phase steps and a simplified process. The traversal states are reduced by (1–$2^{1 - n}$ ) $times 100$ % for an n-bit varactor. Third, in the reflection mode, the equivalent topology in the reflection mode is enhanced to enable a 360° phase shift with moderate phase steps as well. Finally, our proof-of-concept RPS design is implemented in PCB technology. The proposed RPS exhibits a phase range of 369° with an insertion loss of $2.26~pm ~0.74$ dB in transmission mode, and a phase range of 365° with an insertion loss of $3.07~pm ~1.53$ dB in reflection mode at 2.45 GHz.
{"title":"Multifunction Reconfigurable Phase Shifter With Independent 360° Transmission and Reflection Phase Tuning for Multibit Reconfigurable Intelligent Surface","authors":"Meicheng Liu;Yuefeng Hou;Zhenshuai Fu;Shuang Zheng;Tianjie Guo;Liqi Yang;Jin Wu;Kaixue Ma","doi":"10.1109/LMWT.2025.3577359","DOIUrl":"https://doi.org/10.1109/LMWT.2025.3577359","url":null,"abstract":"This letter reports a 7-bit 360° multifunction reconfigurable phase shifter (RPS) with independently tuned transmission and reflection modes. The proposed RPS is a promising candidate for multibit reconfigurable intelligent surfaces (RISs) with high gain and full-space coverage. First, the novel topology and design method of the multifunction RPS are proposed in this letter for the first time. The proposed RPS can provide time-division independent 360° transmission and reflection phase tuning with a single shared reflection-type phase shifter topology. Second, in the transmission mode, a two-step phase extraction method is adopted, obtaining a 360° phase shift with low phase steps and a simplified process. The traversal states are reduced by (1–<inline-formula> <tex-math>$2^{1 - n}$ </tex-math></inline-formula>) <inline-formula> <tex-math>$times 100$ </tex-math></inline-formula>% for an <italic>n</i>-bit varactor. Third, in the reflection mode, the equivalent topology in the reflection mode is enhanced to enable a 360° phase shift with moderate phase steps as well. Finally, our proof-of-concept RPS design is implemented in PCB technology. The proposed RPS exhibits a phase range of 369° with an insertion loss of <inline-formula> <tex-math>$2.26~pm ~0.74$ </tex-math></inline-formula> dB in transmission mode, and a phase range of 365° with an insertion loss of <inline-formula> <tex-math>$3.07~pm ~1.53$ </tex-math></inline-formula> dB in reflection mode at 2.45 GHz.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 9","pages":"1328-1331"},"PeriodicalIF":3.4,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145078638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-17DOI: 10.1109/LMWT.2025.3578337
Wonsub Lim;Yaw A. Mensah;Arya Moradinia;MoonKyu Cho;John D. Cressler
An ultrabroadband Wilkinson power divider employing a single-folded inductor is presented. Unlike conventional designs with discrete inductors, this work utilizes a multisection topology with a symmetric inductor that leverages mutual inductance to significantly extend the fractional bandwidth (FBW). The divider achieves over 10-dB return loss and isolation across 2.2–82 GHz, corresponding to a 190% FBW. Plus, custom-designed metal-oxide–metal (MOM) shunt capacitors and resistors are embedded at the crossing section of the inductor paths to reduce parasitic inductance and additional loss, achieving 2.2-dB insertion loss at 80 GHz. Furthermore, the measured amplitude and phase imbalances are under 0.1 dB and 0.3°, respectively, due to a novel electrical length compensation technique. To the best of the authors’ knowledge, this design offers the widest FBW reported to date among Wilkinson power dividers.
{"title":"A 2.2–82-GHz Ultrabroadband Wilkinson Power Divider Using a Multisection Folded Inductor in 130-nm SiGe BiCMOS","authors":"Wonsub Lim;Yaw A. Mensah;Arya Moradinia;MoonKyu Cho;John D. Cressler","doi":"10.1109/LMWT.2025.3578337","DOIUrl":"https://doi.org/10.1109/LMWT.2025.3578337","url":null,"abstract":"An ultrabroadband Wilkinson power divider employing a single-folded inductor is presented. Unlike conventional designs with discrete inductors, this work utilizes a multisection topology with a symmetric inductor that leverages mutual inductance to significantly extend the fractional bandwidth (FBW). The divider achieves over 10-dB return loss and isolation across 2.2–82 GHz, corresponding to a 190% FBW. Plus, custom-designed metal-oxide–metal (MOM) shunt capacitors and resistors are embedded at the crossing section of the inductor paths to reduce parasitic inductance and additional loss, achieving 2.2-dB insertion loss at 80 GHz. Furthermore, the measured amplitude and phase imbalances are under 0.1 dB and 0.3°, respectively, due to a novel electrical length compensation technique. To the best of the authors’ knowledge, this design offers the widest FBW reported to date among Wilkinson power dividers.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 9","pages":"1320-1323"},"PeriodicalIF":3.4,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145078671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-17DOI: 10.1109/LMWT.2025.3578308
Min-Gyun Kim;Tae-Hoon Kim;Mun-Kyo Lee;Jung-Dong Park
We present a hybrid power amplifier (PA) using a three-stacked FET architecture in 65-nm bulk CMOS technology. To handle high voltage swings under a 3.3-V supply, the top stack FET uses a 2.5-V thick-oxide device, while thin-oxide devices are used in the first and second stacks. Properly sized capacitors are incorporated at each gate node to ensure impedance matching and proper voltage distribution. A current-mode combiner at both input and output forms a four-way structure for enhanced output power and efficiency. The fabricated PA achieves a power gain of 23.2 dB, a 3-dB bandwidth of 1 GHz, a peak power-added efficiency (PAE) of 24%, and a saturated output power (Psat) of 20.9 dBm. Under 256-QAM modulation, it delivers an error vector magnitude (EVM) less than −35 dB, an average output power of 12.7 dBm, an average PAE of 4.58%, and an adjacent channel power ratio (ACPR) of −33.5 dBc. Reliability tests confirm that the proposed architecture successfully meets JEDEC standards in both high-temperature operating life (HTOL) and highly accelerated stress test (HAST), thereby demonstrating stable and reliable performance.
{"title":"An X-Band Hybrid Three-Stack Power Amplifier With High Reliability in 65-nm Bulk CMOS","authors":"Min-Gyun Kim;Tae-Hoon Kim;Mun-Kyo Lee;Jung-Dong Park","doi":"10.1109/LMWT.2025.3578308","DOIUrl":"https://doi.org/10.1109/LMWT.2025.3578308","url":null,"abstract":"We present a hybrid power amplifier (PA) using a three-stacked FET architecture in 65-nm bulk CMOS technology. To handle high voltage swings under a 3.3-V supply, the top stack FET uses a 2.5-V thick-oxide device, while thin-oxide devices are used in the first and second stacks. Properly sized capacitors are incorporated at each gate node to ensure impedance matching and proper voltage distribution. A current-mode combiner at both input and output forms a four-way structure for enhanced output power and efficiency. The fabricated PA achieves a power gain of 23.2 dB, a 3-dB bandwidth of 1 GHz, a peak power-added efficiency (PAE) of 24%, and a saturated output power (Psat) of 20.9 dBm. Under 256-QAM modulation, it delivers an error vector magnitude (EVM) less than −35 dB, an average output power of 12.7 dBm, an average PAE of 4.58%, and an adjacent channel power ratio (ACPR) of −33.5 dBc. Reliability tests confirm that the proposed architecture successfully meets JEDEC standards in both high-temperature operating life (HTOL) and highly accelerated stress test (HAST), thereby demonstrating stable and reliable performance.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 9","pages":"1412-1415"},"PeriodicalIF":3.4,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145078659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-17DOI: 10.1109/LMWT.2025.3576996
Jordi Verdú;Tobías Amarilla;Yaqing Shen;Sebastian Pazos;Mario Lanza;Pedro de Paco
RF/microwave systems with large number of elements usually require switching elements with very small footprint, but providing very good electrical performance, low switching times, and good power-handling capabilities. In this sense, nonvolatile switches based on 2-D materials are emerging as a very suitable alternative to CMOS or MEMS-based technologies, mainly due to the capability of keeping a certain state with no energy consumption. In this article, different switches have been designed and fabricated using a multilayered structure based on 18 2-D hexagonal boron nitride (hBN) layers on three different substrates, high-resistivity silicon, quartz, and polycrystaline CVD diamond. The proposed device has been characterized in a frequency range up to 26.5 GHz for these three substrates. The ON-state resistance and off-state capacitance have been extracted from experimental data using an equivalent electric model being $28~Omega $ and 22 fF, leading to insertion losses (ILs) better than 2.5 dB in case of CVD diamond, and isolation better than 10 dB in case of quartz, for the on- and off-states, respectively.
{"title":"Characterization of Nonvolatile Switches Based on 2-D Multilayered hBN Memristors for High-Frequency Applications","authors":"Jordi Verdú;Tobías Amarilla;Yaqing Shen;Sebastian Pazos;Mario Lanza;Pedro de Paco","doi":"10.1109/LMWT.2025.3576996","DOIUrl":"https://doi.org/10.1109/LMWT.2025.3576996","url":null,"abstract":"RF/microwave systems with large number of elements usually require switching elements with very small footprint, but providing very good electrical performance, low switching times, and good power-handling capabilities. In this sense, nonvolatile switches based on 2-D materials are emerging as a very suitable alternative to CMOS or MEMS-based technologies, mainly due to the capability of keeping a certain state with no energy consumption. In this article, different switches have been designed and fabricated using a multilayered structure based on 18 2-D hexagonal boron nitride (hBN) layers on three different substrates, high-resistivity silicon, quartz, and polycrystaline CVD diamond. The proposed device has been characterized in a frequency range up to 26.5 GHz for these three substrates. The ON-state resistance and <sc>off</small>-state capacitance have been extracted from experimental data using an equivalent electric model being <inline-formula> <tex-math>$28~Omega $ </tex-math></inline-formula> and 22 fF, leading to insertion losses (ILs) better than 2.5 dB in case of CVD diamond, and isolation better than 10 dB in case of quartz, for the <sc>on</small>- and <sc>off</small>-states, respectively.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 9","pages":"1380-1383"},"PeriodicalIF":3.4,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11038831","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145078634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This letter presents an ultrawideband, ultralow scattering, dual-polarized, and lightweight absorber under wide-angle incidences, which utilizes multilayer indium tin oxide (ITO) films. Based on the multimode resonance (MR) and ultra-wideband impedance matching (UWIM) absorption principles, ITO square ring patterns with different sizes are configured in a pyramid shape on eight layers of foam substrate. Under normal incidence, the absorption rates of transverse electric (TE) waves and transverse magnetic (TM) waves for the ITO absorber exceed 99% from 1.9 to 40.4 GHz [the fractional bandwidth (FBW) is 182.03%], covering the S, C, X, Ku, K and Ka microwave bands. Under oblique incidence covering a 60° range, the ITO absorber exhibits over 90% absorption for TE waves within 3.6–43.1 GHz (169.2%). Similarly, it demonstrates over 90% absorption for TM waves in 3.06–43 GHz (173.4%). To investigate the absorption mechanism of the ITO absorber, a detailed analysis of its surface current distribution and equivalent circuit model (ECM) is conducted. Finally, an ITO absorber prototype with dimensions of $300times 300$ mm2 is fabricated. The simulated and measured results are in good agreement.
{"title":"An Ultrawideband and Ultralow Scattering ITO Absorber Under Wide-Angle Incidences","authors":"Qingqi He;Jianxun Su;Meijun Qu;Lan Lu;Hongcheng Yin","doi":"10.1109/LMWT.2025.3574000","DOIUrl":"https://doi.org/10.1109/LMWT.2025.3574000","url":null,"abstract":"This letter presents an ultrawideband, ultralow scattering, dual-polarized, and lightweight absorber under wide-angle incidences, which utilizes multilayer indium tin oxide (ITO) films. Based on the multimode resonance (MR) and ultra-wideband impedance matching (UWIM) absorption principles, ITO square ring patterns with different sizes are configured in a pyramid shape on eight layers of foam substrate. Under normal incidence, the absorption rates of transverse electric (TE) waves and transverse magnetic (TM) waves for the ITO absorber exceed 99% from 1.9 to 40.4 GHz [the fractional bandwidth (FBW) is 182.03%], covering the S, C, X, Ku, K and Ka microwave bands. Under oblique incidence covering a 60° range, the ITO absorber exhibits over 90% absorption for TE waves within 3.6–43.1 GHz (169.2%). Similarly, it demonstrates over 90% absorption for TM waves in 3.06–43 GHz (173.4%). To investigate the absorption mechanism of the ITO absorber, a detailed analysis of its surface current distribution and equivalent circuit model (ECM) is conducted. Finally, an ITO absorber prototype with dimensions of <inline-formula> <tex-math>$300times 300$ </tex-math></inline-formula> mm<sup>2</sup> is fabricated. The simulated and measured results are in good agreement.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 9","pages":"1324-1327"},"PeriodicalIF":3.4,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145078596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}