Pub Date : 2023-01-01DOI: 10.1109/OJUFFC.2023.3308486
Sebastien Salles;François Varray;Damien Garcia;Hervé Liebgott;Barbara Nicolas
Improving the image quality of 3D high-frame-rate (HFR) echocardiography has become an important research focus. Diverging Waves techniques have already shown promising results in 3D ultrasound imaging. However, phase delays induced by large tissue displacements between ultrasound transmission can deteriorate the compounding process. Motion compensation (MoCo) approaches have been introduced and integrated into the compounding process in 2-D and in 3-D simulated ultrasound volume. Here, we propose to investigate the influence of the MoCo approach on different scenarios, including several 3-D diverging wave strategies and configurations of virtual sources. First, we proposed to formalize the placement of virtual sources according to different scenarios. Then the proposed method has been tested on numerical simulations using Field II, and in vitro experimentations with a homemade rotating phantom. The nine approaches were compared quantitatively by estimating the contrast to noise (CNR) and contrast ratio (CR). The results confirmed that MoCo increased the CNR and CR for each case. On average, the MoCo algorithm increased the CNR/CR by ${mathcal {C}}$ 3.2/8.4 dB in silico, and of ${mathcal {C}}$ 1.4/1.8 dB in vitro, respectively.
{"title":"3-D High Frame Rate Imaging With Motion Compensation (3-D HFR With MoCo): An Experimental Evaluation","authors":"Sebastien Salles;François Varray;Damien Garcia;Hervé Liebgott;Barbara Nicolas","doi":"10.1109/OJUFFC.2023.3308486","DOIUrl":"https://doi.org/10.1109/OJUFFC.2023.3308486","url":null,"abstract":"Improving the image quality of 3D high-frame-rate (HFR) echocardiography has become an important research focus. Diverging Waves techniques have already shown promising results in 3D ultrasound imaging. However, phase delays induced by large tissue displacements between ultrasound transmission can deteriorate the compounding process. Motion compensation (MoCo) approaches have been introduced and integrated into the compounding process in 2-D and in 3-D simulated ultrasound volume. Here, we propose to investigate the influence of the MoCo approach on different scenarios, including several 3-D diverging wave strategies and configurations of virtual sources. First, we proposed to formalize the placement of virtual sources according to different scenarios. Then the proposed method has been tested on numerical simulations using Field II, and in vitro experimentations with a homemade rotating phantom. The nine approaches were compared quantitatively by estimating the contrast to noise (CNR) and contrast ratio (CR). The results confirmed that MoCo increased the CNR and CR for each case. On average, the MoCo algorithm increased the CNR/CR by <inline-formula> <tex-math notation=\"LaTeX\">${mathcal {C}}$ </tex-math></inline-formula>3.2/8.4 dB in silico, and of <inline-formula> <tex-math notation=\"LaTeX\">${mathcal {C}}$ </tex-math></inline-formula>1.4/1.8 dB in vitro, respectively.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"3 ","pages":"137-145"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9292640/10031625/10230272.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49930454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1109/OJUFFC.2023.3274512
Alexandre Corazza;Pauline Muleki-Seya;Adrian Basarab;Barbara Nicolas
Ultrasound localization microscopy (ULM) enables the evaluation of the vascular microstructure by detecting, localizing, and tracking microbubbles (MBs) in the vascular network. ULM provides a vascular map of the network with improved spatial resolution but with an acquisition time of several minutes. Thus, it is of great importance to increase the number of MBs detected in order to limit the acquisition time. The standard MB detection method in ULM assumes that the contrast agents are the highest-intensity structures on the ultrasound images. However, in vivo data show that MB intensity may be lower than residual tissue or even noise. Thus, to facilitate the detection of these MBs, an MB detector based on decision theory is proposed in this paper. In this study, the proposed method based on the Neyman–Pearson criterion is compared with the standard intensity-based and the normalized cross-correlation detection methods on simulated and in vivo rat brain and kidney data. The new detection method makes it possible to control the false positive detection rate without degrading the MB detection rate on simulated data, to enhance the ULM vessel map resolution on in vivo brain data and to detect more vessels on in vivo kidney data.
{"title":"Microbubble Identification Based on Decision Theory for Ultrasound Localization Microscopy","authors":"Alexandre Corazza;Pauline Muleki-Seya;Adrian Basarab;Barbara Nicolas","doi":"10.1109/OJUFFC.2023.3274512","DOIUrl":"https://doi.org/10.1109/OJUFFC.2023.3274512","url":null,"abstract":"Ultrasound localization microscopy (ULM) enables the evaluation of the vascular microstructure by detecting, localizing, and tracking microbubbles (MBs) in the vascular network. ULM provides a vascular map of the network with improved spatial resolution but with an acquisition time of several minutes. Thus, it is of great importance to increase the number of MBs detected in order to limit the acquisition time. The standard MB detection method in ULM assumes that the contrast agents are the highest-intensity structures on the ultrasound images. However, in vivo data show that MB intensity may be lower than residual tissue or even noise. Thus, to facilitate the detection of these MBs, an MB detector based on decision theory is proposed in this paper. In this study, the proposed method based on the Neyman–Pearson criterion is compared with the standard intensity-based and the normalized cross-correlation detection methods on simulated and in vivo rat brain and kidney data. The new detection method makes it possible to control the false positive detection rate without degrading the MB detection rate on simulated data, to enhance the ULM vessel map resolution on in vivo brain data and to detect more vessels on in vivo kidney data.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"3 ","pages":"41-55"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9292640/10031625/10122512.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49959013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1109/OJUFFC.2023.3275936
Sapna R. Bisht;Vishwas V. Trivedi;Rohit Bhardwaj;Chandan K. Jha;Debabrata Ghosh;Himanshu Shekhar
Contrast-enhanced imaging has grown significantly in the past two decades. Technology has evolved from imaging based on linear principles to elaborate pulsing and microbubble-specific detection strategies. This review provides a broad overview of the research published on these topics, emphasizing the progress made, current challenges, and future research considerations. We cover the physical and conceptual underpinnings of imaging based on ultrasound contrast agents, focused on pulsing and detection strategies. The techniques proposed are categorized according to the underlying fundamental physical and signal processing principles. We revisit methods that were previously only of academic interest and may now be clinically feasible with advances in computation and hardware. We discuss unmet challenges and opportunities originating from developments in other sub-fields of ultrasound imaging to enable wider clinical adoption of contrast-enhanced ultrasound.
{"title":"Pulsing and Detection Strategies for Contrast-Enhanced Ultrasound: A Narrative Review","authors":"Sapna R. Bisht;Vishwas V. Trivedi;Rohit Bhardwaj;Chandan K. Jha;Debabrata Ghosh;Himanshu Shekhar","doi":"10.1109/OJUFFC.2023.3275936","DOIUrl":"https://doi.org/10.1109/OJUFFC.2023.3275936","url":null,"abstract":"Contrast-enhanced imaging has grown significantly in the past two decades. Technology has evolved from imaging based on linear principles to elaborate pulsing and microbubble-specific detection strategies. This review provides a broad overview of the research published on these topics, emphasizing the progress made, current challenges, and future research considerations. We cover the physical and conceptual underpinnings of imaging based on ultrasound contrast agents, focused on pulsing and detection strategies. The techniques proposed are categorized according to the underlying fundamental physical and signal processing principles. We revisit methods that were previously only of academic interest and may now be clinically feasible with advances in computation and hardware. We discuss unmet challenges and opportunities originating from developments in other sub-fields of ultrasound imaging to enable wider clinical adoption of contrast-enhanced ultrasound.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"3 ","pages":"56-69"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9292640/10031625/10124036.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49959014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1109/OJUFFC.2023.3285204
Christopher Flood;Penina Axelrad;Joanna Hinks
Low size, weight, and power (SWaP) clocks are expected to play a key role in new positioning, navigation, and timing (PNT) systems, providing augmentations or alternatives to conventional global navigation satellite systems (GNSS). Distributing high-quality PNT services from payloads with more limited resources than GNSS satellites requires signal generation from low SWaP hardware. This paper describes stable signal synthesis based on a low cost clock ensemble using software defined radio (SDR) metrology techniques and clock ensemble algorithms. First, the capacity to accurately characterize the stability of different clocks using the SDR is demonstrated. Experimental results then establish the ability to steer an oven controlled crystal oscillator (OCXO), initially to a single reference clock signal, and then to the implicit ensemble mean (IEM) of three chip scale atomic clocks (CSACs). This steered output signal has noise comparable to the short term stability of the OCXO and long term stability similar to the best clock in the ensemble.
{"title":"The Formation of a Chip Scale Atomic Clock Ensemble Using Software Defined Radios","authors":"Christopher Flood;Penina Axelrad;Joanna Hinks","doi":"10.1109/OJUFFC.2023.3285204","DOIUrl":"https://doi.org/10.1109/OJUFFC.2023.3285204","url":null,"abstract":"Low size, weight, and power (SWaP) clocks are expected to play a key role in new positioning, navigation, and timing (PNT) systems, providing augmentations or alternatives to conventional global navigation satellite systems (GNSS). Distributing high-quality PNT services from payloads with more limited resources than GNSS satellites requires signal generation from low SWaP hardware. This paper describes stable signal synthesis based on a low cost clock ensemble using software defined radio (SDR) metrology techniques and clock ensemble algorithms. First, the capacity to accurately characterize the stability of different clocks using the SDR is demonstrated. Experimental results then establish the ability to steer an oven controlled crystal oscillator (OCXO), initially to a single reference clock signal, and then to the implicit ensemble mean (IEM) of three chip scale atomic clocks (CSACs). This steered output signal has noise comparable to the short term stability of the OCXO and long term stability similar to the best clock in the ensemble.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"3 ","pages":"77-87"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9292640/10031625/10147872.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49930449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Piezoelectric micromachined ultrasonic transducers (PMUTs) with multiple electrodes can be utilized as multi-frequency transducers by exciting selected vibration modes of the diaphragm providing configurability that may be beneficial in modern ultrasound imaging and therapeutic techniques. This requires judicious arrangement of the electrode configuration to excite the desired modes or combination of modes. Optimization of the electrode pattern can be done using full electroacoustic Finite Element Method (FEM) simulations, but this is computationally intensive and gives limited insight into the underlying physics. This paper presents a simple and efficient approach based on the in-vacuum strain mode shapes of the PMUT diaphragm to optimize the electrode configurations for an arbitrary PMUT cell resonating at any flexural mode. Strain mode shapes are obtained both from an analytical model as well as FEM. The proposed method is compared to and verified by full electroacoustic FEM simulations of PMUTs radiating into water. The optimal electrode patterns for the first few flexural modes are found for rectangular PMUTs with three different length-to-width aspect ratios, and examples of configurable PMUTs are given by combining the optimal electrodes at two different modes.
{"title":"Electrode Design Based on Strain Mode Shapes for Configurable PMUTs","authors":"Amirfereydoon Mansoori;Lars Hoff;Hamed Salmani;Einar Halvorsen","doi":"10.1109/OJUFFC.2023.3289169","DOIUrl":"https://doi.org/10.1109/OJUFFC.2023.3289169","url":null,"abstract":"Piezoelectric micromachined ultrasonic transducers (PMUTs) with multiple electrodes can be utilized as multi-frequency transducers by exciting selected vibration modes of the diaphragm providing configurability that may be beneficial in modern ultrasound imaging and therapeutic techniques. This requires judicious arrangement of the electrode configuration to excite the desired modes or combination of modes. Optimization of the electrode pattern can be done using full electroacoustic Finite Element Method (FEM) simulations, but this is computationally intensive and gives limited insight into the underlying physics. This paper presents a simple and efficient approach based on the in-vacuum strain mode shapes of the PMUT diaphragm to optimize the electrode configurations for an arbitrary PMUT cell resonating at any flexural mode. Strain mode shapes are obtained both from an analytical model as well as FEM. The proposed method is compared to and verified by full electroacoustic FEM simulations of PMUTs radiating into water. The optimal electrode patterns for the first few flexural modes are found for rectangular PMUTs with three different length-to-width aspect ratios, and examples of configurable PMUTs are given by combining the optimal electrodes at two different modes.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"3 ","pages":"88-100"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9292640/10031625/10160009.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49930450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1109/OJUFFC.2023.3289783
Bikash K. Sinha;Qingtao Sun
Formation anisotropic constants play an important role in the determination of formation stresses, fractures, lithology, and mechanical properties. These formation characteristics provide critical inputs to wellbore stability during drilling and optimal completion designs of hydrocarbon bearing reservoirs. However, there are no available techniques for the estimation of a sub-set of formation anisotropic constants using Logging-While-Drilling (LWD) sonic data. Inversion of LWD-sonic data for anisotropic constants is rather challenging because of a strong coupling between the collar-flexural and formation-flexural modes propagating along the borehole. The influence of a strong coupling between the collar and formation flexural modes on LWD-sonic data are significantly different in fast and slow formations. Consequently, frequency dependent sensitivities of the measured collar and formation flexural dispersions to changes in the formation anisotropic constants are significantly different as well. New inversion algorithms provide estimates of a sub-set of Transversely-Isotropic (TI)-constants from measured collar and formation flexural dispersions in both fast and slow formations. Computational results confirm validity of the proposed algorithms using synthetic dispersion data obtained in a fast Bakken shale and slow Austin chalk TI-formations in the presence of a drill-collar to account for the LWD sonic tool in a liquid-filled borehole.
{"title":"Formation Anisotropic Constants From Sonic Data Acquired While Drilling","authors":"Bikash K. Sinha;Qingtao Sun","doi":"10.1109/OJUFFC.2023.3289783","DOIUrl":"https://doi.org/10.1109/OJUFFC.2023.3289783","url":null,"abstract":"Formation anisotropic constants play an important role in the determination of formation stresses, fractures, lithology, and mechanical properties. These formation characteristics provide critical inputs to wellbore stability during drilling and optimal completion designs of hydrocarbon bearing reservoirs. However, there are no available techniques for the estimation of a sub-set of formation anisotropic constants using Logging-While-Drilling (LWD) sonic data. Inversion of LWD-sonic data for anisotropic constants is rather challenging because of a strong coupling between the collar-flexural and formation-flexural modes propagating along the borehole. The influence of a strong coupling between the collar and formation flexural modes on LWD-sonic data are significantly different in fast and slow formations. Consequently, frequency dependent sensitivities of the measured collar and formation flexural dispersions to changes in the formation anisotropic constants are significantly different as well. New inversion algorithms provide estimates of a sub-set of Transversely-Isotropic (TI)-constants from measured collar and formation flexural dispersions in both fast and slow formations. Computational results confirm validity of the proposed algorithms using synthetic dispersion data obtained in a fast Bakken shale and slow Austin chalk TI-formations in the presence of a drill-collar to account for the LWD sonic tool in a liquid-filled borehole.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"3 ","pages":"101-112"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9292640/10031625/10164270.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49930451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1109/OJUFFC.2023.3308553
F. G. Mitri
The mean (time-averaged) longitudinal force component (i.e. acting along the direction of wave propagation) arising from the interaction of linearly-polarized plane progressive shear elastic waves, incident upon a sphere embedded in an elastic medium, is considered. Exact partial-wave series expansions are derived based on the integration of the radial component of the time-averaged elastodynamic Poynting vector in spherical coordinates. The method is verified stemming from the law of energy conservation applied to elastic scattering. The analytical modeling is useful and provides improved physical understanding of shear-to-compressional (S $to $ P) mode conversion, as well as shear-to-shear (S $to $ S) and transverse-to-transverse (T $to $ T) mode preservation in the context of the mean elastic force. The elastic wave scattering formulation based on Debye’s shear and transverse potentials is solved first, and used subsequently to derive the mathematical expression of the mean force efficiency. Numerical computations illustrate the analysis with particular emphasis on the components related to mode preservation, coupling and conversion separately. It is shown here that the total force originates from individual interactions of scattering terms between the scattered pure shear (S $to $ S) and transverse (T $to $ T) waves, in addition to shear-to-transverse (S $rightleftarrows $ T) coupling, and a shear-to-compression (S $to $ P) mode conversion that contributes negligibly to the total mean force. The benchmark solution presented in this analysis for the time-averaged elastic force of shear plane progressive waves can be utilized to validate numerical methods (such as the FEM, BEM, FDTD or other). The results can provide a priori information for the optimization and design of experimental setups in various applications in biomedical ultrasound, elastography and elasticity imaging, shear-wave activation of implantable devices, characterization of biological tissue, seismology and other related applications in elastic wave scattering and radiation force.
考虑了入射到嵌入弹性介质中的球体上的线极化平面渐进剪切弹性波的相互作用所产生的平均(时间平均)纵向力分量(即沿波传播方向作用)。基于球坐标下时均弹性动力波印亭矢量径向分量的积分,导出了精确的分波级数展开式。从弹性散射的能量守恒定律出发,对该方法进行了验证。分析建模非常有用,并提供改善的物理理解shear-to-compressional (S P - 美元)模式转换,以及shear-to-shear(美元年代)和transverse-to-transverse (T 美元T)模式上下文中的保护意味着弹性力。首先求解基于德拜剪切势和横向势的弹性波散射公式,然后推导平均力效率的数学表达式。数值计算说明了分析的结果,并分别对模态保持、耦合和转换三个部分进行了分析。这里显示的是总力源于个人交互之间的散射条件分散纯剪(美元年代)和横向(T 美元T)波,除了shear-to-transverse rightleftarrows美元(S T)耦合,和shear-to-compression (S P - 美元)模式变换可忽视地有助于总意味着力量。本文提出的剪切面进行波时均弹性力基准解可用于验证数值方法(如FEM、边界元法、时域有限差分法等)。研究结果可为生物医学超声、弹性成像、可植入设备的剪切波激活、生物组织表征、地震学和其他相关应用中弹性波散射和辐射力的实验装置的优化和设计提供先验信息。
{"title":"Mean Radiation Force of Shear Plane Waves on a Sphere in an Elastic Medium","authors":"F. G. Mitri","doi":"10.1109/OJUFFC.2023.3308553","DOIUrl":"https://doi.org/10.1109/OJUFFC.2023.3308553","url":null,"abstract":"The mean (time-averaged) longitudinal force component (i.e. acting along the direction of wave propagation) arising from the interaction of linearly-polarized plane progressive shear elastic waves, incident upon a sphere embedded in an elastic medium, is considered. Exact partial-wave series expansions are derived based on the integration of the radial component of the time-averaged elastodynamic Poynting vector in spherical coordinates. The method is verified stemming from the law of energy conservation applied to elastic scattering. The analytical modeling is useful and provides improved physical understanding of shear-to-compressional (S <inline-formula> <tex-math notation=\"LaTeX\">$to $ </tex-math></inline-formula> P) mode conversion, as well as shear-to-shear (S <inline-formula> <tex-math notation=\"LaTeX\">$to $ </tex-math></inline-formula> S) and transverse-to-transverse (T <inline-formula> <tex-math notation=\"LaTeX\">$to $ </tex-math></inline-formula> T) mode preservation in the context of the mean elastic force. The elastic wave scattering formulation based on Debye’s shear and transverse potentials is solved first, and used subsequently to derive the mathematical expression of the mean force efficiency. Numerical computations illustrate the analysis with particular emphasis on the components related to mode preservation, coupling and conversion separately. It is shown here that the total force originates from individual interactions of scattering terms between the scattered pure shear (S <inline-formula> <tex-math notation=\"LaTeX\">$to $ </tex-math></inline-formula> S) and transverse (T <inline-formula> <tex-math notation=\"LaTeX\">$to $ </tex-math></inline-formula> T) waves, in addition to shear-to-transverse (S <inline-formula> <tex-math notation=\"LaTeX\">$rightleftarrows $ </tex-math></inline-formula> T) coupling, and a shear-to-compression (S <inline-formula> <tex-math notation=\"LaTeX\">$to $ </tex-math></inline-formula> P) mode conversion that contributes negligibly to the total mean force. The benchmark solution presented in this analysis for the time-averaged elastic force of shear plane progressive waves can be utilized to validate numerical methods (such as the FEM, BEM, FDTD or other). The results can provide a priori information for the optimization and design of experimental setups in various applications in biomedical ultrasound, elastography and elasticity imaging, shear-wave activation of implantable devices, characterization of biological tissue, seismology and other related applications in elastic wave scattering and radiation force.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"3 ","pages":"128-136"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9292640/10031625/10233021.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49930453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The resolution of 3D Ultrasound Localization Microscopy (ULM) is determined by acquisition parameters such as frequency and transducer geometry but also by microbubble (MB) concentration, which is linked to the total acquisition time needed to sample the vascular tree at different scales. In this study, we introduce a novel 3D anatomically-realistic ULM simulation framework based on two-photon microscopy (2PM) and in-vivo MB perfusion dynamics. As a proof of concept, using metrics such as MB localization error, MB count and network filling, we quantify the effect of MB concentration and PSF volume by varying probe transmit frequency (3-15 MHz). We found that while low frequencies can achieve sub-wavelength resolution as predicted by theory, they are also associated with prolonged acquisition times to map smaller vessels, thus limiting effective resolution (i.e., the smallest vessel that can be reconstructed). A linear relationship was found between the maximal MB concentration and the inverse of the point spread function (PSF) volume. Since inverse PSF volume roughly scales cubically with frequency, the reconstruction of the equivalent of 10 minutes at 15 MHz would require hours at 3 MHz. We expect that these findings can be leveraged to achieve effective reconstruction and serve as a guide for choosing optimal MB concentrations in ULM.
{"title":"An Anatomically Realistic Simulation Framework for 3D Ultrasound Localization Microscopy","authors":"Hatim Belgharbi;Jonathan Porée;Rafat Damseh;Vincent Perrot;Léo Milecki;Patrick Delafontaine-Martel;Frédéric Lesage;Jean Provost","doi":"10.1109/OJUFFC.2023.3235766","DOIUrl":"https://doi.org/10.1109/OJUFFC.2023.3235766","url":null,"abstract":"The resolution of 3D Ultrasound Localization Microscopy (ULM) is determined by acquisition parameters such as frequency and transducer geometry but also by microbubble (MB) concentration, which is linked to the total acquisition time needed to sample the vascular tree at different scales. In this study, we introduce a novel 3D anatomically-realistic ULM simulation framework based on two-photon microscopy (2PM) and in-vivo MB perfusion dynamics. As a proof of concept, using metrics such as MB localization error, MB count and network filling, we quantify the effect of MB concentration and PSF volume by varying probe transmit frequency (3-15 MHz). We found that while low frequencies can achieve sub-wavelength resolution as predicted by theory, they are also associated with prolonged acquisition times to map smaller vessels, thus limiting effective resolution (i.e., the smallest vessel that can be reconstructed). A linear relationship was found between the maximal MB concentration and the inverse of the point spread function (PSF) volume. Since inverse PSF volume roughly scales cubically with frequency, the reconstruction of the equivalent of 10 minutes at 15 MHz would require hours at 3 MHz. We expect that these findings can be leveraged to achieve effective reconstruction and serve as a guide for choosing optimal MB concentrations in ULM.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"3 ","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9292640/10031625/10013486.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49959011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1109/OJUFFC.2024.3362631
{"title":"2023 Index IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control Vol. 3","authors":"","doi":"10.1109/OJUFFC.2024.3362631","DOIUrl":"https://doi.org/10.1109/OJUFFC.2024.3362631","url":null,"abstract":"","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"3 ","pages":"223-229"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10423418","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139700446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-21DOI: 10.1109/OJUFFC.2022.3221708
Bernard Herrera;Pietro Simeoni;Gabriel Giribaldi;Luca Colombo;Matteo Rinaldi
The present work reports on the novel usage of Scandium-doped Aluminum Nitride (AlScN) PMUT arrays for enhanced power transfer in implantable applications. Optimization considerations were explored for the PMUT array towards high performance. The transmission metric, compared to identical arrays based on Aluminum Nitride (AlN), showed a 25dB increase. Power transfer measurements also confirmed a considerable increase as compared to previous work based on AlN. Different matching strategies were explored to maximize the output power including inductor conjugate matching and matching utilizing resonators in series and parallel topologies. A full characterization of the transferred power versus incident acoustic intensity on the array revealed transmission of power levels of several milliwatts for intensities below the Food and Drug Administration’s (FDA) limit. The performance of the array, as compared with other implementations with a range of frequencies, dimensions and input acoustic intensities was bench-marked through the use of the conversion efficiency as the figure-of-merit. The practical applicability of the system, utilizing a realistic tissue phantom as the medium, was proven by interfacing with a commercially available boost converter to obtain a rectified voltage and power levels sufficient for powering and charging intra-body electronics.
{"title":"Scandium-Doped Aluminum Nitride PMUT Arrays for Wireless Ultrasonic Powering of Implantables","authors":"Bernard Herrera;Pietro Simeoni;Gabriel Giribaldi;Luca Colombo;Matteo Rinaldi","doi":"10.1109/OJUFFC.2022.3221708","DOIUrl":"10.1109/OJUFFC.2022.3221708","url":null,"abstract":"The present work reports on the novel usage of Scandium-doped Aluminum Nitride (AlScN) PMUT arrays for enhanced power transfer in implantable applications. Optimization considerations were explored for the PMUT array towards high performance. The transmission metric, compared to identical arrays based on Aluminum Nitride (AlN), showed a 25dB increase. Power transfer measurements also confirmed a considerable increase as compared to previous work based on AlN. Different matching strategies were explored to maximize the output power including inductor conjugate matching and matching utilizing resonators in series and parallel topologies. A full characterization of the transferred power versus incident acoustic intensity on the array revealed transmission of power levels of several milliwatts for intensities below the Food and Drug Administration’s (FDA) limit. The performance of the array, as compared with other implementations with a range of frequencies, dimensions and input acoustic intensities was bench-marked through the use of the conversion efficiency as the figure-of-merit. The practical applicability of the system, utilizing a realistic tissue phantom as the medium, was proven by interfacing with a commercially available boost converter to obtain a rectified voltage and power levels sufficient for powering and charging intra-body electronics.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"2 ","pages":"250-260"},"PeriodicalIF":0.0,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9956971","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62907888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}