Pub Date : 2025-10-03DOI: 10.1109/OJUFFC.2025.3617425
Hatim Belgharbi;Francisco Santibanez;Paul A. Dayton;Gianmarco F. Pinton
3D ultrasound localization microscopy (ULM) allows the extraction of anatomical and functional representations of vascular networks with a spatial resolution beyond the diffraction limit ($sim lambda $ /10) by localizing injected microbubble (MB) contrast agents and tracking their positions over time. To advance this technology towards clinical diagnostics, the ability to obtain a large field of view (FOV) becomes a pressing necessity. One solution for large FOV imaging is automated stitching/compounding of multiple volume acquisitions. This is challenging for full-brain imaging, as the acquisition of images through the skull requires parallel positioning of the transducer surface relative to the skull to optimize ultrasound transmission. Herein, we demonstrate an automated positioning system that relies on predefined optimized orientations, enabling fast acquisition and positioning for rapid full-brain imaging. As an example of expanded FOV application, we achieved non-invasive full-brain imaging of an 8-week-old rat by collecting data across 11 transducer positions. To ensure optimal acoustic penetration through the intact skull, the transducer orientation was robotically positioned. We compared this approach with pure transducer translation. Additionally, we acquired whole-brain vasculature images from 4-week-old rats using 24 100-second scans of optimized transducer positions, comparing these results to a single-position 2400-second scan. Automated robotic compounding enabled the acquisition of full-brain vascular information while minimizing acquisition dead time. Optimized transducer angles enhanced the vascular network visualization across the brain, including challenging areas such as the cerebellum (10x improvement) and hindbrain (3.5x improvement). Moreover, our multi-position acquisition method allowed us to capture approximately four times more vascular volume transcranially, covering the entire rat brain, compared to the ~1 cm3 typically obtained with single-position acquisitions using the same transducer. This work demonstrates the benefit of automated robot-assisted multi-angle/multi-position acquisitions in ULM to acquire a volumetric field of view larger than otherwise possible with a single position acquisition, especially those through the skull.
{"title":"Robotic Compounding for Whole-Brain Non-Invasive 3D Ultrasound Localization Microscopy","authors":"Hatim Belgharbi;Francisco Santibanez;Paul A. Dayton;Gianmarco F. Pinton","doi":"10.1109/OJUFFC.2025.3617425","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3617425","url":null,"abstract":"3D ultrasound localization microscopy (ULM) allows the extraction of anatomical and functional representations of vascular networks with a spatial resolution beyond the diffraction limit (<inline-formula> <tex-math>$sim lambda $ </tex-math></inline-formula>/10) by localizing injected microbubble (MB) contrast agents and tracking their positions over time. To advance this technology towards clinical diagnostics, the ability to obtain a large field of view (FOV) becomes a pressing necessity. One solution for large FOV imaging is automated stitching/compounding of multiple volume acquisitions. This is challenging for full-brain imaging, as the acquisition of images through the skull requires parallel positioning of the transducer surface relative to the skull to optimize ultrasound transmission. Herein, we demonstrate an automated positioning system that relies on predefined optimized orientations, enabling fast acquisition and positioning for rapid full-brain imaging. As an example of expanded FOV application, we achieved non-invasive full-brain imaging of an 8-week-old rat by collecting data across 11 transducer positions. To ensure optimal acoustic penetration through the intact skull, the transducer orientation was robotically positioned. We compared this approach with pure transducer translation. Additionally, we acquired whole-brain vasculature images from 4-week-old rats using 24 100-second scans of optimized transducer positions, comparing these results to a single-position 2400-second scan. Automated robotic compounding enabled the acquisition of full-brain vascular information while minimizing acquisition dead time. Optimized transducer angles enhanced the vascular network visualization across the brain, including challenging areas such as the cerebellum (10x improvement) and hindbrain (3.5x improvement). Moreover, our multi-position acquisition method allowed us to capture approximately four times more vascular volume transcranially, covering the entire rat brain, compared to the ~1 cm3 typically obtained with single-position acquisitions using the same transducer. This work demonstrates the benefit of automated robot-assisted multi-angle/multi-position acquisitions in ULM to acquire a volumetric field of view larger than otherwise possible with a single position acquisition, especially those through the skull.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"204-213"},"PeriodicalIF":2.9,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11192505","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145405276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-23DOI: 10.1109/OJUFFC.2025.3613275
Sabiq Muhtadi;Keita A. Yokoyama;Caterina M. Gallippi
This study evaluates the potential for interrogating the Young’s elastic moduli in anisotropic media, including tissue, using Double Profile Intersection (DoPIo) ultrasound. DoPIo is an on-axis acoustic radiation force (ARF)-based elasticity imaging method that quantifies shear elasticity without relying on shear wave propagation. It is hypothesized that by applying a range of ARF excitations that are not perpendicular to the axis of symmetry (AoS) of transversely isotropic (TI) materials and monitoring the resultant variation in DoPIo-measured elasticity versus excitation angle, the Young’s elastic modulus may be interrogated in addition to the shear elastic modulus. The hypothesis was tested in silico, and results suggested that while DoPIo outcomes measured at normal (90°) ARF-AoS incidence were related to the shear elastic modulus alone, variation in DoPIo-derived elasticity over ARF-AoS incidence angle (defined as $Delta textit {Elasticity}$ ) exhibited a strong linear correlation with the longitudinal Young’s modulus (${E}_{L}$ ). The results suggest that ${E}_{L}$ evaluated by the rate of change of $Delta textit {Elasticity}$ with ARF-AoS incidence angle may serve as a novel biomarker for characterizing elastically anisotropic tissues such as kidney, skeletal muscle, and breast.
{"title":"Double Profile Intersection (DoPIo) Ultrasound With Acoustic Radiation Force Tilting Interrogates Young’s Modulus in Transversely Isotropic Media: An In Silico Study","authors":"Sabiq Muhtadi;Keita A. Yokoyama;Caterina M. Gallippi","doi":"10.1109/OJUFFC.2025.3613275","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3613275","url":null,"abstract":"This study evaluates the potential for interrogating the Young’s elastic moduli in anisotropic media, including tissue, using Double Profile Intersection (DoPIo) ultrasound. DoPIo is an on-axis acoustic radiation force (ARF)-based elasticity imaging method that quantifies shear elasticity without relying on shear wave propagation. It is hypothesized that by applying a range of ARF excitations that are not perpendicular to the axis of symmetry (AoS) of transversely isotropic (TI) materials and monitoring the resultant variation in DoPIo-measured elasticity versus excitation angle, the Young’s elastic modulus may be interrogated in addition to the shear elastic modulus. The hypothesis was tested in silico, and results suggested that while DoPIo outcomes measured at normal (90°) ARF-AoS incidence were related to the shear elastic modulus alone, variation in DoPIo-derived elasticity over ARF-AoS incidence angle (defined as <inline-formula> <tex-math>$Delta textit {Elasticity}$ </tex-math></inline-formula>) exhibited a strong linear correlation with the longitudinal Young’s modulus (<inline-formula> <tex-math>${E}_{L}$ </tex-math></inline-formula>). The results suggest that <inline-formula> <tex-math>${E}_{L}$ </tex-math></inline-formula> evaluated by the rate of change of <inline-formula> <tex-math>$Delta textit {Elasticity}$ </tex-math></inline-formula> with ARF-AoS incidence angle may serve as a novel biomarker for characterizing elastically anisotropic tissues such as kidney, skeletal muscle, and breast.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"161-165"},"PeriodicalIF":2.9,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11176129","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145210158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-23DOI: 10.1109/OJUFFC.2025.3613273
Franz Richter;Edgar Manfred Gustav Dorausch;Cornelius Kühnöl;Pascal Stöver;Omid Chaghaneh;Julian Kober;Tönnis Trittler;Paul-Henry Koop;Klaus Knobloch;Jochen Hampe;Gerhard Fettweis;Moritz Herzog;Richard Nauber
Point-of-Care Ultrasound (PoCUS) devices have the potential to enable safe, fast and cost-efficient medical imaging, which can democratize access to medical diagnostics. However, achieving high image quality and real-time performance despite the significant resource constraints of mobile devices is essential for clinical adoption. Fourier-Based Imaging (FBI) is emerging as an alternative to the simple and well established delay-and-sum (DAS) beamforming, as it promises improved image quality albeit higher computational effort. This work investigates an efficient implementation of FBI and evaluates the performance on a Qualcomm Snapdragon 8 system-on-chip (SoC) CPU and GPU using a synthetic radiofrequency (RF) ultrasound dataset. CPU profiling identified the real-to-complex (r2c) Fast Fourier Transform (FFT) as a primary bottleneck, with optimizations reducing runtime from 2993 ms to 892 ms per frame. GPU acceleration via the clFFT library and a custom OpenCL kernel for k-space processing, enhanced through kernel fusion, constant memory usage, and instruction-level tuning, further reduced runtime to 388 ms, a 2.86x speed-up over the optimized CPU version. Although 30 fps real-time performance was not reached under these imaging parameters (2.58 fps), reducing the number of transmitters increased throughput to approximately 6 fps at the expense of image fidelity. These results demonstrate the mobile GPU’s potential for FBI and suggest that real-time execution on next-generation SoCs is within reach.
{"title":"Investigation of Real-Time Capabilities of the Qualcomm Snapdragon 8 for a Fourier-Based Imaging Algorithm","authors":"Franz Richter;Edgar Manfred Gustav Dorausch;Cornelius Kühnöl;Pascal Stöver;Omid Chaghaneh;Julian Kober;Tönnis Trittler;Paul-Henry Koop;Klaus Knobloch;Jochen Hampe;Gerhard Fettweis;Moritz Herzog;Richard Nauber","doi":"10.1109/OJUFFC.2025.3613273","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3613273","url":null,"abstract":"Point-of-Care Ultrasound (PoCUS) devices have the potential to enable safe, fast and cost-efficient medical imaging, which can democratize access to medical diagnostics. However, achieving high image quality and real-time performance despite the significant resource constraints of mobile devices is essential for clinical adoption. Fourier-Based Imaging (FBI) is emerging as an alternative to the simple and well established delay-and-sum (DAS) beamforming, as it promises improved image quality albeit higher computational effort. This work investigates an efficient implementation of FBI and evaluates the performance on a Qualcomm Snapdragon 8 system-on-chip (SoC) CPU and GPU using a synthetic radiofrequency (RF) ultrasound dataset. CPU profiling identified the real-to-complex (r2c) Fast Fourier Transform (FFT) as a primary bottleneck, with optimizations reducing runtime from 2993 ms to 892 ms per frame. GPU acceleration via the clFFT library and a custom OpenCL kernel for k-space processing, enhanced through kernel fusion, constant memory usage, and instruction-level tuning, further reduced runtime to 388 ms, a 2.86x speed-up over the optimized CPU version. Although 30 fps real-time performance was not reached under these imaging parameters (2.58 fps), reducing the number of transmitters increased throughput to approximately 6 fps at the expense of image fidelity. These results demonstrate the mobile GPU’s potential for FBI and suggest that real-time execution on next-generation SoCs is within reach.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"176-180"},"PeriodicalIF":2.9,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11176040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145352121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-12DOI: 10.1109/OJUFFC.2025.3609675
Shureed Qazi;Keerthi S. Anand;Jonathon W. Homeister;Mark A. Farber;Caterina M. Gallippi
Carotid atherosclerosis is a major cause of ischemic stroke, and the ability to non-invasively assess plaque composition and structure is critical to effective stroke risk assessment. Carotid plaque components are delineated noninvasively by Acoustic Radiation Force Impulse (ARFI)-derived Variance of Acceleration, evaluated as its decadic log (log(VoA)). To date, this log(VoA) parameter has been calculated by isolating the variance in ARFI-induced displacement profiles using the second-order time derivative (SOTD), a high-pass filtering operation. The purpose of this study was to compare the performance of the SOTD filter to various other filtering methods in application to delineating human carotid plaque components, in vivo. Specifically, the SOTD filter was compared to Principal Component Analysis (PCA), Finite Impulse Response (FIR), Infinite Impulse Response (IIR), and mean-center spatial (MCS) filters. Filter performances were evaluated in terms of the resulting log(VoA) generalized contrast-to-noise ratio (gCNR) for distinguishing plaque features in human carotid plaques, in vivo, which were validated by spatially aligned histology. Results indicated that the SOTD filter consistently provided the highest gCNR for most plaque components, whereas the performances yielded by the other filters were more variable. The study demonstrated that the SOTD filter remains the preferred method for log(VoA) calculation due to its effectiveness for delineating carotid plaque features.
{"title":"Comparison of Filtering Methods for Calculating ARFI log(VoA) to Delineate Carotid Plaque Features, In Vivo","authors":"Shureed Qazi;Keerthi S. Anand;Jonathon W. Homeister;Mark A. Farber;Caterina M. Gallippi","doi":"10.1109/OJUFFC.2025.3609675","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3609675","url":null,"abstract":"Carotid atherosclerosis is a major cause of ischemic stroke, and the ability to non-invasively assess plaque composition and structure is critical to effective stroke risk assessment. Carotid plaque components are delineated noninvasively by Acoustic Radiation Force Impulse (ARFI)-derived Variance of Acceleration, evaluated as its decadic log (log(VoA)). To date, this log(VoA) parameter has been calculated by isolating the variance in ARFI-induced displacement profiles using the second-order time derivative (SOTD), a high-pass filtering operation. The purpose of this study was to compare the performance of the SOTD filter to various other filtering methods in application to delineating human carotid plaque components, in vivo. Specifically, the SOTD filter was compared to Principal Component Analysis (PCA), Finite Impulse Response (FIR), Infinite Impulse Response (IIR), and mean-center spatial (MCS) filters. Filter performances were evaluated in terms of the resulting log(VoA) generalized contrast-to-noise ratio (gCNR) for distinguishing plaque features in human carotid plaques, in vivo, which were validated by spatially aligned histology. Results indicated that the SOTD filter consistently provided the highest gCNR for most plaque components, whereas the performances yielded by the other filters were more variable. The study demonstrated that the SOTD filter remains the preferred method for log(VoA) calculation due to its effectiveness for delineating carotid plaque features.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"181-189"},"PeriodicalIF":2.9,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11162608","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145352189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-02DOI: 10.1109/OJUFFC.2025.3604391
Mingyang Wang;Jeffrey S. Orringer;Yannis M. Paulus;Xinmai Yang;Xueding Wang
Traditionally, pulsed dye laser (PDL) therapy has been used to treat cutaneous blood vessels in patients with port-wine stain (PWS) birthmarks. PDL therapy, however, has limited treatment depth, and frequently results in suboptimal therapeutic outcomes when used to treat deep cutaneous blood vessels. We have developed photo-mediated ultrasound therapy (PUT), a hybrid cavitation-based anti-vascular technology combining nanosecond light pulses with ultrasound bursts and demonstrated its great potential in treating deep cutaneous vessels. This study explored the feasibility of PUT as an alternative to traditional PDL therapy for deep cutaneous vascular treatment in a clinically relevant chicken wattle model. PUT was employed to induce cavitation in blood vessels by using different light fluence and ultrasound pressure combinations. Theoretical modeling and in vitro experiments were first conducted to validate and optimize parameters for PUT treatment targeting deep vasculature. PUT treatments were then performed in a chicken wattle model using an experimental setup, and outcomes were assessed by using polarized dermoscope, optical coherence tomography angiography (OCT-A) imaging, and histopathological analyses. The results demonstrated that PUT can effectively penetrate the entire thickness of chicken wattle tissue, which is about 3 mm, and significantly reduce blood vessel density by 45.20% with a light fluence 10–100 times less than the fluence used in traditional PDL therapy. OCT-A imaging showed that local blood perfusion was significantly reduced, and the reduced blood perfusion persisted for at least 7 days post-treatment in the treated areas. Histopathological analyses based on H&E, CD31, and Russell-Movat Pentachrome (RMP) stains confirmed effective and selective vascular damage through the entire thickness of chicken wattle without causing collateral thermal damage. In conclusion, PUT can effectively eliminate blood vessels with a treatment depth up to 3 mm whereas the 3 mm treatment depth demonstrated in this study was only limited by the chicken wattle model. By leveraging the deep tissue penetration of ultrasound and the flexibility in treatment parameter selection, PUT can effectively treat deep cutaneous vasculature using reduced light fluence and thereby minimize collateral damage in skin tissues. Thus, PUT holds great potential for treatment of cutaneous vascular anomalies such as PWS.
{"title":"Photo-Mediated Ultrasound Therapy (PUT) for the Treatment of Deep Cutaneous Vasculature","authors":"Mingyang Wang;Jeffrey S. Orringer;Yannis M. Paulus;Xinmai Yang;Xueding Wang","doi":"10.1109/OJUFFC.2025.3604391","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3604391","url":null,"abstract":"Traditionally, pulsed dye laser (PDL) therapy has been used to treat cutaneous blood vessels in patients with port-wine stain (PWS) birthmarks. PDL therapy, however, has limited treatment depth, and frequently results in suboptimal therapeutic outcomes when used to treat deep cutaneous blood vessels. We have developed photo-mediated ultrasound therapy (PUT), a hybrid cavitation-based anti-vascular technology combining nanosecond light pulses with ultrasound bursts and demonstrated its great potential in treating deep cutaneous vessels. This study explored the feasibility of PUT as an alternative to traditional PDL therapy for deep cutaneous vascular treatment in a clinically relevant chicken wattle model. PUT was employed to induce cavitation in blood vessels by using different light fluence and ultrasound pressure combinations. Theoretical modeling and in vitro experiments were first conducted to validate and optimize parameters for PUT treatment targeting deep vasculature. PUT treatments were then performed in a chicken wattle model using an experimental setup, and outcomes were assessed by using polarized dermoscope, optical coherence tomography angiography (OCT-A) imaging, and histopathological analyses. The results demonstrated that PUT can effectively penetrate the entire thickness of chicken wattle tissue, which is about 3 mm, and significantly reduce blood vessel density by 45.20% with a light fluence 10–100 times less than the fluence used in traditional PDL therapy. OCT-A imaging showed that local blood perfusion was significantly reduced, and the reduced blood perfusion persisted for at least 7 days post-treatment in the treated areas. Histopathological analyses based on H&E, CD31, and Russell-Movat Pentachrome (RMP) stains confirmed effective and selective vascular damage through the entire thickness of chicken wattle without causing collateral thermal damage. In conclusion, PUT can effectively eliminate blood vessels with a treatment depth up to 3 mm whereas the 3 mm treatment depth demonstrated in this study was only limited by the chicken wattle model. By leveraging the deep tissue penetration of ultrasound and the flexibility in treatment parameter selection, PUT can effectively treat deep cutaneous vasculature using reduced light fluence and thereby minimize collateral damage in skin tissues. Thus, PUT holds great potential for treatment of cutaneous vascular anomalies such as PWS.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"135-145"},"PeriodicalIF":2.9,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11145956","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145036877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-29DOI: 10.1109/OJUFFC.2025.3603792
Yu Weng;Luke Coulter;Muhammad Saad Khan;Eno Hysi;Agata A. Exner;Michael C. Kolios
In nonlinear contrast-enhanced ultrasound (CEUS) imaging, nanobubbles (NBs) offer a promising alternative for enhanced visualization of microvascular structures and molecular imaging. This study explores two amplitude-modulated (AM) techniques—cross amplitude modulation (xAM) and compound amplitude modulation (cAM)—to enhance the capabilities of NB-mediated CEUS imaging. Both methods were tested on the Vevo F2 ultrasound imaging system (Fujifilm VisualSonics Inc.) using the Vevo Advanced Data Acquisition (VADA) mode, allowing full customization of pulse sequences. The xAM technique utilized a three-event pulse sequence that transmits cross-propagating plane-wave beams from dual apertures. This method isolated nonlinear scattered waves from NBs, reducing background noise and enhancing image quality. In contrast, cAM achieved a high frame rate of 706 Hz, a valuable feature for tracking the NB vascular flow dynamics. cAM combined plane-wave compounding with amplitude modulation, transmitting two events (half- and full-amplitude), achieving high frame rates for velocity imaging at the expense of image quality. NBs at a concentration of $10^{9}$ NBs/mL, intended to mimic estimated in vivo post-injection concentrations, were injected into custom-built tissue-mimicking vessel phantoms. Experiments demonstrated that xAM significantly improved the contrast-to-noise ratio (CNR) and contrast-to-tissue ratio (CTR) by over 10 times compared to B-mode imaging, especially at larger steering angles. Conversely, cAM’s CNR and CTR were at least 50% lower than that of xAM, but it achieved a frame rate over 100 times faster than xAM. These results suggest xAM can enhance imaging clarity, while cAM offers high frame rates for velocity imaging, providing an imaging framework for preclinical and clinical applications.
{"title":"Cross Amplitude Modulation and Compound Amplitude Modulation for Nonlinear Contrast-Enhanced Ultrasound Imaging of Nanobubbles","authors":"Yu Weng;Luke Coulter;Muhammad Saad Khan;Eno Hysi;Agata A. Exner;Michael C. Kolios","doi":"10.1109/OJUFFC.2025.3603792","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3603792","url":null,"abstract":"In nonlinear contrast-enhanced ultrasound (CEUS) imaging, nanobubbles (NBs) offer a promising alternative for enhanced visualization of microvascular structures and molecular imaging. This study explores two amplitude-modulated (AM) techniques—cross amplitude modulation (xAM) and compound amplitude modulation (cAM)—to enhance the capabilities of NB-mediated CEUS imaging. Both methods were tested on the Vevo F2 ultrasound imaging system (Fujifilm VisualSonics Inc.) using the Vevo Advanced Data Acquisition (VADA) mode, allowing full customization of pulse sequences. The xAM technique utilized a three-event pulse sequence that transmits cross-propagating plane-wave beams from dual apertures. This method isolated nonlinear scattered waves from NBs, reducing background noise and enhancing image quality. In contrast, cAM achieved a high frame rate of 706 Hz, a valuable feature for tracking the NB vascular flow dynamics. cAM combined plane-wave compounding with amplitude modulation, transmitting two events (half- and full-amplitude), achieving high frame rates for velocity imaging at the expense of image quality. NBs at a concentration of <inline-formula> <tex-math>$10^{9}$ </tex-math></inline-formula> NBs/mL, intended to mimic estimated in vivo post-injection concentrations, were injected into custom-built tissue-mimicking vessel phantoms. Experiments demonstrated that xAM significantly improved the contrast-to-noise ratio (CNR) and contrast-to-tissue ratio (CTR) by over 10 times compared to B-mode imaging, especially at larger steering angles. Conversely, cAM’s CNR and CTR were at least 50% lower than that of xAM, but it achieved a frame rate over 100 times faster than xAM. These results suggest xAM can enhance imaging clarity, while cAM offers high frame rates for velocity imaging, providing an imaging framework for preclinical and clinical applications.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"146-160"},"PeriodicalIF":2.9,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11143226","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145073325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-08DOI: 10.1109/OJUFFC.2025.3596866
Archita Hati;Marco Pomponio;Nicholas V. Nardelli;Tanner Grogan;Kyungtae Kim;Dahyeon Lee;Jun Ye;Tara M. Fortier;Andrew Ludlow;Craig W. Nelson
This paper presents a frequency synthesis that achieves exceptional stability by transferring optical signals to the radio frequency (RF) domain at 100 MHz. We describe and characterize two synthesis chains composed of a cryogenic silicon cavity-stabilized laser at 1542 nm and an ultra-low expansion (ULE) glass cavity at 1157 nm, both converted to 10 GHz signals via Ti:Sapphire and Er/Yb:glass optical frequency combs (OFCs). The 10 GHz microwave outputs are further divided down to 100 MHz using a commercial microwave prescaler, which exhibits a residual frequency instability of $sigma _{y}({1}~text {s})lt {10}^{-{15}}$ and low 10-18 level at a few thousand seconds. Measurements are performed using a newly developed custom ultra-low-noise digital measurement system and are compared to the carrier-suppression technique. The new system enables high-sensitivity evaluation across the entire synthesis chain, from the optical and microwave heterodynes as well as the direct RF signals. Results show an absolute instability of ${sigma }_{y}({1}~text {s})~approx ~{4.7}times {10}^{-{16}}$ at 100 MHz. This represents the first demonstration of such low instability at 100 MHz, corresponding to a phase noise of −140 dBc/Hz at a 1 Hz offset and significantly surpassing earlier systems. These advancements open new opportunities for precision metrology and timing systems.
{"title":"Radio Frequency From Optical With Instabilities Below 10-15-Generation and Measurement","authors":"Archita Hati;Marco Pomponio;Nicholas V. Nardelli;Tanner Grogan;Kyungtae Kim;Dahyeon Lee;Jun Ye;Tara M. Fortier;Andrew Ludlow;Craig W. Nelson","doi":"10.1109/OJUFFC.2025.3596866","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3596866","url":null,"abstract":"This paper presents a frequency synthesis that achieves exceptional stability by transferring optical signals to the radio frequency (RF) domain at 100 MHz. We describe and characterize two synthesis chains composed of a cryogenic silicon cavity-stabilized laser at 1542 nm and an ultra-low expansion (ULE) glass cavity at 1157 nm, both converted to 10 GHz signals via Ti:Sapphire and Er/Yb:glass optical frequency combs (OFCs). The 10 GHz microwave outputs are further divided down to 100 MHz using a commercial microwave prescaler, which exhibits a residual frequency instability of <inline-formula> <tex-math>$sigma _{y}({1}~text {s})lt {10}^{-{15}}$ </tex-math></inline-formula> and low 10-18 level at a few thousand seconds. Measurements are performed using a newly developed custom ultra-low-noise digital measurement system and are compared to the carrier-suppression technique. The new system enables high-sensitivity evaluation across the entire synthesis chain, from the optical and microwave heterodynes as well as the direct RF signals. Results show an absolute instability of <inline-formula> <tex-math>${sigma }_{y}({1}~text {s})~approx ~{4.7}times {10}^{-{16}}$ </tex-math></inline-formula> at 100 MHz. This represents the first demonstration of such low instability at 100 MHz, corresponding to a phase noise of −140 dBc/Hz at a 1 Hz offset and significantly surpassing earlier systems. These advancements open new opportunities for precision metrology and timing systems.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"127-134"},"PeriodicalIF":2.9,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11121396","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144880475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-05DOI: 10.1109/OJUFFC.2025.3596042
Vahid M. Safarzadeh;Konstantina Papangelopoulou;Marta Orlowska;Hans Dierckx;Jan D’Hooge
High Frame Rate Speckle Tracking Echocardiography (HFR-STE) offers a method to pinpoint the local onset of contraction in the left ventricle (LV) and generate mechanical activation maps. In this paper, a new patient-specific spatiotemporal approach is proposed to identify activation times on left ventricular strain rate (SR) curves automatically. Curves are collected from 2D HFR-STE according to the 16-segment model. Using a Locally Weighted Principal Component Analysis (LWPCA), the main pattern of each segment’s SR curve is extracted locally. The first positive-to-negative zero-crossing point on the first principal component is identified as the activation time. Validation with a dataset of 40 subjects (20 healthy volunteers and 20 patients) showed that 94% of estimated activation times closely matched the expert-identified times, differing by no more than 16ms. Quantitative and qualitative comparisons between LWPCA and (weighted) averaging are also reported. Also, the automatically generated activation maps closely resemble their manually created counterparts, demonstrating good visual similarity.
{"title":"Automated Measurement of Local Mechanical Activation on High Frame Rate Echocardiography","authors":"Vahid M. Safarzadeh;Konstantina Papangelopoulou;Marta Orlowska;Hans Dierckx;Jan D’Hooge","doi":"10.1109/OJUFFC.2025.3596042","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3596042","url":null,"abstract":"High Frame Rate Speckle Tracking Echocardiography (HFR-STE) offers a method to pinpoint the local onset of contraction in the left ventricle (LV) and generate mechanical activation maps. In this paper, a new patient-specific spatiotemporal approach is proposed to identify activation times on left ventricular strain rate (SR) curves automatically. Curves are collected from 2D HFR-STE according to the 16-segment model. Using a Locally Weighted Principal Component Analysis (LWPCA), the main pattern of each segment’s SR curve is extracted locally. The first positive-to-negative zero-crossing point on the first principal component is identified as the activation time. Validation with a dataset of 40 subjects (20 healthy volunteers and 20 patients) showed that 94% of estimated activation times closely matched the expert-identified times, differing by no more than 16ms. Quantitative and qualitative comparisons between LWPCA and (weighted) averaging are also reported. Also, the automatically generated activation maps closely resemble their manually created counterparts, demonstrating good visual similarity.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"123-126"},"PeriodicalIF":2.9,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11113317","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144867646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evaluation of the backscatter coefficient (BSC) from soft tissues has many applications for medical diagnosis. However, electronic noise and spatial variations often affect BSC estimation, requiring spatial averaging inside a region of interest (ROI) that reduces spatial resolution compared to the B-mode images. This study explores 3D BSC estimation using a matrix probes to address this trade-off by allowing narrower ROIs without losing robustness. A comparison study between a 1024-element matrix probe (V8) and two linear probes (L12-5, L22-8) was made on homogeneous agar-based phantoms with Orgasol particles (5, 10, and $20~mu $ m). BSC was computed using the reference phantom method, and robustness was assessed via the BSC standard deviation across ROIs. Results showed that, despite the lower B-mode resolution and longer correlation length between A-lines, volumetric estimation with a matrix probe offered comparable accuracy while enhancing robustness and resolution in the BSC map compared to the standard 2D estimation. These results could be beneficial for the analysis of complex heterogeneous media.
软组织后向散射系数(BSC)的评估在医学诊断中有许多应用。然而,电子噪声和空间变化经常影响BSC估计,需要在感兴趣区域(ROI)内进行空间平均,与b模式图像相比,这降低了空间分辨率。本研究使用矩阵探针探索3D BSC估计,通过允许更窄的roi而不失去鲁棒性来解决这种权衡。采用1024元矩阵探针(V8)和线性探针(L12-5、L22-8)在含Orgasol粒子(5、10、20~ $ mu $ m)的均相琼脂模型上进行了对比研究。采用参考模体法计算平衡计分卡,并通过roi之间的平衡计分卡标准差评估鲁棒性。结果表明,尽管b模式分辨率较低,a线之间的相关长度较长,但与标准2D估计相比,矩阵探针的体积估计在增强BSC图的鲁棒性和分辨率的同时提供了相当的精度。这些结果可用于复杂非均质介质的分析。
{"title":"Volumetric Estimation of the Backscatter Coefficient With a Matrix Probe","authors":"Valentin Mazellier;François Varray;Pauline Muleki-Seya","doi":"10.1109/OJUFFC.2025.3588811","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3588811","url":null,"abstract":"Evaluation of the backscatter coefficient (BSC) from soft tissues has many applications for medical diagnosis. However, electronic noise and spatial variations often affect BSC estimation, requiring spatial averaging inside a region of interest (ROI) that reduces spatial resolution compared to the B-mode images. This study explores 3D BSC estimation using a matrix probes to address this trade-off by allowing narrower ROIs without losing robustness. A comparison study between a 1024-element matrix probe (V8) and two linear probes (L12-5, L22-8) was made on homogeneous agar-based phantoms with Orgasol particles (5, 10, and <inline-formula> <tex-math>$20~mu $ </tex-math></inline-formula>m). BSC was computed using the reference phantom method, and robustness was assessed via the BSC standard deviation across ROIs. Results showed that, despite the lower B-mode resolution and longer correlation length between A-lines, volumetric estimation with a matrix probe offered comparable accuracy while enhancing robustness and resolution in the BSC map compared to the standard 2D estimation. These results could be beneficial for the analysis of complex heterogeneous media.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"119-122"},"PeriodicalIF":0.0,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11079648","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144680840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-06DOI: 10.1109/OJUFFC.2025.3577590
Sophie V. Heymans;Marcus Ingram;Bram Carlier;Brecht Vandenborre;Marc Fournelle;Alessandro Ramalli;François Rottenberg;Koen van den Abeele;Jan D'Hooge
Superheated nanodroplets (NDs) are proposed for in vivo radiation dose sensing applications, based on their ability to vaporize into echogenic microbubbles when exposed to ionizing radiation. Combined with Ultrasound Localization Microscopy (ULM), the ultrafast detection of radiation-induced ND vaporization produces super-resolved vaporization maps that match the radiation field with sub-millimeter accuracy. However, in the presence of flow, discriminating between microbubbles moving in the field of view and radiation-induced vaporization events is not trivial. As an alternative, sparse acoustic signatures emitted by vaporizing NDs can be super-localized by passive ULM, i.e. P-ULM. In this work, we extend our previous 2D implementation of P-ULM to 3D, using a large aperture matrix array probe. We exposed perfluorobutane NDs to a proton beam and recorded their vaporization signatures during irradiation. The events were extracted from the radiofrequency channel data using a spatiotemporal filtering approach and super-localized by fitting the time differences of arrival between channels to a one-way time of flight model. The vaporization maps were overlaid on the proton beam distribution and estimated the proton range and beam dispersion within $0.98~pm ~0.04$ mm and $0.03~pm ~0.02$ mm of the reference range measurement (depth-dose distribution in water measured with a diode), respectively. These results pave the way for volumetric dose mapping using radiosensitive nanodroplets and passive imaging.
{"title":"Volumetric Passive Ultrasound Localization Microscopy of Radiation-Induced Nanodroplet Vaporization With a Large Aperture Matrix Array","authors":"Sophie V. Heymans;Marcus Ingram;Bram Carlier;Brecht Vandenborre;Marc Fournelle;Alessandro Ramalli;François Rottenberg;Koen van den Abeele;Jan D'Hooge","doi":"10.1109/OJUFFC.2025.3577590","DOIUrl":"https://doi.org/10.1109/OJUFFC.2025.3577590","url":null,"abstract":"Superheated nanodroplets (NDs) are proposed for in vivo radiation dose sensing applications, based on their ability to vaporize into echogenic microbubbles when exposed to ionizing radiation. Combined with Ultrasound Localization Microscopy (ULM), the ultrafast detection of radiation-induced ND vaporization produces super-resolved vaporization maps that match the radiation field with sub-millimeter accuracy. However, in the presence of flow, discriminating between microbubbles moving in the field of view and radiation-induced vaporization events is not trivial. As an alternative, sparse acoustic signatures emitted by vaporizing NDs can be super-localized by passive ULM, i.e. P-ULM. In this work, we extend our previous 2D implementation of P-ULM to 3D, using a large aperture matrix array probe. We exposed perfluorobutane NDs to a proton beam and recorded their vaporization signatures during irradiation. The events were extracted from the radiofrequency channel data using a spatiotemporal filtering approach and super-localized by fitting the time differences of arrival between channels to a one-way time of flight model. The vaporization maps were overlaid on the proton beam distribution and estimated the proton range and beam dispersion within <inline-formula> <tex-math>$0.98~pm ~0.04$ </tex-math></inline-formula> mm and <inline-formula> <tex-math>$0.03~pm ~0.02$ </tex-math></inline-formula> mm of the reference range measurement (depth-dose distribution in water measured with a diode), respectively. These results pave the way for volumetric dose mapping using radiosensitive nanodroplets and passive imaging.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"5 ","pages":"108-113"},"PeriodicalIF":0.0,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11027146","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144281284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}