M. Mustafa, S. Raja, Layth Abdulrasool A. L. Asadi, N. Jamadon, N. Rajeswari, Avvaru Praveen Kumar
Pipes are manufactured primarily through the extrusion process. One of the material extrusion processes in recent digital manufacturing is additive manufacturing’s fusion deposition modeling. Pipes are made from various materials such as metal and plastic/polymers, and the main challenge has been in selecting the pipe material for the customized application. For the creation of water-passing tubes, this research has chosen appropriate carbon-reinforced polymers that can be used with filament made of polyether ether ketone (PEEK) and polyethylene terephthalate glycol (PETG). For this goal, the analytical hierarchy process, also known as the AHP, is used to choose the best material based on factors such as cost, temperature resistance, printing speed, and mechanical properties of the material. The results revealed that PEEK-CF is a better material for the customized impeller application than PETG-CF. The PEEK-CF obtains the higher priority value of 0.6363, and the PETG-CF obtains 0.2791. This decision-making technique can be used to select other comparable customized applications.
{"title":"A Decision-Making Carbon Reinforced Material Selection Model for Composite Polymers in Pipeline Applications","authors":"M. Mustafa, S. Raja, Layth Abdulrasool A. L. Asadi, N. Jamadon, N. Rajeswari, Avvaru Praveen Kumar","doi":"10.1155/2023/6344193","DOIUrl":"https://doi.org/10.1155/2023/6344193","url":null,"abstract":"Pipes are manufactured primarily through the extrusion process. One of the material extrusion processes in recent digital manufacturing is additive manufacturing’s fusion deposition modeling. Pipes are made from various materials such as metal and plastic/polymers, and the main challenge has been in selecting the pipe material for the customized application. For the creation of water-passing tubes, this research has chosen appropriate carbon-reinforced polymers that can be used with filament made of polyether ether ketone (PEEK) and polyethylene terephthalate glycol (PETG). For this goal, the analytical hierarchy process, also known as the AHP, is used to choose the best material based on factors such as cost, temperature resistance, printing speed, and mechanical properties of the material. The results revealed that PEEK-CF is a better material for the customized impeller application than PETG-CF. The PEEK-CF obtains the higher priority value of 0.6363, and the PETG-CF obtains 0.2791. This decision-making technique can be used to select other comparable customized applications.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":"54 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41270998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study is aimed at producing a biofoam cup made from sugarcane bagasse with tempeh mold (Rhizopus oligosporus). Soybean flour (SF) was added to promote the growth of mycelia, which could bind the bagasse fiber matrix. The main materials were whole bagasse (B) and depithed bagasse (DB). The SF weight ratios to bagasse were 1 : 1 (SF1) and 1.5 : 1 (SF1.5). Therefore, the studied specimens were labeled B-SF1, DB-SF1, B-SF1.5, and DB-SF1.5. All biofoam cups were analyzed for their physical properties (water absorption and porosity), mechanical properties (puncture and compressive strengths), biodegradability, and thermal properties (thermogravimetric analysis). The lowest water absorption rates were obtained from the B biofoam cups ( 23 % ± 2.45 % ) and the SF1.5 biofoam cups ( 25.83 % ± 5.19 % ). Both B-SF1 and B-SF1.5 had lower porosity ( 8.72 % ± 0.88 % and 10.77 % ± 1.54 % , respectively) than the DB biofoam cups. Moreover, the B biofoam cups had smoother biofoam surfaces, smaller voids, and lower porosity compared with the DB samples. However, the DB biofoam cups showed the highest puncture strength ( 2.95 ± 0.37 kg cm−2) among all samples. Nevertheless, the B-SF1.5 biofoam cup had the highest compressive strength ( 3.98 ± 0.39 MPa) and the DB-SF1.5 exhibited the slowest degradation rate ( 27 % ± 0.7 % ) after 14 days of soil burial. The highest thermal stability was obtained from B-SF1.5, which had a thermal degradation temperature of 264°C. Overall, B-SF1.5 had the smoothest surface, good thermal stability, and high compressive strength.
以甘蔗渣为原料,利用豆豉霉(根霉寡孢霉)制备生物泡沫杯。添加大豆粉促进菌丝体生长,菌丝体与甘蔗渣纤维基质结合。主要原料为全甘蔗渣(B)和深度甘蔗渣(DB)。SF与甘蔗渣的质量比分别为1:1 (SF1)和1.5:1 (SF1.5)。因此,所研究的标本被标记为B-SF1、DB-SF1、B-SF1.5和DB-SF1.5。分析了所有生物泡沫杯的物理性能(吸水率和孔隙率)、机械性能(穿刺和抗压强度)、生物降解性和热性能(热重分析)。B型生物泡沫杯吸水率最低(23%±2.45%),SF1.5型生物泡沫杯吸水率最低(25.83%±5.19%)。B-SF1和B-SF1.5的孔隙率均低于DB生物泡沫杯(分别为8.72%±0.88%和10.77%±1.54%)。此外,与DB样品相比,B生物泡沫杯具有更光滑的生物泡沫表面,更小的空隙和更低的孔隙率。然而,DB生物泡沫杯在所有样品中表现出最高的穿刺强度(2.95±0.37 kg cm−2)。然而,B-SF1.5生物泡沫杯在14天后的抗压强度最高(3.98±0.39 MPa),而DB-SF1.5的降解率最低(27%±0.7%)。B-SF1.5的热稳定性最高,热降解温度为264℃。总体而言,B-SF1.5表面光滑,热稳定性好,抗压强度高。
{"title":"Characteristics of Biofoam Cups Made from Sugarcane Bagasse with Rhizopus oligosporus as Binding Agent","authors":"E. Indarti, S. Muliani, D. Yunita","doi":"10.1155/2023/8257317","DOIUrl":"https://doi.org/10.1155/2023/8257317","url":null,"abstract":"This study is aimed at producing a biofoam cup made from sugarcane bagasse with tempeh mold (Rhizopus oligosporus). Soybean flour (SF) was added to promote the growth of mycelia, which could bind the bagasse fiber matrix. The main materials were whole bagasse (B) and depithed bagasse (DB). The SF weight ratios to bagasse were 1 : 1 (SF1) and 1.5 : 1 (SF1.5). Therefore, the studied specimens were labeled B-SF1, DB-SF1, B-SF1.5, and DB-SF1.5. All biofoam cups were analyzed for their physical properties (water absorption and porosity), mechanical properties (puncture and compressive strengths), biodegradability, and thermal properties (thermogravimetric analysis). The lowest water absorption rates were obtained from the B biofoam cups (\u0000 \u0000 23\u0000 %\u0000 ±\u0000 2.45\u0000 %\u0000 \u0000 ) and the SF1.5 biofoam cups (\u0000 \u0000 25.83\u0000 %\u0000 ±\u0000 5.19\u0000 %\u0000 \u0000 ). Both B-SF1 and B-SF1.5 had lower porosity (\u0000 \u0000 8.72\u0000 %\u0000 ±\u0000 0.88\u0000 %\u0000 \u0000 and \u0000 \u0000 10.77\u0000 %\u0000 ±\u0000 1.54\u0000 %\u0000 \u0000 , respectively) than the DB biofoam cups. Moreover, the B biofoam cups had smoother biofoam surfaces, smaller voids, and lower porosity compared with the DB samples. However, the DB biofoam cups showed the highest puncture strength (\u0000 \u0000 2.95\u0000 ±\u0000 0.37\u0000 \u0000 kg cm−2) among all samples. Nevertheless, the B-SF1.5 biofoam cup had the highest compressive strength (\u0000 \u0000 3.98\u0000 ±\u0000 0.39\u0000 \u0000 MPa) and the DB-SF1.5 exhibited the slowest degradation rate (\u0000 \u0000 27\u0000 %\u0000 ±\u0000 0.7\u0000 %\u0000 \u0000 ) after 14 days of soil burial. The highest thermal stability was obtained from B-SF1.5, which had a thermal degradation temperature of 264°C. Overall, B-SF1.5 had the smoothest surface, good thermal stability, and high compressive strength.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47885776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polymeric and plastic materials currently have numerous positive impacts due to their unique properties that make them important for various engineering applications. However, sustainability is a vital factor that should be considered, because of environmental issues. Eggshells (ES) are an important way to reduce the impact of nondegradable materials when applied to reinforce different types of polymer matrices, whether natural or synthetic polymers. Therefore, this study is an attempt to explore the potential application of waste eggshell fillers for the first time as a natural reinforcement in polyamide 12 (PA) composites. PA was loaded with three different ratios (3, 5, and 10 wt. %) of eggshell powder. Morphological studies of the PA powder, ES powder, and their composites were carried out by scanning electron microscopy (SEM). Furthermore, differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy were performed to study the thermal and chemical properties of the raw materials and the produced composites. The results indicate ES fillers’ potential usage as a reinforcement material to develop the thermal and chemical properties of the PA polymer matrix composites, thereby reducing costs and minimizing the environmental pollution caused by waste eggshells and petroleum-based polymers.
{"title":"Studying the Fabrication and Characterization of Polymer Composites Reinforced with Waste Eggshell Powder","authors":"Wasan A. Alkaron, Sameer F. Hamad, M. Sabri","doi":"10.1155/2023/7640478","DOIUrl":"https://doi.org/10.1155/2023/7640478","url":null,"abstract":"Polymeric and plastic materials currently have numerous positive impacts due to their unique properties that make them important for various engineering applications. However, sustainability is a vital factor that should be considered, because of environmental issues. Eggshells (ES) are an important way to reduce the impact of nondegradable materials when applied to reinforce different types of polymer matrices, whether natural or synthetic polymers. Therefore, this study is an attempt to explore the potential application of waste eggshell fillers for the first time as a natural reinforcement in polyamide 12 (PA) composites. PA was loaded with three different ratios (3, 5, and 10 wt. %) of eggshell powder. Morphological studies of the PA powder, ES powder, and their composites were carried out by scanning electron microscopy (SEM). Furthermore, differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy were performed to study the thermal and chemical properties of the raw materials and the produced composites. The results indicate ES fillers’ potential usage as a reinforcement material to develop the thermal and chemical properties of the PA polymer matrix composites, thereby reducing costs and minimizing the environmental pollution caused by waste eggshells and petroleum-based polymers.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42006861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polymeric materials were evaluated with regard to their spinnability and respective fibre diameters. A modified single fibre spinning device was firstly used to derive a novel generalised model, utilising process parameters (die diameter, throughput, and stretching relevant take-up pressures) and material properties (zero shear viscosity) to predict the diameter of polymeric fibres on the basis of four different polymers. Further evaluation of the resulting power law dependence was conducted on filaments produced via conventional melt spinning and meltblown processes. Fibres produced on the pilot machines showed close agreement with the model equation with only the need to adjust an easily calculable device dependent factor. The outcome of the presented work is a user-friendly model of high practical relevance, which can be used to predict the diameter of amorphous and semicrystalline polymeric fibres, independent of material and machine used with sufficient accuracy for fast estimations.
{"title":"Model to Predict Polymer Fibre Diameter during Melt Spinning","authors":"Alexander M. Bier, Michael Redel, D. Schubert","doi":"10.1155/2023/7983819","DOIUrl":"https://doi.org/10.1155/2023/7983819","url":null,"abstract":"Polymeric materials were evaluated with regard to their spinnability and respective fibre diameters. A modified single fibre spinning device was firstly used to derive a novel generalised model, utilising process parameters (die diameter, throughput, and stretching relevant take-up pressures) and material properties (zero shear viscosity) to predict the diameter of polymeric fibres on the basis of four different polymers. Further evaluation of the resulting power law dependence was conducted on filaments produced via conventional melt spinning and meltblown processes. Fibres produced on the pilot machines showed close agreement with the model equation with only the need to adjust an easily calculable device dependent factor. The outcome of the presented work is a user-friendly model of high practical relevance, which can be used to predict the diameter of amorphous and semicrystalline polymeric fibres, independent of material and machine used with sufficient accuracy for fast estimations.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49222086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Habeeb, B. Nadhim, B. J. Kadhim, Mohammed Salam Ktab, A. J. Kadhim, Farqad Saleem Murad
In this study, both polyvinyl chloride (PVC) and polyacrylonitrile (PAN) were dissolved in dimethyl formaldehyde (DMF) with 8 wt. % concentrations at 25 : 75, 50 : 50, and 75 : 25 of PVC: PAN blending. For the investigation of the homogeneity and compatibility of mixture polymer solutions, it is examined by rheological properties such as viscosity, shear stress, shear rate, and calculation of the flow behavior index, while the investigation of the stability and high density of nanofibers without beads used field-emission scanning electron microscopy (FE-SEM), Fourier transform near-infrared spectroscopy (FT-NIR), X-ray diffraction (XRD), and differential scanning calorimetry-thermogravimetric analysis (DSC-TGA). The results show that blending of PAN with PVC leads to improving of the electro spun ability of PVC with more stability, and the mean nanofiber diameter was 90.873 ± 40.82 nm at 25 : 75 PVC: PAN. Moreover, mechanical properties are ultimate tensile strength and modulus of elasticity decreasing with decreasing the blending ration from pure PVC to 75 : 25 PVC: PAN nanofibers by 71% and 83%, respectively, while the elongation at break increases by 79%, and decomposition temperatures decreased from 451.96 to 345.38°C when changing the PVC content from pure PVC to 25 : 75 PVC: PAN. On the other hand, changing of the nanofiber behavior from hydrophobicity to hydrophilic increased the PAN content in PVC: PAN blends. Furthermore, the low interaction between the chains of polymers and the crystallinity (%) and crystalline size (nm) of blend nanofibers slightly decreased compared to the pure polymers. According to all tests, the 25: 75 PVC: PAN was the best blending ratio, which gave a more stable nanofiber produced at low concentrations and more compatible between the PVC and PAN.
{"title":"Improving the Physical Properties of Nanofibers Prepared by Electrospinning from Polyvinyl Chloride and Polyacrylonitrile at Low Concentrations","authors":"S. Habeeb, B. Nadhim, B. J. Kadhim, Mohammed Salam Ktab, A. J. Kadhim, Farqad Saleem Murad","doi":"10.1155/2023/1811577","DOIUrl":"https://doi.org/10.1155/2023/1811577","url":null,"abstract":"In this study, both polyvinyl chloride (PVC) and polyacrylonitrile (PAN) were dissolved in dimethyl formaldehyde (DMF) with 8 wt. % concentrations at 25 : 75, 50 : 50, and 75 : 25 of PVC: PAN blending. For the investigation of the homogeneity and compatibility of mixture polymer solutions, it is examined by rheological properties such as viscosity, shear stress, shear rate, and calculation of the flow behavior index, while the investigation of the stability and high density of nanofibers without beads used field-emission scanning electron microscopy (FE-SEM), Fourier transform near-infrared spectroscopy (FT-NIR), X-ray diffraction (XRD), and differential scanning calorimetry-thermogravimetric analysis (DSC-TGA). The results show that blending of PAN with PVC leads to improving of the electro spun ability of PVC with more stability, and the mean nanofiber diameter was \u0000 \u0000 90.873\u0000 ±\u0000 40.82\u0000 \u0000 nm\u0000 \u0000 at 25 : 75 PVC: PAN. Moreover, mechanical properties are ultimate tensile strength and modulus of elasticity decreasing with decreasing the blending ration from pure PVC to 75 : 25 PVC: PAN nanofibers by 71% and 83%, respectively, while the elongation at break increases by 79%, and decomposition temperatures decreased from 451.96 to 345.38°C when changing the PVC content from pure PVC to 25 : 75 PVC: PAN. On the other hand, changing of the nanofiber behavior from hydrophobicity to hydrophilic increased the PAN content in PVC: PAN blends. Furthermore, the low interaction between the chains of polymers and the crystallinity (%) and crystalline size (nm) of blend nanofibers slightly decreased compared to the pure polymers. According to all tests, the 25: 75 PVC: PAN was the best blending ratio, which gave a more stable nanofiber produced at low concentrations and more compatible between the PVC and PAN.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45999751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Sagitova, G. N. Kalmatayeva, S. Sakibayeva, D. Assylbekova, A. S. Sadyrbayeva, Zh. K. Shukhanova
Recovery of fat-and-oil production wastes will reduce the technogenic impact on the environment, as well as involve them in a new production cycle as a secondary material resource. As part of solving this problem, the possibilities of using fat-and-oil production wastes in the production of a tyre reclaim and a modified tyre reclaim are considered. In the course of the studies, the fat-and-oil industry wastes’ sorption characteristics are determined, and in relation to oils in static and dynamic conditions, the spent reagent reclamation ways are determined. The authors obtained a tyre reclaim and a modified tyre reclaim using the fat-and-oil industry wastes (soap stock, diatomite, bleaching clay, and fatty acids isolated from soap stock). In this work, the authors studied the possibility of using the fat-and-oil industry wastes in the formulations of a tyre reclaim and a modified tyre reclaim. Extended physical and mechanical tests of experimental rubbers led to the conclusion that it is most expedient to use the fat-and-oil industry wastes in the formulation of rubber compounds for production of sleeper pads for railroad tracks, since when using a tyre reclaim and a modified tyre reclaim, the indicators of rubber properties practically do not change and comply with control standards.
{"title":"Modification of Tyre Rubber Crumb with Wastes of Plant Oil Production","authors":"G. Sagitova, G. N. Kalmatayeva, S. Sakibayeva, D. Assylbekova, A. S. Sadyrbayeva, Zh. K. Shukhanova","doi":"10.1155/2023/6889286","DOIUrl":"https://doi.org/10.1155/2023/6889286","url":null,"abstract":"Recovery of fat-and-oil production wastes will reduce the technogenic impact on the environment, as well as involve them in a new production cycle as a secondary material resource. As part of solving this problem, the possibilities of using fat-and-oil production wastes in the production of a tyre reclaim and a modified tyre reclaim are considered. In the course of the studies, the fat-and-oil industry wastes’ sorption characteristics are determined, and in relation to oils in static and dynamic conditions, the spent reagent reclamation ways are determined. The authors obtained a tyre reclaim and a modified tyre reclaim using the fat-and-oil industry wastes (soap stock, diatomite, bleaching clay, and fatty acids isolated from soap stock). In this work, the authors studied the possibility of using the fat-and-oil industry wastes in the formulations of a tyre reclaim and a modified tyre reclaim. Extended physical and mechanical tests of experimental rubbers led to the conclusion that it is most expedient to use the fat-and-oil industry wastes in the formulation of rubber compounds for production of sleeper pads for railroad tracks, since when using a tyre reclaim and a modified tyre reclaim, the indicators of rubber properties practically do not change and comply with control standards.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46265551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Packaging plastics are called ‘single-use plastics’ because of short lifetime. Among which, the three plastics of polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) take more than 70%. Due to incompatibility, few research has been done on the alloy of the three plastics. The aim of this study is to investigate the possibility of single-use plastic alloy (SUPA) of ternary PE, PP, and PET as the 3D printing material. Tensile and bending tests are carried out to investigate the mechanical properties, photographs of scanning electron microscope (SEM) are taken for morphology analysis, and differential scanning calorimetry (DSC) are used to study the crystallization behavior of the alloys. The results show that there is an optimal ratio for all the components to obtain the best mechanical performances, i.e., the ratio of PP / PE = 40 / 60 with 20 wt% PET, 2 wt% maleic anhydride grafted polypropylene (PP-g-MAH) and 2 wt% organic modified montmorillonite (OMMT). This SUPA has a tensile strength of 14.48 MPa, a tensile modulus of 586.42 MPa, a flexural strength of 15.85 MPa, and a flexural modulus of 544.67 MPa. Due to the function of compatibilizer and nanoclay (NC) will be affected by redundancy, the potential primary fibrosis while collecting the feeding filaments and the secondary fibrosis at the nozzle of 3D printing might be responsible for the variation of the mechanical performances.
{"title":"Fused Deposition Modeling of Single-Use Plastic Alloy","authors":"Wang Liao, Jie Wang, Manping Pan","doi":"10.1155/2023/9313467","DOIUrl":"https://doi.org/10.1155/2023/9313467","url":null,"abstract":"Packaging plastics are called ‘single-use plastics’ because of short lifetime. Among which, the three plastics of polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) take more than 70%. Due to incompatibility, few research has been done on the alloy of the three plastics. The aim of this study is to investigate the possibility of single-use plastic alloy (SUPA) of ternary PE, PP, and PET as the 3D printing material. Tensile and bending tests are carried out to investigate the mechanical properties, photographs of scanning electron microscope (SEM) are taken for morphology analysis, and differential scanning calorimetry (DSC) are used to study the crystallization behavior of the alloys. The results show that there is an optimal ratio for all the components to obtain the best mechanical performances, i.e., the ratio of \u0000 \u0000 PP\u0000 /\u0000 PE\u0000 =\u0000 40\u0000 /\u0000 60\u0000 \u0000 with 20 wt% PET, 2 wt% maleic anhydride grafted polypropylene (PP-g-MAH) and 2 wt% organic modified montmorillonite (OMMT). This SUPA has a tensile strength of 14.48 MPa, a tensile modulus of 586.42 MPa, a flexural strength of 15.85 MPa, and a flexural modulus of 544.67 MPa. Due to the function of compatibilizer and nanoclay (NC) will be affected by redundancy, the potential primary fibrosis while collecting the feeding filaments and the secondary fibrosis at the nozzle of 3D printing might be responsible for the variation of the mechanical performances.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46489105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nazreen Zavahir, Tan Zhang, F. Blum, Madhubhashini Maddumaarachchi
<jats:p>Vinyl acetate (VAc) was polymerized to about 90% conversion in 9 h at 40°C from the colloidal microstructure of the VAc/fumed silica/cetyltrimethylammonium bromide (CTAB) system. The glass transition (<jats:inline-formula>