首页 > 最新文献

Advances in Physics: X最新文献

英文 中文
Intrusion and extrusion of liquids in highly confining media: bridging fundamental research to applications 液体在高度受限介质中的侵入和挤压:连接基础研究与应用
IF 6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.1080/23746149.2022.2052353
A. Le Donne, A. Tinti, Eder Amayuelas, Hemant K. Kashyap, G. Camisasca, Richard C. Remsing, R. Roth, Yaroslav Grosu, S. Meloni
ABSTRACT Wetting and drying of pores or cavities, made by walls that attract or repel the liquid, is a ubiquitous process in nature and has many technological applications including, for example, liquid separation, chromatography, energy damping, conversion, and storage. Understanding under which conditions intrusion/extrusion takes place and how to control/tune them by chemical or physical means are currently among the main questions in the field. Historically, the theory to model intrusion/extrusion was based on the mechanics of fluids. However, the discovery of the existence of metastable states, where systems are kinetically trapped in the intruded or extruded configuration, fostered the research based on modern statistical mechanics concepts and more accurate models of the liquid, vapor, and gas phases beyond the simplest sharp interface representation. In parallel, inspired by the growing number of technological applications of intrusion/extrusion, experimental research blossomed considering systems with complex chemistry and pore topology, possessing flexible frameworks, and presenting unusual properties, such as negative volumetric compressibility. In this article, we review recent theoretical and experimental progresses, presenting it in the context of unifying framework. We illustrate also emerging technological applications of intrusion/extrusion and discuss challenges ahead. Graphical Abstract
由吸引或排斥液体的壁面形成的孔隙或空腔的润湿和干燥是自然界中普遍存在的过程,并有许多技术应用,例如液体分离、色谱、能量阻尼、转换和储存。了解在什么条件下发生侵入/挤压以及如何通过化学或物理手段控制/调整它们是目前该领域的主要问题之一。历史上,模拟侵入/挤压的理论是基于流体力学的。然而,亚稳态的存在,即系统在动力学上被困在侵入或挤压的结构中,促进了基于现代统计力学概念的研究,以及更精确的液体、蒸汽和气体相模型,而不是最简单的尖锐界面表示。与此同时,受到越来越多的侵入/挤压技术应用的启发,实验研究蓬勃发展,考虑到具有复杂化学和孔隙拓扑结构、具有柔性框架以及具有不寻常性质(如负体积压缩性)的系统。在本文中,我们回顾了近年来的理论和实验进展,并在统一框架的背景下进行了介绍。我们还说明了侵入/挤压的新兴技术应用,并讨论了未来的挑战。图形抽象
{"title":"Intrusion and extrusion of liquids in highly confining media: bridging fundamental research to applications","authors":"A. Le Donne, A. Tinti, Eder Amayuelas, Hemant K. Kashyap, G. Camisasca, Richard C. Remsing, R. Roth, Yaroslav Grosu, S. Meloni","doi":"10.1080/23746149.2022.2052353","DOIUrl":"https://doi.org/10.1080/23746149.2022.2052353","url":null,"abstract":"ABSTRACT Wetting and drying of pores or cavities, made by walls that attract or repel the liquid, is a ubiquitous process in nature and has many technological applications including, for example, liquid separation, chromatography, energy damping, conversion, and storage. Understanding under which conditions intrusion/extrusion takes place and how to control/tune them by chemical or physical means are currently among the main questions in the field. Historically, the theory to model intrusion/extrusion was based on the mechanics of fluids. However, the discovery of the existence of metastable states, where systems are kinetically trapped in the intruded or extruded configuration, fostered the research based on modern statistical mechanics concepts and more accurate models of the liquid, vapor, and gas phases beyond the simplest sharp interface representation. In parallel, inspired by the growing number of technological applications of intrusion/extrusion, experimental research blossomed considering systems with complex chemistry and pore topology, possessing flexible frameworks, and presenting unusual properties, such as negative volumetric compressibility. In this article, we review recent theoretical and experimental progresses, presenting it in the context of unifying framework. We illustrate also emerging technological applications of intrusion/extrusion and discuss challenges ahead. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":"7 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60110689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Partially coherent light beam shaping via complex spatial coherence structure engineering 基于复杂空间相干结构工程的部分相干光束整形
IF 6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2021-12-19 DOI: 10.1080/23746149.2021.2009742
Yahong Chen, Fei Wang, Y. Cai
ABSTRACT The techniques of optical beam shaping have enabled progress in a broad range of interdisciplinary science and engineering, owing to the unique properties and promising applications of their created structured light. However, the conventional methods, which are based on fully coherent optics approaches, introduce several adverse effects such as speckles noise in the generated beams and susceptible to be disturbed in complex environment (e.g. turbulent atmospheres), because of the sensitive coherent light-matter interaction. To overcome those side effects, a new protocol relied on the partially coherent beam shaping has been developed. By elaborately tailoring the complex spatial coherence structure of a partially coherent beam, the desired beam profile and trajectory with high beam quality and robust propagation feature in complex environment can be generated. In this review, we present an overview of such unconventional partially coherent beam shaping with a focus on the important role of the complex spatial coherence structure engineering. Partially coherent beam shaping not only provides an efficient means for resisting the disadvantages in coherent optics methods but also enables new applications in novel optical imaging and tweezers. Graphical abstract
光束整形技术由于其所创造的结构光的独特特性和有前途的应用,使广泛的跨学科科学和工程取得了进展。然而,传统的基于全相干光学方法的方法,由于敏感的相干光-物质相互作用,在复杂的环境(如湍流大气)中,产生的光束容易受到干扰,如斑点噪声。为了克服这些副作用,开发了一种基于部分相干光束整形的新方案。通过对部分相干光束的复杂空间相干结构进行精细裁剪,可以生成在复杂环境中具有高光束质量和鲁棒传播特性的光束轮廓和轨迹。本文对这种非常规的部分相干光束整形技术进行了综述,重点介绍了复杂空间相干结构工程的重要作用。部分相干光束整形不仅为克服相干光学方法的缺点提供了有效的手段,而且在新型光学成像和镊子中有了新的应用。图形抽象
{"title":"Partially coherent light beam shaping via complex spatial coherence structure engineering","authors":"Yahong Chen, Fei Wang, Y. Cai","doi":"10.1080/23746149.2021.2009742","DOIUrl":"https://doi.org/10.1080/23746149.2021.2009742","url":null,"abstract":"ABSTRACT The techniques of optical beam shaping have enabled progress in a broad range of interdisciplinary science and engineering, owing to the unique properties and promising applications of their created structured light. However, the conventional methods, which are based on fully coherent optics approaches, introduce several adverse effects such as speckles noise in the generated beams and susceptible to be disturbed in complex environment (e.g. turbulent atmospheres), because of the sensitive coherent light-matter interaction. To overcome those side effects, a new protocol relied on the partially coherent beam shaping has been developed. By elaborately tailoring the complex spatial coherence structure of a partially coherent beam, the desired beam profile and trajectory with high beam quality and robust propagation feature in complex environment can be generated. In this review, we present an overview of such unconventional partially coherent beam shaping with a focus on the important role of the complex spatial coherence structure engineering. Partially coherent beam shaping not only provides an efficient means for resisting the disadvantages in coherent optics methods but also enables new applications in novel optical imaging and tweezers. Graphical abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":"7 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41508254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
Inelastic thermoelectric transport and fluctuations in mesoscopic systems 介观系统中的非弹性热电输运和涨落
IF 6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2021-12-17 DOI: 10.1080/23746149.2022.2082317
Rongqian Wang, Chen Wang, Jincheng Lu, Jian‐Hua Jiang
ABSTRACT In the past decade, a new research frontier emerges at the interface between physics and renewable energy, termed as inelastic thermoelectric effects, where inelastic transport processes play a key role. The study of inelastic thermoelectric effects broadens our understanding of thermoelectric phenomena and provides new routes towards high-performance thermoelectric energy conversion. Here, we review the main progress in this field, with a particular focus on inelastic thermoelectric effects induced by the electron-phonon and electron–photon interactions. We introduce the motivations, the basic pictures, and prototype models, as well as the unconventional effects induced by inelastic thermoelectric transport. These unconventional effects include the separation of heat and charge transport, the cooling by heating effect, the linear thermal transistor effect, nonlinear enhancement of performance, Maxwell demons, and cooperative effects. We find that elastic and inelastic thermoelectric effects are described by significantly different microscopic mechanisms and belong to distinct linear thermodynamic classes. We also pay special attention to the unique aspect of fluctuations in small mesoscopic thermoelectric systems. Finally, we discuss the challenges and future opportunities in the field of inelastic thermoelectrics. Graphical Abstract
在过去的十年中,在物理和可再生能源的界面上出现了一个新的研究前沿,即非弹性热电效应,其中非弹性输运过程起着关键作用。非弹性热电效应的研究拓宽了我们对热电现象的认识,为高性能热电能量转换提供了新的途径。本文综述了这一领域的主要进展,重点介绍了电子-声子和电子-光子相互作用引起的非弹性热电效应。我们介绍了非弹性热电输运的动机、基本图像和原型模型,以及非弹性热电输运引起的非常规效应。这些非常规效应包括热和电荷输运的分离、加热效应的冷却、线性热晶体管效应、性能的非线性增强、麦克斯韦魔和合作效应。我们发现弹性和非弹性热电效应是由不同的微观机制描述的,属于不同的线性热力学类。我们还特别注意小介观热电系统波动的独特方面。最后,讨论了非弹性热电学领域面临的挑战和未来的机遇。图形抽象
{"title":"Inelastic thermoelectric transport and fluctuations in mesoscopic systems","authors":"Rongqian Wang, Chen Wang, Jincheng Lu, Jian‐Hua Jiang","doi":"10.1080/23746149.2022.2082317","DOIUrl":"https://doi.org/10.1080/23746149.2022.2082317","url":null,"abstract":"ABSTRACT In the past decade, a new research frontier emerges at the interface between physics and renewable energy, termed as inelastic thermoelectric effects, where inelastic transport processes play a key role. The study of inelastic thermoelectric effects broadens our understanding of thermoelectric phenomena and provides new routes towards high-performance thermoelectric energy conversion. Here, we review the main progress in this field, with a particular focus on inelastic thermoelectric effects induced by the electron-phonon and electron–photon interactions. We introduce the motivations, the basic pictures, and prototype models, as well as the unconventional effects induced by inelastic thermoelectric transport. These unconventional effects include the separation of heat and charge transport, the cooling by heating effect, the linear thermal transistor effect, nonlinear enhancement of performance, Maxwell demons, and cooperative effects. We find that elastic and inelastic thermoelectric effects are described by significantly different microscopic mechanisms and belong to distinct linear thermodynamic classes. We also pay special attention to the unique aspect of fluctuations in small mesoscopic thermoelectric systems. Finally, we discuss the challenges and future opportunities in the field of inelastic thermoelectrics. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46984087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Recent trends in high-order harmonic generation in solids 固体中高次谐波产生的最新趋势
IF 6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2021-12-05 DOI: 10.1080/23746149.2021.2003244
Jongkyoon Park, Amutha V. Subramani, Seungchul Kim, M. Ciappina
ABSTRACT High-order harmonic generation in solids, the nonlinear up-conversion of coherent radiation resulting from the interaction of a strong and short laser pulse with a solid sample, has come to age. Since the first experiments and theoretical developments, there has been a constant and steady interest in this topic. In this paper, we summarize the progress made so far and propose new possibilities for the generation of high-order harmonics with the aid of plasmonic fields. The driven fields could be adequately engineered both spatially and temporally with nanometric and attosecond resolution, offering to the conventional solid-HHG novel and exciting coherent sources. Just to cite an example, the generation of attosecond pulses using bulk matter is strongly linked to the appropriate manipulation of the driven field to avoid, for instance, reaching the damage threshold of the material. Plasmonics fields as an alternative to conventional laser beams could open new avenues in the development of table-top sources of ultrashort and strong coherent radiation. Graphical abstract
摘要固体中的高次谐波产生,即强激光脉冲和短激光脉冲与固体样品相互作用产生的相干辐射的非线性上转换,已经过时。自从第一次实验和理论发展以来,人们一直对这个话题感兴趣。在本文中,我们总结了迄今为止取得的进展,并提出了借助等离子体场产生高次谐波的新可能性。驱动场可以在空间和时间上以纳米和阿秒的分辨率进行充分的设计,为传统的固体HHG提供了新颖而令人兴奋的相干源。举个例子,使用大块物质产生阿秒脉冲与适当操纵驱动场密切相关,以避免达到材料的损伤阈值。等离子体场作为传统激光束的替代品,可以为开发超短强相干辐射的桌面源开辟新的途径。图形摘要
{"title":"Recent trends in high-order harmonic generation in solids","authors":"Jongkyoon Park, Amutha V. Subramani, Seungchul Kim, M. Ciappina","doi":"10.1080/23746149.2021.2003244","DOIUrl":"https://doi.org/10.1080/23746149.2021.2003244","url":null,"abstract":"ABSTRACT High-order harmonic generation in solids, the nonlinear up-conversion of coherent radiation resulting from the interaction of a strong and short laser pulse with a solid sample, has come to age. Since the first experiments and theoretical developments, there has been a constant and steady interest in this topic. In this paper, we summarize the progress made so far and propose new possibilities for the generation of high-order harmonics with the aid of plasmonic fields. The driven fields could be adequately engineered both spatially and temporally with nanometric and attosecond resolution, offering to the conventional solid-HHG novel and exciting coherent sources. Just to cite an example, the generation of attosecond pulses using bulk matter is strongly linked to the appropriate manipulation of the driven field to avoid, for instance, reaching the damage threshold of the material. Plasmonics fields as an alternative to conventional laser beams could open new avenues in the development of table-top sources of ultrashort and strong coherent radiation. Graphical abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43238034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Flame assisted synthesis of nanostructures for device applications 用于器件应用的纳米结构的火焰辅助合成
IF 6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2021-11-11 DOI: 10.1080/23746149.2021.1997153
Alishba T. John, A. Tricoli
ABSTRACT Development of fabrication technologies for three-dimensional structuring and integration of nanomaterials in devices is important for a broad range of applications, including next-generation high energy density batteries, super(de)wetting and biomedical coatings, and miniaturized biomedical diagnostics. Amongst various nanofabrication approaches, the flame synthesis route accounts for some of the first man-made nanomaterials and industrial production of various nanoparticle commodities such as carbon black, fumed silica, and pigmentary titania. In the past two decades, flexibility in nanomaterials and facile fabrication of nanostructured films by aerosol self-assembly has motivated the exploration of this technology for device applications. In this review, we present a perspective of recent progress in flame-assisted nanofabrication and its application to emerging technologies. The fundamentals of flame synthesis will be briefly reviewed to evaluate trends in flame reactor designs and directions for improvements. A selection of exemplary flame-made nanostructures will be presented across the major categories of catalysis, energy conversion devices, membranes and sensors, highlighting weakness and strengths of this synthesis route. We will conclude with an outlook towards possible implementation of flame-assisted self-assembly as a scalable tool for nanofabrication in emerging devices and a critical assessment of the persisting challenges for its broader industrial uptake. Graphical Abstract
纳米材料在器件中的三维结构和集成制造技术的发展对于下一代高能量密度电池、超(去)湿和生物医学涂层以及小型化生物医学诊断等广泛应用具有重要意义。在各种纳米制造方法中,火焰合成路线是最早的人造纳米材料和工业生产各种纳米颗粒商品,如炭黑、气相二氧化硅和颜料二氧化钛。在过去的二十年中,纳米材料的灵活性和通过气溶胶自组装制备纳米结构薄膜的便利性推动了该技术在器件应用中的探索。在这篇综述中,我们介绍了火焰辅助纳米制造的最新进展及其在新兴技术中的应用。本文将简要回顾火焰合成的基本原理,以评价火焰反应器设计的趋势和改进方向。在催化、能量转换装置、膜和传感器的主要类别中,将展示一些典型的火焰纳米结构,突出这种合成路线的优缺点。最后,我们将展望火焰辅助自组装作为新兴设备中纳米制造的可扩展工具的可能实现,并对其更广泛的工业应用所面临的持续挑战进行关键评估。图形抽象
{"title":"Flame assisted synthesis of nanostructures for device applications","authors":"Alishba T. John, A. Tricoli","doi":"10.1080/23746149.2021.1997153","DOIUrl":"https://doi.org/10.1080/23746149.2021.1997153","url":null,"abstract":"ABSTRACT Development of fabrication technologies for three-dimensional structuring and integration of nanomaterials in devices is important for a broad range of applications, including next-generation high energy density batteries, super(de)wetting and biomedical coatings, and miniaturized biomedical diagnostics. Amongst various nanofabrication approaches, the flame synthesis route accounts for some of the first man-made nanomaterials and industrial production of various nanoparticle commodities such as carbon black, fumed silica, and pigmentary titania. In the past two decades, flexibility in nanomaterials and facile fabrication of nanostructured films by aerosol self-assembly has motivated the exploration of this technology for device applications. In this review, we present a perspective of recent progress in flame-assisted nanofabrication and its application to emerging technologies. The fundamentals of flame synthesis will be briefly reviewed to evaluate trends in flame reactor designs and directions for improvements. A selection of exemplary flame-made nanostructures will be presented across the major categories of catalysis, energy conversion devices, membranes and sensors, highlighting weakness and strengths of this synthesis route. We will conclude with an outlook towards possible implementation of flame-assisted self-assembly as a scalable tool for nanofabrication in emerging devices and a critical assessment of the persisting challenges for its broader industrial uptake. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46322239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Electroosmosis in nanopores: computational methods and technological applications 纳米孔中的电渗:计算方法和技术应用
IF 6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2021-11-10 DOI: 10.1080/23746149.2022.2036638
A. Gubbiotti, Matteo Baldelli, Giovanni Di Muccio, P. Malgaretti, S. Marbach, M. Chinappi
ABSTRACT Electroosmosis is a fascinating effect where liquid motion is induced by an applied electric field. Counter ions accumulate in the vicinity of charged surfaces, triggering a coupling between liquid mass transport and external electric field. In nanofluidic technologies, where surfaces play an exacerbated role, electroosmosis is thus of primary importance. Its consequences on transport properties in biological and synthetic nanopores are subtle and intricate. Thorough understanding is therefore challenging yet crucial to fully assess the mechanisms at play. Here, we review recent progress on computational techniques for the analysis of electroosmosis and discuss technological applications, in particular for nanopore sensing devices. Graphical Abstract
电渗透是一种由外加电场诱导液体运动的奇妙效应。反离子聚集在带电表面附近,引发液体质量输运和外电场之间的耦合。在纳米流体技术中,表面起着更大的作用,因此电渗透是最重要的。它对生物和合成纳米孔中的输运特性的影响是微妙而复杂的。因此,透彻理解对充分评估起作用的机制具有挑战性,但又至关重要。在这里,我们回顾了电渗透分析的计算技术的最新进展,并讨论了技术应用,特别是纳米孔传感装置。图形抽象
{"title":"Electroosmosis in nanopores: computational methods and technological applications","authors":"A. Gubbiotti, Matteo Baldelli, Giovanni Di Muccio, P. Malgaretti, S. Marbach, M. Chinappi","doi":"10.1080/23746149.2022.2036638","DOIUrl":"https://doi.org/10.1080/23746149.2022.2036638","url":null,"abstract":"ABSTRACT Electroosmosis is a fascinating effect where liquid motion is induced by an applied electric field. Counter ions accumulate in the vicinity of charged surfaces, triggering a coupling between liquid mass transport and external electric field. In nanofluidic technologies, where surfaces play an exacerbated role, electroosmosis is thus of primary importance. Its consequences on transport properties in biological and synthetic nanopores are subtle and intricate. Thorough understanding is therefore challenging yet crucial to fully assess the mechanisms at play. Here, we review recent progress on computational techniques for the analysis of electroosmosis and discuss technological applications, in particular for nanopore sensing devices. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47487542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Experimental challenges in ion channel research: uncovering basic principles of permeation and gating in potassium channels 离子通道研究中的实验挑战:揭示钾通道中渗透和门控的基本原理
IF 6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2021-10-15 DOI: 10.1080/23746149.2021.1978317
J. Carvalho-de-Souza, A. Saponaro, C. Bassetto, O. Rauh, I. Schroeder, F. Franciolini, L. Catacuzzeno, F. Bezanilla, G. Thiel, A. Moroni
ABSTRACT Biological ion channels precisely control the flow of ions across membranes in response to a range of physical and chemical stimuli. With their ability of transporting ions in a highly selective manner and of integrating regulatory cues, they are a source of inspiration for the construction of solid-state nanopores as sensors or switches for practical applications. Here, we summarize recent advancements in understanding the mechanisms of ion permeation and gating in channel proteins with a focus on the elementary steps of ion transport through the pore and on non-canonical modes of intramolecular communication between peripheral sensory domains and the central channel pore. Graphical Abstract
生物离子通道在一系列物理和化学刺激下精确控制离子在膜上的流动。由于它们具有以高度选择性的方式运输离子和整合调节信号的能力,它们是构建固态纳米孔作为实际应用的传感器或开关的灵感来源。在这里,我们总结了离子在通道蛋白中渗透和门控机制的最新进展,重点介绍了离子通过孔运输的基本步骤以及外周感觉域与中央通道孔之间的分子内通信的非规范模式。图形抽象
{"title":"Experimental challenges in ion channel research: uncovering basic principles of permeation and gating in potassium channels","authors":"J. Carvalho-de-Souza, A. Saponaro, C. Bassetto, O. Rauh, I. Schroeder, F. Franciolini, L. Catacuzzeno, F. Bezanilla, G. Thiel, A. Moroni","doi":"10.1080/23746149.2021.1978317","DOIUrl":"https://doi.org/10.1080/23746149.2021.1978317","url":null,"abstract":"ABSTRACT Biological ion channels precisely control the flow of ions across membranes in response to a range of physical and chemical stimuli. With their ability of transporting ions in a highly selective manner and of integrating regulatory cues, they are a source of inspiration for the construction of solid-state nanopores as sensors or switches for practical applications. Here, we summarize recent advancements in understanding the mechanisms of ion permeation and gating in channel proteins with a focus on the elementary steps of ion transport through the pore and on non-canonical modes of intramolecular communication between peripheral sensory domains and the central channel pore. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47730027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Strong-field physics with nanospheres 纳米球的强场物理
IF 6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2021-09-06 DOI: 10.1080/23746149.2021.2010595
L. Seiffert, S. Zherebtsov, M. Kling, T. Fennel
ABSTRACT When intense laser fields interact with nanoscale targets, strong-field physics meets plasmonic near-field enhancement and subwavelength localization of light. Photoemission spectra reflect the associated attosecond optical and electronic response and encode the collisional and collective dynamics of the solid. Nanospheres represent an ideal platform to explore the underlying attosecond nanophysics because of their particularly simple geometry. This review summarizes key results from the last decade and aims to provide the essential stepping stones for students and researchers to enter this field. Graphical abstract
摘要当强激光场与纳米级目标相互作用时,强场物理会遇到等离子体近场增强和光的亚波长局域化。光发射光谱反映了相关的阿秒光学和电子响应,并编码了固体的碰撞和集体动力学。纳米球是探索阿秒纳米物理的理想平台,因为它们的几何形状特别简单。这篇综述总结了过去十年的主要成果,旨在为学生和研究人员进入这一领域提供重要的垫脚石。图形摘要
{"title":"Strong-field physics with nanospheres","authors":"L. Seiffert, S. Zherebtsov, M. Kling, T. Fennel","doi":"10.1080/23746149.2021.2010595","DOIUrl":"https://doi.org/10.1080/23746149.2021.2010595","url":null,"abstract":"ABSTRACT When intense laser fields interact with nanoscale targets, strong-field physics meets plasmonic near-field enhancement and subwavelength localization of light. Photoemission spectra reflect the associated attosecond optical and electronic response and encode the collisional and collective dynamics of the solid. Nanospheres represent an ideal platform to explore the underlying attosecond nanophysics because of their particularly simple geometry. This review summarizes key results from the last decade and aims to provide the essential stepping stones for students and researchers to enter this field. Graphical abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49521866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Prospects and applications of photonic neural networks 光子神经网络的展望与应用
IF 6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2021-05-20 DOI: 10.1080/23746149.2021.1981155
Chaoran Huang, V. Sorger, M. Miscuglio, M. Al-Qadasi, Avilash Mukherjee, S. Shekhar, L. Chrostowski, L. Lampe, Mitchell Nichols, M. Fok, D. Brunner, A. Tait, T. F. D. Lima, B. Marquez, P. Prucnal, B. Shastri
ABSTRACT Neural networks have enabled applications in artificial intelligence through machine learning, and neuromorphic computing. Software implementations of neural networks on conventional computers that have separate memory and processor (and that operate sequentially) are limited in speed and energy efficiency. Neuromorphic engineering aims to build processors in which hardware mimics neurons and synapses in the brain for distributed and parallel processing. Neuromorphic engineering enabled by photonics (optical physics) can offer sub-nanosecond latencies and high bandwidth with low energies to extend the domain of artificial intelligence and neuromorphic computing applications to machine learning acceleration, nonlinear programming, intelligent signal processing, etc. Photonic neural networks have been demonstrated on integrated platforms and free-space optics depending on the class of applications being targeted. Here, we discuss the prospects and demonstrated applications of these photonic neural networks. Graphical Abstract
神经网络通过机器学习和神经形态计算在人工智能中实现了应用。神经网络在传统计算机上的软件实现具有独立的存储器和处理器(并按顺序运行),在速度和能源效率方面受到限制。神经形态工程旨在制造处理器,其中的硬件模仿大脑中的神经元和突触,以进行分布式和并行处理。光子神经网络已经在集成平台和自由空间光学上进行了演示,具体取决于所针对的应用类别。在这里,我们讨论了这些光子神经网络的前景和演示应用。图形抽象
{"title":"Prospects and applications of photonic neural networks","authors":"Chaoran Huang, V. Sorger, M. Miscuglio, M. Al-Qadasi, Avilash Mukherjee, S. Shekhar, L. Chrostowski, L. Lampe, Mitchell Nichols, M. Fok, D. Brunner, A. Tait, T. F. D. Lima, B. Marquez, P. Prucnal, B. Shastri","doi":"10.1080/23746149.2021.1981155","DOIUrl":"https://doi.org/10.1080/23746149.2021.1981155","url":null,"abstract":"ABSTRACT Neural networks have enabled applications in artificial intelligence through machine learning, and neuromorphic computing. Software implementations of neural networks on conventional computers that have separate memory and processor (and that operate sequentially) are limited in speed and energy efficiency. Neuromorphic engineering aims to build processors in which hardware mimics neurons and synapses in the brain for distributed and parallel processing. Neuromorphic engineering enabled by photonics (optical physics) can offer sub-nanosecond latencies and high bandwidth with low energies to extend the domain of artificial intelligence and neuromorphic computing applications to machine learning acceleration, nonlinear programming, intelligent signal processing, etc. Photonic neural networks have been demonstrated on integrated platforms and free-space optics depending on the class of applications being targeted. Here, we discuss the prospects and demonstrated applications of these photonic neural networks. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42998188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 63
High bandwidth temporal RF photonic signal processing with Kerr micro-combs: integration, fractional differentiation and Hilbert transforms 克尔微梳的高带宽时域射频光子信号处理:积分、分数阶微分和希尔伯特变换
IF 6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2021-02-17 DOI: 10.1080/23746149.2020.1838946
M. Tan, Xingyuan Xu, Jiayang Wu, D. Moss
Integrated Kerr micro-combs, a powerful source of many wavelengths for photonic RF and microwave signal processing, are particularly useful for transversal filter systems. They have many advantages including a compact footprint, high versatility, large numbers of wavelengths, and wide bandwidths. We review recent progress on photonic RF and microwave high bandwidth temporal signal processing based on Kerr micro-combs with spacings from 49-200GHz. We cover integral and fractional Hilbert transforms, differentiators as well as integrators. The potential of optical micro-combs for RF photonic applications in functionality and ability to realize integrated solutions is also discussed.
集成克尔微梳,一个强大的许多波长的光子射频和微波信号处理源,是特别有用的横向滤波系统。它们具有许多优点,包括占地面积小、通用性强、波长数量多和带宽宽。本文综述了基于49 ~ 200ghz克尔微梳的光子射频和微波高带宽时域信号处理的最新进展。我们涵盖了积分和分数希尔伯特变换,微分和积分器。讨论了光学微梳在射频光子应用中的功能和集成解决方案的潜力。
{"title":"High bandwidth temporal RF photonic signal processing with Kerr micro-combs: integration, fractional differentiation and Hilbert transforms","authors":"M. Tan, Xingyuan Xu, Jiayang Wu, D. Moss","doi":"10.1080/23746149.2020.1838946","DOIUrl":"https://doi.org/10.1080/23746149.2020.1838946","url":null,"abstract":"Integrated Kerr micro-combs, a powerful source of many wavelengths for photonic RF and microwave signal processing, are particularly useful for transversal filter systems. They have many advantages including a compact footprint, high versatility, large numbers of wavelengths, and wide bandwidths. We review recent progress on photonic RF and microwave high bandwidth temporal signal processing based on Kerr micro-combs with spacings from 49-200GHz. We cover integral and fractional Hilbert transforms, differentiators as well as integrators. The potential of optical micro-combs for RF photonic applications in functionality and ability to realize integrated solutions is also discussed.","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":"1 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23746149.2020.1838946","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60110679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
期刊
Advances in Physics: X
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1