This report revisits the statistical atom location by channeling enhanced microanalysis method, correcting the dopant site occupancy error by applying an appropriate error propagation rule. A revised equation for calculating the uncertainty in the determined dopant fractions is proposed. The revised equation is expected to correct the uncertainty in the determined dopant fractions, which is particularly significant in cases of low dopant concentrations and variable dopant occupancies across inequivalent host atomic sites. The approach is validated using Eu-doped Ca2SnO4 as a typical model system.
本报告重新探讨了沟道强化微分析(St-ALCHEMI)统计原子定位方法,通过应用适当的误差传播规则纠正了掺杂位点占有误差。提出了一个用于计算所确定的掺杂分数不确定性的修订方程。修订后的公式有望修正已确定掺杂分数的不确定性,这在掺杂浓度较低和不等效主原子位点的掺杂占位不稳定的情况下尤为重要。该方法以掺 Eu 的 Ca2SnO4 为典型模型系统进行了验证。
{"title":"Improved dopant fraction variance estimation in statistical ALCHEMI based on correct error propagation rule.","authors":"Akimitsu Ishizuka, Masahiro Ohtsuka, Shunsuke Muto","doi":"10.1093/jmicro/dfae052","DOIUrl":"10.1093/jmicro/dfae052","url":null,"abstract":"<p><p>This report revisits the statistical atom location by channeling enhanced microanalysis method, correcting the dopant site occupancy error by applying an appropriate error propagation rule. A revised equation for calculating the uncertainty in the determined dopant fractions is proposed. The revised equation is expected to correct the uncertainty in the determined dopant fractions, which is particularly significant in cases of low dopant concentrations and variable dopant occupancies across inequivalent host atomic sites. The approach is validated using Eu-doped Ca2SnO4 as a typical model system.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"134-136"},"PeriodicalIF":0.0,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yasushi Azuma, Kazuhiro Kumagai, Naoki Kunishima, Koichiro Ito
X-ray microscopy using computed tomography is an excellent 3D imaging instrument. Three-dimensional X-ray microscopy (3DXRM) is a nondestructive imaging technique used to inspect internal and external structures in units of submicrometers or less. The 3DXRM, although attractive, is mostly used as an observation instrument and is limited as a measurement system in quantitative evaluation and quality control. Calibration is required for use in measurement systems such as coordinate measurement systems, and specific standard samples and evaluation procedures are needed. The certified values of the standard samples must ideally be traceable to the International System of Units (SI). In the 3DXRM measurement system, line structures (LSs) are fabricated as prototype standard samples to conduct magnification calibration. In this study, we evaluated the LS intervals using calibrated cross-sectional scanning electron microscopy (SEM). A comparison of the evaluation results between SEM and 3DXRM for the LS intervals provided the magnification calibration factor for 3DXRM and validated the LSs, whereby the interval methods and feasibility of constructing an SI traceability system were evaluated using the calibrated SEM. Consequently, a magnification calibration factor of 1.01 was obtained for 3DXRM based on the intervals of the LSs evaluated by SEM. A possible route for realizing SI-traceable magnification calibration of 3DXRM has been presented.
使用计算机断层扫描(CT)的 X 射线显微镜是一种出色的三维成像仪器。三维 X 射线显微镜(3DXRM)是一种无损成像技术,用于检查单位为亚微米或更小的内部和外部结构。三维 X 射线显微镜虽然很有吸引力,但主要用作观察仪器,在定量评估和质量控制方面作为测量系统受到限制。在坐标测量系统等测量系统中使用时需要校准,并且需要特定的标准样品和评估程序。标准样品的认证值最好能溯源至国际单位制 (SI)。在 3DXRM 测量系统中,线结构 (LS) 被制作为原型标准样品,用于进行放大率校准。在本研究中,我们使用校准过的横截面扫描电子显微镜 (SEM) 对 LS 间隔进行了评估。通过比较扫描电子显微镜和 3DXRM 对 LS 间隔的评估结果,为 3DXRM 提供了放大倍率校准系数,并验证了 LS,从而使用校准的扫描电子显微镜评估了构建 SI 可追溯性系统的间隔方法和可行性。因此,根据 SEM 评估的 LS 间隔,3DXRM 的放大校准系数为 1.01。介绍了实现 SI 可追踪的 3DXRM 放大率校准的可能途径。
{"title":"Magnification calibration of X-ray 3D microscopy using micro-line structures.","authors":"Yasushi Azuma, Kazuhiro Kumagai, Naoki Kunishima, Koichiro Ito","doi":"10.1093/jmicro/dfae045","DOIUrl":"10.1093/jmicro/dfae045","url":null,"abstract":"<p><p>X-ray microscopy using computed tomography is an excellent 3D imaging instrument. Three-dimensional X-ray microscopy (3DXRM) is a nondestructive imaging technique used to inspect internal and external structures in units of submicrometers or less. The 3DXRM, although attractive, is mostly used as an observation instrument and is limited as a measurement system in quantitative evaluation and quality control. Calibration is required for use in measurement systems such as coordinate measurement systems, and specific standard samples and evaluation procedures are needed. The certified values of the standard samples must ideally be traceable to the International System of Units (SI). In the 3DXRM measurement system, line structures (LSs) are fabricated as prototype standard samples to conduct magnification calibration. In this study, we evaluated the LS intervals using calibrated cross-sectional scanning electron microscopy (SEM). A comparison of the evaluation results between SEM and 3DXRM for the LS intervals provided the magnification calibration factor for 3DXRM and validated the LSs, whereby the interval methods and feasibility of constructing an SI traceability system were evaluated using the calibrated SEM. Consequently, a magnification calibration factor of 1.01 was obtained for 3DXRM based on the intervals of the LSs evaluated by SEM. A possible route for realizing SI-traceable magnification calibration of 3DXRM has been presented.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"48-56"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142309284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The spatial coherence and the axial brightness of a cold field emission gun, a Schottky field emission gun and a lanthanum hexaboride thermionic gun are precisely measured. By analyzing the Airy pattern from a selected area aperture, various parameters including the spatial coherence length are determined. Using the determined coherence length, the axial brightness of the field emission guns is estimated using the equation which we previously derived based on the discussion of the Wigner function of an electron beam. We also make some extensions in the method to be applicable to the measurements of the thermionic gun, which has anisotropic intensity distribution in most cases unlike the field emission guns. Not only conventional average brightness but also the axial brightness measured for the three kinds of emitters are compared accurately and precisely without being influenced by the measurement conditions.
{"title":"Precise measurement of spatial coherence and axial brightness based on the Wigner function reconstruction in transmission electron microscopes with field emission guns and a thermionic emission gun.","authors":"Shuhei Hatanaka, Jun Yamasaki","doi":"10.1093/jmicro/dfae040","DOIUrl":"10.1093/jmicro/dfae040","url":null,"abstract":"<p><p>The spatial coherence and the axial brightness of a cold field emission gun, a Schottky field emission gun and a lanthanum hexaboride thermionic gun are precisely measured. By analyzing the Airy pattern from a selected area aperture, various parameters including the spatial coherence length are determined. Using the determined coherence length, the axial brightness of the field emission guns is estimated using the equation which we previously derived based on the discussion of the Wigner function of an electron beam. We also make some extensions in the method to be applicable to the measurements of the thermionic gun, which has anisotropic intensity distribution in most cases unlike the field emission guns. Not only conventional average brightness but also the axial brightness measured for the three kinds of emitters are compared accurately and precisely without being influenced by the measurement conditions.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"20-27"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We developed a Mach-Zehnder type electron interferometer (MZ-EI) that enables simultaneous observation of interferograms created at multiple output locations on a 1.2-MV field-emission transmission electron microscope. This MZ-EI is composed of two single-crystal thin films, a lens located between the single-crystal thin films and imaging lenses. By comparing interferograms created by electron waves travelling through different beam paths, we found that the relative phase difference was caused by phase modulation passing through the single crystals and by aberrations and defocus values of the lenses. We also confirmed that the relative phase difference can be controlled using the tilted illumination method.
{"title":"Simultaneous observation of multiple interferograms with Mach-Zehnder type electron interferometer on a 1.2-MV field-emission transmission electron microscope.","authors":"Tetsuya Akashi, Yoshio Takahashi, Ken Harada","doi":"10.1093/jmicro/dfae030","DOIUrl":"10.1093/jmicro/dfae030","url":null,"abstract":"<p><p>We developed a Mach-Zehnder type electron interferometer (MZ-EI) that enables simultaneous observation of interferograms created at multiple output locations on a 1.2-MV field-emission transmission electron microscope. This MZ-EI is composed of two single-crystal thin films, a lens located between the single-crystal thin films and imaging lenses. By comparing interferograms created by electron waves travelling through different beam paths, we found that the relative phase difference was caused by phase modulation passing through the single crystals and by aberrations and defocus values of the lenses. We also confirmed that the relative phase difference can be controlled using the tilted illumination method.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"63-70"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141473294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Scanning Transmission Electron Microscopy (STEM) enables direct determination of atomic arrangements in materials and devices. However, materials such as battery components are weak for electron beam irradiation, and low electron doses are required to prevent beam-induced damages. Noise removal is thus essential for precise structural analysis of electron-beam-sensitive materials at atomic resolution. Total square variation (TSV) regularization is an algorithm that exhibits high noise removal performance. However, the use of the TSV regularization term leads to significant image blurring and intensity reduction. To address these problems, we here propose a new approach adopting L2 norm regularization based on higher-order total variation. An atomic-resolution STEM image can be approximated as a set of smooth curves represented by quadratic functions. Since the third-degree derivative of any quadratic function is 0, total third-degree variation (TTDV) is suitable for a regularization term. The application of TTDV for denoising the atomic-resolution STEM image of CaF2 observed along the [001] zone axis is shown, where we can clearly see the Ca and F atomic columns without compromising image quality.
扫描透射电子显微镜(STEM)可直接测定材料和设备中的原子排列。然而,电池组件等材料对电子束辐照的耐受性较弱,需要较低的电子剂量以防止电子束引起的损坏。因此,要以原子分辨率对电子束敏感材料进行精确的结构分析,必须去除噪声。总平方变异(TSV)正则化是一种具有高去噪性能的算法。然而,使用 TSV 正则化项会导致图像严重模糊和强度降低。为了解决这些问题,我们在此提出了一种基于高阶总变化的 L2 规范正则化新方法。原子分辨率 STEM 图像可近似为一组由二次函数表示的平滑曲线。由于任何二次函数的三阶导数都是 0,因此总三阶变异(TTDV)适合作为正则化项。图中显示了应用 TTDV 对沿 [001] 区轴线观察到的 CaF2 原子分辨率 STEM 图像进行去噪的情况,在不影响图像质量的情况下,我们可以清楚地看到 Ca 和 F 原子列。
{"title":"Total third-degree variation for noise reduction in atomic-resolution STEM images.","authors":"Kazuaki Kawahara, Ryo Ishikawa, Shun Sasano, Naoya Shibata, Yuichi Ikuhara","doi":"10.1093/jmicro/dfae031","DOIUrl":"10.1093/jmicro/dfae031","url":null,"abstract":"<p><p>Scanning Transmission Electron Microscopy (STEM) enables direct determination of atomic arrangements in materials and devices. However, materials such as battery components are weak for electron beam irradiation, and low electron doses are required to prevent beam-induced damages. Noise removal is thus essential for precise structural analysis of electron-beam-sensitive materials at atomic resolution. Total square variation (TSV) regularization is an algorithm that exhibits high noise removal performance. However, the use of the TSV regularization term leads to significant image blurring and intensity reduction. To address these problems, we here propose a new approach adopting L2 norm regularization based on higher-order total variation. An atomic-resolution STEM image can be approximated as a set of smooth curves represented by quadratic functions. Since the third-degree derivative of any quadratic function is 0, total third-degree variation (TTDV) is suitable for a regularization term. The application of TTDV for denoising the atomic-resolution STEM image of CaF2 observed along the [001] zone axis is shown, where we can clearly see the Ca and F atomic columns without compromising image quality.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A new configuration for near-field ptychography using a full-field illumination with a structured electron beam is proposed. A structured electron beam illuminating the entire field of view is scanned over the specimen, and a series of in-line holograms formed in the near-field region below the specimen are collected. The structured beam is generated by a conductive film with random openings, which ensures high stability and coherence of the beam. Observation in the near-field region reduces the beam concentration that occurs in the far-field region, which contributes to accurate recording of the beam intensity with a finite dynamic range of the detectors. The use of full-field illumination prevents the accumulation of errors caused by concatenating the local structures, which is the method used in conventional reconstruction. Since all holograms are obtained from the entire field of view, they have uniform multiplicity in terms of specimen information within the field of view. This contributes to robust and efficient reconstruction for a large field of view. The proposed method was tested using both simulated and experimental holograms. For the simulated holograms, the reconstruction of the specimen transmission function was achieved with an error less than 1/3485 of the wavelength. The method was further validated using experimental holograms obtained from MgO particles. The reconstructed phase transmission function of the specimen was consistent with the specimen structure and was equivalent to a mean inner potential of 13.53±0.16 V on the MgO particle, which is in close agreement with previously reported values.
{"title":"Near-field electron ptychography using full-field structured illumination.","authors":"Hirokazu Tamaki, Koh Saitoh","doi":"10.1093/jmicro/dfae035","DOIUrl":"10.1093/jmicro/dfae035","url":null,"abstract":"<p><p>A new configuration for near-field ptychography using a full-field illumination with a structured electron beam is proposed. A structured electron beam illuminating the entire field of view is scanned over the specimen, and a series of in-line holograms formed in the near-field region below the specimen are collected. The structured beam is generated by a conductive film with random openings, which ensures high stability and coherence of the beam. Observation in the near-field region reduces the beam concentration that occurs in the far-field region, which contributes to accurate recording of the beam intensity with a finite dynamic range of the detectors. The use of full-field illumination prevents the accumulation of errors caused by concatenating the local structures, which is the method used in conventional reconstruction. Since all holograms are obtained from the entire field of view, they have uniform multiplicity in terms of specimen information within the field of view. This contributes to robust and efficient reconstruction for a large field of view. The proposed method was tested using both simulated and experimental holograms. For the simulated holograms, the reconstruction of the specimen transmission function was achieved with an error less than 1/3485 of the wavelength. The method was further validated using experimental holograms obtained from MgO particles. The reconstructed phase transmission function of the specimen was consistent with the specimen structure and was equivalent to a mean inner potential of 13.53±0.16 V on the MgO particle, which is in close agreement with previously reported values.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"10-19"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781274/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The surface sensitivity of high-resolution secondary electron (SE) imaging is examined using twisted bilayers of MoS2 stacked at an angle of 30°. High-resolution SE images of the twisted bilayer MoS2 show a honeycomb structure composed of Mo and S atoms, elucidating the monolayer structure of MoS2. Simultaneously captured annular dark-field scanning transmission electron microscope images from the same region show the projected structure of the two layers. That is, the SE images from the bilayer MoS2 selectively visualize the surface monolayer. It is noted that the SE yields from the surface monolayer are approximately three times higher than those from the second monolayer, likely attributable to attenuation when SEs emitted from the second layer traverse the surface layer. The surface sensitivity of high-resolution SE imaging is examined using twisted bilayers of MoS2 stacked at an angle of 30°. It was found that the SE images of the MoS2 bilayer visualize the surface monolayer approximately three times more intensely than the second monolayer.
利用以 30 度角堆叠的扭曲双层 MoS2,研究了高分辨率二次电子(SE)成像的表面灵敏度。扭曲双层 MoS2 的高分辨率 SE 图像显示了由 Mo 原子和 S 原子组成的蜂巢结构,从而阐明了 MoS2 的单层结构。从同一区域同时拍摄的环形暗场扫描透射电子显微镜图像显示了两层的投影结构。也就是说,双层 MoS2 的 SE 图像可选择性地观察到表面单层。值得注意的是,来自表面单层的 SE 产率大约是来自第二单层的 SE 产率的 3 倍,这可能是由于从第二层发射的 SE 穿过表面层时产生了衰减。小摘要:本研究利用由表层和基底组成的最薄系统--MoS2 双层膜,对原子分辨率二次电子成像的表面灵敏度进行了研究。研究发现,二次电子对表面单层原子排列的观察强度是第二层的三倍。
{"title":"Surface sensitivity of atomic-resolution secondary electron imaging.","authors":"Koh Saitoh, Teppei Oyobe, Keisuke Igarashi, Takeshi Sato, Hiroaki Matsumoto, Hiromi Inada, Takahiko Endo, Yasumitsu Miyata, Rei Usami, Taishi Takenobu","doi":"10.1093/jmicro/dfae041","DOIUrl":"10.1093/jmicro/dfae041","url":null,"abstract":"<p><p>The surface sensitivity of high-resolution secondary electron (SE) imaging is examined using twisted bilayers of MoS2 stacked at an angle of 30°. High-resolution SE images of the twisted bilayer MoS2 show a honeycomb structure composed of Mo and S atoms, elucidating the monolayer structure of MoS2. Simultaneously captured annular dark-field scanning transmission electron microscope images from the same region show the projected structure of the two layers. That is, the SE images from the bilayer MoS2 selectively visualize the surface monolayer. It is noted that the SE yields from the surface monolayer are approximately three times higher than those from the second monolayer, likely attributable to attenuation when SEs emitted from the second layer traverse the surface layer. The surface sensitivity of high-resolution SE imaging is examined using twisted bilayers of MoS2 stacked at an angle of 30°. It was found that the SE images of the MoS2 bilayer visualize the surface monolayer approximately three times more intensely than the second monolayer.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"28-34"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781273/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, we experimentally analyzed the charging phenomenon when an insulating resist film on a conductive layer formed on bulk glass is irradiated by electron beams (EBs). To quantify the charging potential induced, an electrostatic force microscope device was installed in the scanning electron microscope sample chamber, and potential distributions formed under various exposure conditions were obtained. Based on the results obtained, a model for charge accumulation within the sample, explaining positive and negative charging and their transitions, was developed. At an EB acceleration voltage of 30 kV, the following observations were made: 'global charging' could be avoided by applying -5 V to the sample. Regarding 'local charging' near the exposure area of the EB, at low exposure doses, emission of secondary electrons from the sample surface induced positive charging, while the accumulation of incident electrons within the sample induced negative charging. At exposure doses where the effects of both are balanced, the sample exhibited zero potential, revealing the appearance of the 'first zero-cross exposure dose'. At higher exposure doses, the sample transitions from negative to positive as the exposure dose increases due to the electron-beam-induced conduction, resulting in the so-called second zero-cross exposure dose. The exposure dose dependence of the charging potential distribution at various acceleration voltages was obtained. In particular, we found that at an acceleration voltage of 0.6 kV, the sample surface is not charged even when exposed to small to very large doses of EBs.
{"title":"Surface potential distribution of resist exposed by electron beam and the non-charging exposure conditions.","authors":"Masatoshi Kotera, Yoshinobu Kono","doi":"10.1093/jmicro/dfae044","DOIUrl":"10.1093/jmicro/dfae044","url":null,"abstract":"<p><p>In this study, we experimentally analyzed the charging phenomenon when an insulating resist film on a conductive layer formed on bulk glass is irradiated by electron beams (EBs). To quantify the charging potential induced, an electrostatic force microscope device was installed in the scanning electron microscope sample chamber, and potential distributions formed under various exposure conditions were obtained. Based on the results obtained, a model for charge accumulation within the sample, explaining positive and negative charging and their transitions, was developed. At an EB acceleration voltage of 30 kV, the following observations were made: 'global charging' could be avoided by applying -5 V to the sample. Regarding 'local charging' near the exposure area of the EB, at low exposure doses, emission of secondary electrons from the sample surface induced positive charging, while the accumulation of incident electrons within the sample induced negative charging. At exposure doses where the effects of both are balanced, the sample exhibited zero potential, revealing the appearance of the 'first zero-cross exposure dose'. At higher exposure doses, the sample transitions from negative to positive as the exposure dose increases due to the electron-beam-induced conduction, resulting in the so-called second zero-cross exposure dose. The exposure dose dependence of the charging potential distribution at various acceleration voltages was obtained. In particular, we found that at an acceleration voltage of 0.6 kV, the sample surface is not charged even when exposed to small to very large doses of EBs.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"35-47"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heteroepitaxial interfaces are important because they determine the performance of devices such that career mobility is sensitive to the distribution of roughness, strain and composition at the interface. High-angle annular dark field imaging in scanning transmission electron microscopy has been utilized to capture them at an atomic scale. For precise identification of atomic column positions, a technique has been proposed to average multiple image frames taken at a high scanning rate by their positional alignment for increasing signal-to-noise ratio. However, the positional alignment between frames is sometimes incorrectly estimated because of the almost perfect periodic structure at the interfaces. Here, we developed an approach for precise positional alignment, where the images are first aligned by two consecutive images and then are aligned more precisely against the integrated image of the first alignment. We demonstrated our method by applying it to the heterointerface of Si0.8Ge0.2 (Si: silicon, Ge: germanium) epitaxial thin films on a Si substrate.
{"title":"Precise positional alignment of atom-resolved HAADF images of heteroepitaxial interface with low signal-to-noise ratio.","authors":"Kohei Aso, Yoshifumi Oshima","doi":"10.1093/jmicro/dfae038","DOIUrl":"10.1093/jmicro/dfae038","url":null,"abstract":"<p><p>Heteroepitaxial interfaces are important because they determine the performance of devices such that career mobility is sensitive to the distribution of roughness, strain and composition at the interface. High-angle annular dark field imaging in scanning transmission electron microscopy has been utilized to capture them at an atomic scale. For precise identification of atomic column positions, a technique has been proposed to average multiple image frames taken at a high scanning rate by their positional alignment for increasing signal-to-noise ratio. However, the positional alignment between frames is sometimes incorrectly estimated because of the almost perfect periodic structure at the interfaces. Here, we developed an approach for precise positional alignment, where the images are first aligned by two consecutive images and then are aligned more precisely against the integrated image of the first alignment. We demonstrated our method by applying it to the heterointerface of Si0.8Ge0.2 (Si: silicon, Ge: germanium) epitaxial thin films on a Si substrate.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"57-62"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We have demonstrated localized surface plasmon (LSP)-enhanced cathodoluminescence (CL) from an atomic layer deposition-grown Al2O3/ZnO/Al2O3 heterostructure to develop a bright nanometer-scale light source for an electron beam excitation-assisted optical microscope. Three types of metals, Ag, Al and Au, were compared, and an 181-fold enhancement of CL emission was achieved with Ag nanoparticles, with the plasmon resonance wavelength close to the emission wavelength energy of ZnO. The enhanced emission is plausibly attributed to LSP/exciton coupling. However, it is also attributed to an increase in coupling efficiency with penetration depth and also to an increase in light extraction efficiency by grading the refractive indices at the heterostructure.
{"title":"Development of a localized surface plasmon-enhanced electron beam-pumped nanoscale light source for electron beam excitation-assisted optical microscopy.","authors":"Atsushi Nakamura, Shunpei Shiba, Kei Hosomi, Atsushi Ono, Yoshimasa Kawata, Wataru Inami","doi":"10.1093/jmicro/dfae043","DOIUrl":"10.1093/jmicro/dfae043","url":null,"abstract":"<p><p>We have demonstrated localized surface plasmon (LSP)-enhanced cathodoluminescence (CL) from an atomic layer deposition-grown Al2O3/ZnO/Al2O3 heterostructure to develop a bright nanometer-scale light source for an electron beam excitation-assisted optical microscope. Three types of metals, Ag, Al and Au, were compared, and an 181-fold enhancement of CL emission was achieved with Ag nanoparticles, with the plasmon resonance wavelength close to the emission wavelength energy of ZnO. The enhanced emission is plausibly attributed to LSP/exciton coupling. However, it is also attributed to an increase in coupling efficiency with penetration depth and also to an increase in light extraction efficiency by grading the refractive indices at the heterostructure.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"71-77"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}