Xiaofeng Cen, Wei Wang, Siyan Hong, Qin Wang, Na Wang, Ling Mo, Jingjing Li, Jingwen Li
Vanillic acid (VA) is a natural phenolic acid compound that is widely found in various foods and medicinal plants, with a remarkable antifibrotic effect observed in animal studies, but its exact antifibrotic mechanism remains unclear. Herein, hepatic function, fibrotic index, and histopathological, microbiome, and metabolomic methods were used to investigate the potential mechanisms behind the improvement effect of vanillic acid against thioacetamide (TAA)-induced liver fibrosis in mice. Our results showed that VA reversed TAA-induced liver fibrosis manifested a decrease in collagen fiber deposition, serum transaminase, serum hepatic fibrotic index, and liver inflammation indicator levels. When analyzed, TAA injection mainly increased the abundance of Akkermansia and Roseburia and significantly reduced the abundance of Anaerotruncus. VA reversed these changes back to normal levels to varying degrees. Metabolomic profiling demonstrated that VA treatment was efficacious in modulating several key liver metabolites involved in neuroactive ligand-receptor interaction, prolactin signaling pathway, estrogen signaling pathway, and glutathione metabolism. Conclusively, VA may ameliorate liver damage and suppress the fibrogenesis caused by thioacetamide by correcting intestinal microbiota disorders and promoting normal hepatic metabolism. This research provides a novel perspective on vanillic acid as a dietary supplement for hepatic fibrosis improvement.
{"title":"Integrated microbiome and metabolomic analyses revealed the antifibrotic effect of vanillic acid on thioacetamide-induced liver fibrosis in mice.","authors":"Xiaofeng Cen, Wei Wang, Siyan Hong, Qin Wang, Na Wang, Ling Mo, Jingjing Li, Jingwen Li","doi":"10.1039/d4fo02309a","DOIUrl":"10.1039/d4fo02309a","url":null,"abstract":"<p><p>Vanillic acid (VA) is a natural phenolic acid compound that is widely found in various foods and medicinal plants, with a remarkable antifibrotic effect observed in animal studies, but its exact antifibrotic mechanism remains unclear. Herein, hepatic function, fibrotic index, and histopathological, microbiome, and metabolomic methods were used to investigate the potential mechanisms behind the improvement effect of vanillic acid against thioacetamide (TAA)-induced liver fibrosis in mice. Our results showed that VA reversed TAA-induced liver fibrosis manifested a decrease in collagen fiber deposition, serum transaminase, serum hepatic fibrotic index, and liver inflammation indicator levels. When analyzed, TAA injection mainly increased the abundance of <i>Akkermansia</i> and <i>Roseburia</i> and significantly reduced the abundance of <i>Anaerotruncus</i>. VA reversed these changes back to normal levels to varying degrees. Metabolomic profiling demonstrated that VA treatment was efficacious in modulating several key liver metabolites involved in neuroactive ligand-receptor interaction, prolactin signaling pathway, estrogen signaling pathway, and glutathione metabolism. Conclusively, VA may ameliorate liver damage and suppress the fibrogenesis caused by thioacetamide by correcting intestinal microbiota disorders and promoting normal hepatic metabolism. This research provides a novel perspective on vanillic acid as a dietary supplement for hepatic fibrosis improvement.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanyuan Ai, Yun Niu, Yingrun Fan, Xuefeng Wang, Guowan Su, Mouming Zhao, Jiangping Fan
This study aimed to obtain umami peptides from Yanjin black bone chicken and to investigate the formation mechanism of umami taste. The umami peptides were purified from the enzymatic hydrolysate of chicken using ultrafiltration (UF), gel filtration chromatography (GFC), and reversed-phase high-performance liquid chromatography (RP-HPLC). Potential novel umami peptides were then identified by nano-scale liquid chromatography-tandem mass spectrometry (nano-HPLC-MS/MS). Based on the predictions of iUmami-SCM and BIOPEP-UWM databases, five umami peptides (EELK, EEEIK, EELMK, LEEEIK, DELDKYS) with high umami scores were synthesized. Sensory evaluation revealed that these umami peptides exhibited a threshold ranging from 0.12 mg mL-1 to 0.36 mg mL-1. Circular dichroism (CD) analysis indicated the presence of β-sheet structures in the umami peptides that could be associated with taste formation. In addition, molecular docking and molecular dynamics (MD) were employed to investigate the binding mechanisms between umami peptides and the umami receptor T1R1/T1R3. The findings reveal that Lys155, Arg255, and Gln250 of T1R1/T1R3 potentially play critical roles in umami peptide binding. Taken together, our results lay a foundation for researching flavor substances and for developing flavor products from Yanjin black bone chicken.
{"title":"Identification and taste characteristics of novel umami peptides from Yanjin black bone chicken hydrolysates and their binding mechanism with umami receptor.","authors":"Yuanyuan Ai, Yun Niu, Yingrun Fan, Xuefeng Wang, Guowan Su, Mouming Zhao, Jiangping Fan","doi":"10.1039/d4fo02958e","DOIUrl":"https://doi.org/10.1039/d4fo02958e","url":null,"abstract":"<p><p>This study aimed to obtain umami peptides from Yanjin black bone chicken and to investigate the formation mechanism of umami taste. The umami peptides were purified from the enzymatic hydrolysate of chicken using ultrafiltration (UF), gel filtration chromatography (GFC), and reversed-phase high-performance liquid chromatography (RP-HPLC). Potential novel umami peptides were then identified by nano-scale liquid chromatography-tandem mass spectrometry (nano-HPLC-MS/MS). Based on the predictions of iUmami-SCM and BIOPEP-UWM databases, five umami peptides (EELK, EEEIK, EELMK, LEEEIK, DELDKYS) with high umami scores were synthesized. Sensory evaluation revealed that these umami peptides exhibited a threshold ranging from 0.12 mg mL<sup>-1</sup> to 0.36 mg mL<sup>-1</sup>. Circular dichroism (CD) analysis indicated the presence of β-sheet structures in the umami peptides that could be associated with taste formation. In addition, molecular docking and molecular dynamics (MD) were employed to investigate the binding mechanisms between umami peptides and the umami receptor T1R1/T1R3. The findings reveal that Lys155, Arg255, and Gln250 of T1R1/T1R3 potentially play critical roles in umami peptide binding. Taken together, our results lay a foundation for researching flavor substances and for developing flavor products from Yanjin black bone chicken.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhiguo Li, Mengyu Li, Xuexun Fang, Dahai Yu, Xin Hu
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease with intricate pathogenesis, and clinical treatment is still not ideal. The imbalance of gut microbiota is associated with IBD progression. Various probiotics have been used as functional foods for the prevention and treatment of IBD, but the specific mechanism is still not fully understood. Lactobacillus johnsonii (L. johnsonii) is a potential anti-inflammatory bacterium, and compared to other probiotic Lactobacillus species, its colonization in the gut of colitis patients is significantly reduced. In this study, we first found that dietary L. johnsonii exerts strong anti-inflammatory and antioxidant effects in colitis mice, and this beneficial effect is directly related to its derived extracellular vesicles (LJ-EVs). Further experimental results indicate that LJ-EVs effectively prevented colitis symptoms and modulated gut microbiota and metabolic pathways. Meanwhile, we have studied for the first time the protective effect of LJ-EVs on the intestinal barrier from the perspective of reducing oxidative stress. We found that LJ-EVs can be directly taken up by intestinal epithelial cells and activate the Nrf2/HO-1 antioxidant signaling pathway, reducing endotoxin damage to cells and maintaining intestinal barrier homeostasis, which cascades to alleviate intestinal inflammation response. This study reveals the mechanism of L. johnsonii in treating colitis and provides a new approach for the development of oral LJ-EVs for the treatment of colitis.
{"title":"Dietary <i>Lactobacillus johnsonii</i>-derived extracellular vesicles ameliorate acute colitis by regulating gut microbiota and maintaining intestinal barrier homeostasis.","authors":"Zhiguo Li, Mengyu Li, Xuexun Fang, Dahai Yu, Xin Hu","doi":"10.1039/d4fo04194a","DOIUrl":"10.1039/d4fo04194a","url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease with intricate pathogenesis, and clinical treatment is still not ideal. The imbalance of gut microbiota is associated with IBD progression. Various probiotics have been used as functional foods for the prevention and treatment of IBD, but the specific mechanism is still not fully understood. <i>Lactobacillus johnsonii</i> (<i>L. johnsonii</i>) is a potential anti-inflammatory bacterium, and compared to other probiotic <i>Lactobacillus</i> species, its colonization in the gut of colitis patients is significantly reduced. In this study, we first found that dietary <i>L. johnsonii</i> exerts strong anti-inflammatory and antioxidant effects in colitis mice, and this beneficial effect is directly related to its derived extracellular vesicles (LJ-EVs). Further experimental results indicate that LJ-EVs effectively prevented colitis symptoms and modulated gut microbiota and metabolic pathways. Meanwhile, we have studied for the first time the protective effect of LJ-EVs on the intestinal barrier from the perspective of reducing oxidative stress. We found that LJ-EVs can be directly taken up by intestinal epithelial cells and activate the Nrf2/HO-1 antioxidant signaling pathway, reducing endotoxin damage to cells and maintaining intestinal barrier homeostasis, which cascades to alleviate intestinal inflammation response. This study reveals the mechanism of <i>L. johnsonii</i> in treating colitis and provides a new approach for the development of oral LJ-EVs for the treatment of colitis.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lvwan Xu, Bo Qiu, Furong Ba, Shuobo Zhang, Shengyi Han, Hui Chen, Youhe Wu, Wang Gao, Siyuan Xie, Yanfei Chen, Shiman Jiang, Jingyi Zhang, Yating Li, Björn Berglund, Mingfei Yao, Lanjuan Li
Constipation is a gastrointestinal (GI) condition marked by difficulty in defecation, abdominal pain and distension, significantly impacting both physical and mental health. Ligilactobacillus salivarius Li01 (Li01) is a probiotic known to prevent constipation in mice, while psyllium husk (PSH) is a dietary fiber with high water retention, acting as an intestinal lubricant. This study investigates the effects of a combined treatment of Li01 and PSH on mice with loperamide-induced constipation. The combination treatment improved GI transit rates, increased the water content of feces, and regulated serum concentrations of GI hormones more effectively than either Li01 or PSH alone. The beneficial effects were linked to higher levels of butyric acid and a greater proportion of non-12-OH bile acids (BAs) in the GI tract. These protective effects were not influenced by changes in gut microbiota. Additionally, Li01 produced butyric acid and fermented PSH in vitro. Our findings suggest that the probiotic Li01 and the prebiotic PSH synergistically protect against constipation in mice, highlighting their potential as functional food components.
{"title":"Synergistic effects of <i>Ligilactobacillus salivarius</i> Li01 and psyllium husk prevent mice from developing loperamide-induced constipation.","authors":"Lvwan Xu, Bo Qiu, Furong Ba, Shuobo Zhang, Shengyi Han, Hui Chen, Youhe Wu, Wang Gao, Siyuan Xie, Yanfei Chen, Shiman Jiang, Jingyi Zhang, Yating Li, Björn Berglund, Mingfei Yao, Lanjuan Li","doi":"10.1039/d4fo04444d","DOIUrl":"https://doi.org/10.1039/d4fo04444d","url":null,"abstract":"<p><p>Constipation is a gastrointestinal (GI) condition marked by difficulty in defecation, abdominal pain and distension, significantly impacting both physical and mental health. <i>Ligilactobacillus salivarius</i> Li01 (Li01) is a probiotic known to prevent constipation in mice, while psyllium husk (PSH) is a dietary fiber with high water retention, acting as an intestinal lubricant. This study investigates the effects of a combined treatment of Li01 and PSH on mice with loperamide-induced constipation. The combination treatment improved GI transit rates, increased the water content of feces, and regulated serum concentrations of GI hormones more effectively than either Li01 or PSH alone. The beneficial effects were linked to higher levels of butyric acid and a greater proportion of non-12-OH bile acids (BAs) in the GI tract. These protective effects were not influenced by changes in gut microbiota. Additionally, Li01 produced butyric acid and fermented PSH <i>in vitro</i>. Our findings suggest that the probiotic Li01 and the prebiotic PSH synergistically protect against constipation in mice, highlighting their potential as functional food components.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Maillard reaction products, as a kind of glycosylation-based reaction, possess the metal-chelating ability. In this study, the white shrimp hydrolysate (WH) and xylooligosaccharides (XOS) were used to prepare the Maillard reaction product-zinc complex (WH-XOS-MR-Zn) with zinc ions. The Maillard reaction conditions, such as pH level, temperature, reaction time, and the ratio of XOS to WH, were selected by testing the products' zinc-chelating capacity, while the optimized conditions (zinc-chelating capacity = 64.8%, pH = 7, 110 °C, 180 min, XOS : WH = 2) were finally determined. The interactions between WH-XOS-MR and zinc were confirmed and characterized by various kinds of techniques and triggered new peaks of fluorescent signals. The addition of zinc in WH-XOS-MR induced the proportion changes of secondary structures, including the decrease of β-sheets (8.16%) and the increase of β-turns (5.9%) and random coils (2.23%). The addition of zinc changed the morphological surface appearance of WH-XOS-MR and the crystal signal was completely covered in the WH-XOS-MR-Zn complex involved in the chelation with carbonyl and amino groups. The high-dose and medium-dose of the WH-XOS-MR-Zn complex showed higher promotive effects on zinc absorption (11.89 and 11.05 umol L-1, respectively) and medium-dose recovered values of AKP (liver and serum: 7.15 and 12.53 U mL-1), SOD (liver, kidney and serum: 59.84, 7.86 and 13.61 U mL-1) and GSH-Px (203.22 U per mgprot), damage to testicular tissues, damage to the intact neuron cells in the hippocampus region (CA1: 54 to 61, CA3: 67 to 136, DG: 219-353), and intestinal inflammation compared with the zinc-deficient mice. These findings showed therapeutic benefits of Maillard products on intestinal health and cellular structures.
马氏反应产物作为一种糖基化反应,具有金属螯合能力。本研究利用白虾水解物(WH)和木寡糖(XOS)制备了含锌离子的马氏反应产物-锌络合物(WH-XOS-MR-Zn)。通过测试产物的锌螯合能力来选择马氏反应的条件,如 pH 值、温度、反应时间以及 XOS 与 WH 的比例,最终确定了优化条件(锌螯合能力 = 64.8%,pH = 7,110 ℃,180 分钟,XOS : WH = 2)。通过各种技术确认和表征了 WH-XOS-MR 与锌的相互作用,并引发了新的荧光信号峰。锌在 WH-XOS-MR 中的添加引起了二级结构比例的变化,包括 β 片状结构的减少(8.16%)、β 转(5.9%)和无规线圈(2.23%)的增加。锌的加入改变了 WH-XOS-MR 的表面形态,在与羰基和氨基螯合的 WH-XOS-MR-Zn 复合物中,晶体信号被完全覆盖。高剂量和中剂量的 WH-XOS-MR-Zn 复合物对锌的吸收有较高的促进作用(分别为 11.89 和 11.05 umol L-1),中剂量恢复了 AKP(肝脏和血清:7.15 和 12.53 U mL-1)、SOD(肝脏、肾脏和血清:59.84, 7.86 and 13.61 U mL-1) 和 GSH-Px (203.22 U per mgprot)、睾丸组织损伤、海马区完整神经元细胞损伤(CA1: 54 to 61, CA3: 67 to 136, DG: 219-353)以及肠道炎症。这些研究结果表明,马氏产物对肠道健康和细胞结构有治疗作用。
{"title":"Preparation and characterization of white shrimp hydrolysate-xylooligosaccharide Maillard products and their <i>in vivo</i> promotive effects of zinc absorption in mice.","authors":"Shijie Dou, Xuening Yu, Yuewen Xu, Xiaoyang Liu, Fawen Yin, Deyang Li, Dayong Zhou","doi":"10.1039/d4fo03709j","DOIUrl":"https://doi.org/10.1039/d4fo03709j","url":null,"abstract":"<p><p>The Maillard reaction products, as a kind of glycosylation-based reaction, possess the metal-chelating ability. In this study, the white shrimp hydrolysate (WH) and xylooligosaccharides (XOS) were used to prepare the Maillard reaction product-zinc complex (WH-XOS-MR-Zn) with zinc ions. The Maillard reaction conditions, such as pH level, temperature, reaction time, and the ratio of XOS to WH, were selected by testing the products' zinc-chelating capacity, while the optimized conditions (zinc-chelating capacity = 64.8%, pH = 7, 110 °C, 180 min, XOS : WH = 2) were finally determined. The interactions between WH-XOS-MR and zinc were confirmed and characterized by various kinds of techniques and triggered new peaks of fluorescent signals. The addition of zinc in WH-XOS-MR induced the proportion changes of secondary structures, including the decrease of β-sheets (8.16%) and the increase of β-turns (5.9%) and random coils (2.23%). The addition of zinc changed the morphological surface appearance of WH-XOS-MR and the crystal signal was completely covered in the WH-XOS-MR-Zn complex involved in the chelation with carbonyl and amino groups. The high-dose and medium-dose of the WH-XOS-MR-Zn complex showed higher promotive effects on zinc absorption (11.89 and 11.05 umol L<sup>-1</sup>, respectively) and medium-dose recovered values of AKP (liver and serum: 7.15 and 12.53 U mL<sup>-1</sup>), SOD (liver, kidney and serum: 59.84, 7.86 and 13.61 U mL<sup>-1</sup>) and GSH-Px (203.22 U per mgprot), damage to testicular tissues, damage to the intact neuron cells in the hippocampus region (CA1: 54 to 61, CA3: 67 to 136, DG: 219-353), and intestinal inflammation compared with the zinc-deficient mice. These findings showed therapeutic benefits of Maillard products on intestinal health and cellular structures.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmad Husaini Suhaimi, Arullthevan Rajendram, Fiqri Dizar Khaidizar, Patricia Mir, Elisa Pulido-Lucas, Santiago Quirce, Maria Pedrosa, Rosa Rodriguez-Perez, Aisyafaznim Al-Idrus
Pathogenesis-related-10 (PR10) proteins play significant roles in plant defence against biotic and abiotic stresses. Recently, two banana PR10 proteins (MaPR10-BeB5 and MaPR10-GNA5) were characterised and shown to exhibit antifungal properties against Aspergillus fumigatus in vitro. In rice, transgenic overexpression of PR10 proteins conferred resistance to pathogen infection and drought tolerance without affecting productivity, highlighting their potential for agricultural applications. However, PR10 proteins also include the Bet v 1-like family of allergens implicated in pollen food allergy syndromes, raising concerns about potential adverse effects on human health. In this study, we evaluated the allergenic potential of the recently isolated banana PR10 proteins. We first predicted the presence of IgE epitopes of the Bet v 1 allergen family in the deduced PR10 peptide sequences in silico. We then predicted the structures of four human IgE scFv protein sequences and three plant PR10 protein sequences. Based on the quality of the predicted structures, one IgE scFv protein structure was selected for docking with the three plant PR10 proteins. We confirmed the docking results with immunoblot analysis performed using recombinant MaPR10-BeB5 and MaPR10-GNA5 proteins against the sera of banana-allergic patients. Our experimental results substantiated the notion that both protein variants are potentially allergenic since these proteins were recognised by 26.6% of banana-allergic patients with broad PR10 protein recognition. We caution that the allergenic potential of MaPR10 proteins should be carefully considered before implementing transgenic overexpression strategies to improve crops, with a suggestion to limit their expression to non-edible plant tissues.
{"title":"Occurrences of allergenicity to banana pathogenesis-related-10 (PR10) protein variants.","authors":"Ahmad Husaini Suhaimi, Arullthevan Rajendram, Fiqri Dizar Khaidizar, Patricia Mir, Elisa Pulido-Lucas, Santiago Quirce, Maria Pedrosa, Rosa Rodriguez-Perez, Aisyafaznim Al-Idrus","doi":"10.1039/d4fo03301a","DOIUrl":"https://doi.org/10.1039/d4fo03301a","url":null,"abstract":"<p><p>Pathogenesis-related-10 (PR10) proteins play significant roles in plant defence against biotic and abiotic stresses. Recently, two banana PR10 proteins (MaPR10-BeB5 and MaPR10-GNA5) were characterised and shown to exhibit antifungal properties against <i>Aspergillus fumigatus in vitro</i>. In rice, transgenic overexpression of PR10 proteins conferred resistance to pathogen infection and drought tolerance without affecting productivity, highlighting their potential for agricultural applications. However, PR10 proteins also include the Bet v 1-like family of allergens implicated in pollen food allergy syndromes, raising concerns about potential adverse effects on human health. In this study, we evaluated the allergenic potential of the recently isolated banana PR10 proteins. We first predicted the presence of IgE epitopes of the Bet v 1 allergen family in the deduced PR10 peptide sequences <i>in silico</i>. We then predicted the structures of four human IgE scFv protein sequences and three plant PR10 protein sequences. Based on the quality of the predicted structures, one IgE scFv protein structure was selected for docking with the three plant PR10 proteins. We confirmed the docking results with immunoblot analysis performed using recombinant MaPR10-BeB5 and MaPR10-GNA5 proteins against the sera of banana-allergic patients. Our experimental results substantiated the notion that both protein variants are potentially allergenic since these proteins were recognised by 26.6% of banana-allergic patients with broad PR10 protein recognition. We caution that the allergenic potential of MaPR10 proteins should be carefully considered before implementing transgenic overexpression strategies to improve crops, with a suggestion to limit their expression to non-edible plant tissues.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Escherichia coli (E. coli) is a common zoonotic foodborne pathogen that poses a major threat to public health and economic development. Rosmarinic acid (RA) can inhibit intestinal inflammation; however, the protective effect of RA against the intestinal barrier damage induced by E. coli in mice and the underlying mechanism have not been elucidated. In this study, mice were orally administered with RA (20 mg kg-1) by gavage for one week and then were intraperitoneally challenged with E. coli. Mouse colonic epithelial cells (MCECs) were pretreated with RA for 6 h and challenged with E. coli (MOI = 1000) for 3 h. The results revealed that RA alleviated E. coli-induced weight loss in mice; reduced the increase in the levels of TNF-α, IL-6 and IL-1β in the serum; alleviated the decrease in ZO-1 protein expression; and increased intestinal permeability by inhibiting the NF-κB signalling pathway both in vivo and in vitro. Moreover, RA relieved the increase in intestinal permeability, reversed the structural damage to the mouse gut microbiota caused by E. coli, and increased the abundance of beneficial bacteria, including Lachnospiraceae_NK4136_group. Additionally, RA lost its protective function against E. coli infection in a pseudosterile mouse model, suggesting that the protection induced by RA was dependent on the gut microbiota. In conclusion, these results indicate that RA alleviates E. coli-induced inflammatory damage to the intestinal barrier by inhibiting the NF-κB signalling pathway and maintaining gut microbiota homeostasis. These findings provide new ideas and foundations for the application of RA as protection against E. coli.
{"title":"Rosmarinic acid alleviated intestinal barrier damage caused by <i>Escherichia coli</i> by regulating the gut microbiota and inhibiting the NF-κB signalling pathway in mice.","authors":"Dandan Yi, Xia Liu, Menghui Wang, Linyi Zhao, Yu Liu, Zhiran Xu, Ying Peng, Rui Zhang, Qianyin Wei, Zhengmin Liang, Jiakang He","doi":"10.1039/d4fo02654c","DOIUrl":"https://doi.org/10.1039/d4fo02654c","url":null,"abstract":"<p><p><i>Escherichia coli</i> (<i>E. coli</i>) is a common zoonotic foodborne pathogen that poses a major threat to public health and economic development. Rosmarinic acid (RA) can inhibit intestinal inflammation; however, the protective effect of RA against the intestinal barrier damage induced by <i>E. coli</i> in mice and the underlying mechanism have not been elucidated. In this study, mice were orally administered with RA (20 mg kg<sup>-1</sup>) by gavage for one week and then were intraperitoneally challenged with <i>E. coli</i>. Mouse colonic epithelial cells (MCECs) were pretreated with RA for 6 h and challenged with <i>E. coli</i> (MOI = 1000) for 3 h. The results revealed that RA alleviated <i>E. coli</i>-induced weight loss in mice; reduced the increase in the levels of TNF-α, IL-6 and IL-1β in the serum; alleviated the decrease in ZO-1 protein expression; and increased intestinal permeability by inhibiting the NF-κB signalling pathway both <i>in vivo</i> and <i>in vitro</i>. Moreover, RA relieved the increase in intestinal permeability, reversed the structural damage to the mouse gut microbiota caused by <i>E. coli</i>, and increased the abundance of beneficial bacteria, including <i>Lachnospiraceae_NK4136</i>_group. Additionally, RA lost its protective function against <i>E. coli</i> infection in a pseudosterile mouse model, suggesting that the protection induced by RA was dependent on the gut microbiota. In conclusion, these results indicate that RA alleviates <i>E. coli</i>-induced inflammatory damage to the intestinal barrier by inhibiting the NF-κB signalling pathway and maintaining gut microbiota homeostasis. These findings provide new ideas and foundations for the application of RA as protection against <i>E</i>. <i>coli</i>.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Incretin-based therapies are widely used to improve glycemic control and β cell dysfunction in the treatment of type 2 diabetes. Momordica cochinchinensis (Gac fruit), a nutritious melon cultivated in many regions, has underexplored health benefits, particular its edible aril. This study comprehensively investigates the stimulatory effect of Gac aril on glucagon-like peptide 1 (GLP-1) secretion, identifies the responsible active constituents, and explores the underlying mechanisms related to its anti-diabetic effects. GLP-1-secreting STC-1 intestinal L cells were used to assess bioactivity and molecular mechanisms. Additionally, the in vivo anti-diabetic effects of Gac aril consumption were evaluated using type 2 diabetic mice induced by a high fat diet and streptozotocin injection, with or without GLP-1 receptor expression. The results demonstrated that Gac pulp and aril stimulated GLP-1 secretion, while Gac seeds did not. β-Carotene, a major constituent of Gac aril, was identified as the key mediator of GLP-1 secretion via sweet taste receptor-mediated signaling in STC-1 cells. Dietary intake of Gac aril significantly improved fasting blood glucose, glucose tolerance, insulin sensitivity, β-cell function, and hemoglobin A1c in type 2 diabetic mice. GLP-1 levels increased 2-fold, and decreased levels of ghrelin and adiponectin were restored. The anti-diabetic effects were partially diminished in GLP-1 receptor knockout mice, suggesting Gac aril's effects are mediated, in part, through GLP-1. In conclusion, Gac aril consumption may provide health benefits for managing type 2 diabetes, partially by enhancing endogenous GLP-1 levels.
{"title":"Consumption of carotenoid-rich <i>Momordica cochinchinensis</i> (Gac) aril improves glycemic control in type 2 diabetic mice partially through taste receptor type 1 mediated glucagon-like peptide 1 secretion.","authors":"Ying-Ying Hsieh, Wen-Chi Hou, Su-Jung Hsu, Chia-Ching Liaw, Cheng Huang, Meng-Chun Monica Shih, Yuh-Chiang Shen, Ying-Fang Chen, Ching-Kuo Lee, Oscar K Lee, Chia-Chune Wu, I-Jung Lee, Jing-Jy Cheng, Yu-Chang Hou, Hui-Kang Liu","doi":"10.1039/d4fo04316b","DOIUrl":"https://doi.org/10.1039/d4fo04316b","url":null,"abstract":"<p><p>Incretin-based therapies are widely used to improve glycemic control and β cell dysfunction in the treatment of type 2 diabetes. <i>Momordica cochinchinensis</i> (Gac fruit), a nutritious melon cultivated in many regions, has underexplored health benefits, particular its edible aril. This study comprehensively investigates the stimulatory effect of Gac aril on glucagon-like peptide 1 (GLP-1) secretion, identifies the responsible active constituents, and explores the underlying mechanisms related to its anti-diabetic effects. GLP-1-secreting STC-1 intestinal L cells were used to assess bioactivity and molecular mechanisms. Additionally, the <i>in vivo</i> anti-diabetic effects of Gac aril consumption were evaluated using type 2 diabetic mice induced by a high fat diet and streptozotocin injection, with or without GLP-1 receptor expression. The results demonstrated that Gac pulp and aril stimulated GLP-1 secretion, while Gac seeds did not. β-Carotene, a major constituent of Gac aril, was identified as the key mediator of GLP-1 secretion <i>via</i> sweet taste receptor-mediated signaling in STC-1 cells. Dietary intake of Gac aril significantly improved fasting blood glucose, glucose tolerance, insulin sensitivity, β-cell function, and hemoglobin A1c in type 2 diabetic mice. GLP-1 levels increased 2-fold, and decreased levels of ghrelin and adiponectin were restored. The anti-diabetic effects were partially diminished in GLP-1 receptor knockout mice, suggesting Gac aril's effects are mediated, in part, through GLP-1. In conclusion, Gac aril consumption may provide health benefits for managing type 2 diabetes, partially by enhancing endogenous GLP-1 levels.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Although a high-fat and high-sugar diet (HFHS) can induce ovarian insufficiency and premature ovarian failure (POF)-making the treatment difficult-plant-derived exosome-like nanovesicles manifest numerous therapeutic effects on various diseases. Purpose: To explore the therapeutic effects and the molecular biology mechanism of exosomes derived from Vaccinium macrocarpon Ait (cranberry) (Va-exos) in the treatment of murine HFHS-POF. Methods: The exosomes from cranberry (Va-exos) were isolated, purified and fed to HFHS-POF model mice. The pathological changes in ovaries, livers, intestines were detected by H&E and Masson staining. The 16s rRNA-seq technique was used to investigate the changes in the gut microbiota and microecology. The mRNA and protein expressions of PANoptosis and their phosphorylation levels in ovarian granulosa cells were detected by qPCR and western blot. Results: Pathological examination showed that Va-exos not only significantly alleviated the symptoms of POF in model mice but also improved the intestinal barrier function and inhibited the production of inflammatory factors. The high-throughput sequencing results of 16s rRNA indicated that the relative abundances of Akkermansia and Allobaculum microorganisms in the intestines of the Va-exos group of mice significantly increased, while the relative abundances of uncultured-bacterium_f-Muribaculaceae, Dubosiella, and uncultured-bacterium_f-Lachnospiraceae microorganisms were significantly reduced. The FCM test results indicated that Va-exos significantly reduced necrosis, apoptosis, and accumulation of reactive oxygen species in ovarian granulosa cells (OGCs) of the HFHS POF mice. Finally, both qPCR and western-blot analyses indicated that Va-exos significantly attenuated the expression levels of key regulatory factors in the PANoptosis of OGCs in HFHS POF mice. Conclusion: We confirmed that oral administration of cranberry-derived exosomes attenuated murine POF by modulating the gut microbiota and decreasing ovarian granulosa cell PANoptosis.
{"title":"Oral administration of cranberry-derived exosomes attenuates murine premature ovarian failure in association with changes in the specific gut microbiota and diminution in ovarian granulosa cell PANoptosis.","authors":"Zeyu Cui, Te Liu, Yichao Wen, Weihao Li, Jianghong Xu, Yingjuan Chen, Danping Chen, Ying Zhu","doi":"10.1039/d4fo03468f","DOIUrl":"https://doi.org/10.1039/d4fo03468f","url":null,"abstract":"<p><p><i>Background</i>: Although a high-fat and high-sugar diet (HFHS) can induce ovarian insufficiency and premature ovarian failure (POF)-making the treatment difficult-plant-derived exosome-like nanovesicles manifest numerous therapeutic effects on various diseases. <i>Purpose</i>: To explore the therapeutic effects and the molecular biology mechanism of exosomes derived from <i>Vaccinium macrocarpon</i> Ait (cranberry) (Va-exos) in the treatment of murine HFHS-POF. <i>Methods</i>: The exosomes from cranberry (Va-exos) were isolated, purified and fed to HFHS-POF model mice. The pathological changes in ovaries, livers, intestines were detected by H&E and Masson staining. The 16s rRNA-seq technique was used to investigate the changes in the gut microbiota and microecology. The mRNA and protein expressions of PANoptosis and their phosphorylation levels in ovarian granulosa cells were detected by qPCR and western blot. <i>Results</i>: Pathological examination showed that Va-exos not only significantly alleviated the symptoms of POF in model mice but also improved the intestinal barrier function and inhibited the production of inflammatory factors. The high-throughput sequencing results of 16s rRNA indicated that the relative abundances of Akkermansia and Allobaculum microorganisms in the intestines of the Va-exos group of mice significantly increased, while the relative abundances of uncultured-bacterium_f-Muribaculaceae, <i>Dubosiella</i>, and uncultured-bacterium_f-Lachnospiraceae microorganisms were significantly reduced. The FCM test results indicated that Va-exos significantly reduced necrosis, apoptosis, and accumulation of reactive oxygen species in ovarian granulosa cells (OGCs) of the HFHS POF mice. Finally, both qPCR and western-blot analyses indicated that Va-exos significantly attenuated the expression levels of key regulatory factors in the PANoptosis of OGCs in HFHS POF mice. <i>Conclusion</i>: We confirmed that oral administration of cranberry-derived exosomes attenuated murine POF by modulating the gut microbiota and decreasing ovarian granulosa cell PANoptosis.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The investigation into the bioactive peptide's activity and target action poses a significant challenge in the field of food. An active peptide prepared from rice bran, KF-8, was confirmed to possess antioxidant activity in our previous study, but the specific target was unclear. This study used eight target prediction tools based on artificial intelligence and chemoinformatics to preliminarily screen potential antioxidant targets by integrating different computational methods. Then five different types of docking software were comparatively analyzed to further clarify their interaction sites and possible modes of action. The results showed that SIRT1 and CXCR4 are potential antioxidant targets of KF-8. Different docking software suggested that KF-8 interacts with SIRT1 and CXCR4 as major residues. Meanwhile, the results of Immunofluorescence co-localization experiments showed that the co-localization coefficients of KF-8 with SIRT1 and CXCR4 reached 0.5879 and 0.5684. This study provides new alternative means for the discovery of active peptide targets.
{"title":"A novel method for exploration and prediction of the bioactive target of rice bran-derived peptide (KF-8) by integrating computational methods and experiments.","authors":"Rui Liang, Fangliang Song, Ying Liang, Yanpeng Fang, Jianqiang Wang, Yajuan Chen, Zhongxu Chen, Xiaorong Tan, Jie Dong","doi":"10.1039/d4fo02493a","DOIUrl":"https://doi.org/10.1039/d4fo02493a","url":null,"abstract":"<p><p>The investigation into the bioactive peptide's activity and target action poses a significant challenge in the field of food. An active peptide prepared from rice bran, KF-8, was confirmed to possess antioxidant activity in our previous study, but the specific target was unclear. This study used eight target prediction tools based on artificial intelligence and chemoinformatics to preliminarily screen potential antioxidant targets by integrating different computational methods. Then five different types of docking software were comparatively analyzed to further clarify their interaction sites and possible modes of action. The results showed that SIRT1 and CXCR4 are potential antioxidant targets of KF-8. Different docking software suggested that KF-8 interacts with SIRT1 and CXCR4 as major residues. Meanwhile, the results of Immunofluorescence co-localization experiments showed that the co-localization coefficients of KF-8 with SIRT1 and CXCR4 reached 0.5879 and 0.5684. This study provides new alternative means for the discovery of active peptide targets.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}