Chunyan Zhao, Shuwen Lei, Hong Zhao, Zelin Li, Yue Miao, Chunxiu Peng, Jiashun Gong
The intestinal microbiota undergoes diurnal compositional and functional oscillations within a day, which affect the metabolic homeostasis of the host and exacerbate the occurrence of obesity. TB has the effect of reducing body weight and lipid accumulation, but the mechanism of improving obesity caused by a high-fat diet based on the circadian rhythm of intestinal microorganisms has not been clarified. In this study, we used multi-omics and imaging approaches to investigate the mechanism of TB in alleviating obesity in mice based on the circadian rhythm of gut microbiota. The results showed that TB could significantly regulate the levels and rhythmic expression of serum lipid indicators (TG, TC, LDL) and serum hormones (MT, FT3, LEP, CORT). The number of intestinal microbiota colonizing the colonic epithelium underwent daily fluctuations. TB remodeled the rhythmic oscillation of gut microbes (i.e., Lachnospiraceae_NK4A136_group, Alistipes, etc.), including the number, composition, abundance and rhythmic expression of the biogeographic localization of microbes. TB notably reduced the levels of 16 bile acids (TCA, THDCA, TCDA, GHDCA, T-α-MCA, etc.) and restored the balance of bile acid metabolism. It was found that TB may mitigate high-fat diet-induced obesity in mice by reshaping the circadian rhythm of the gut microbiome and regulating bile acid metabolism.
{"title":"Theabrownin remodels the circadian rhythm disorder of intestinal microbiota induced by a high-fat diet to alleviate obesity in mice.","authors":"Chunyan Zhao, Shuwen Lei, Hong Zhao, Zelin Li, Yue Miao, Chunxiu Peng, Jiashun Gong","doi":"10.1039/d4fo05947f","DOIUrl":"https://doi.org/10.1039/d4fo05947f","url":null,"abstract":"<p><p>The intestinal microbiota undergoes diurnal compositional and functional oscillations within a day, which affect the metabolic homeostasis of the host and exacerbate the occurrence of obesity. TB has the effect of reducing body weight and lipid accumulation, but the mechanism of improving obesity caused by a high-fat diet based on the circadian rhythm of intestinal microorganisms has not been clarified. In this study, we used multi-omics and imaging approaches to investigate the mechanism of TB in alleviating obesity in mice based on the circadian rhythm of gut microbiota. The results showed that TB could significantly regulate the levels and rhythmic expression of serum lipid indicators (TG, TC, LDL) and serum hormones (MT, FT3, LEP, CORT). The number of intestinal microbiota colonizing the colonic epithelium underwent daily fluctuations. TB remodeled the rhythmic oscillation of gut microbes (<i>i.e.</i>, <i>Lachnospiraceae_NK4A136_group</i>, <i>Alistipes</i>, <i>etc</i>.), including the number, composition, abundance and rhythmic expression of the biogeographic localization of microbes. TB notably reduced the levels of 16 bile acids (TCA, THDCA, TCDA, GHDCA, T-α-MCA, <i>etc</i>.) and restored the balance of bile acid metabolism. It was found that TB may mitigate high-fat diet-induced obesity in mice by reshaping the circadian rhythm of the gut microbiome and regulating bile acid metabolism.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qianqian Jiao, Jin Liu, Lei Zhou, David Julian McClements, Wei Liu, Jun Luo, Shengfeng Peng
Lactobacillus derived extracellular vesicles (LAB-EVs) are nanosized particles secreted from Lactobacillus during fermentation, and therefore exist universally in fermented foods such as yogurt, pickles, and fermented beverages. In this study, three LAB-EVs were prepared using a simple scalable method, and then their structures, compositions, and biosafety properties were characterized. The protective properties and potential mechanisms of action of the LAB-EVs against alcoholic liver disease were studied. All three LAB-EVs alleviated alcohol-induced liver injury. It was shown by reduction of liver index, histological damage, liver function impairment, inflammation, and liver oxidative status. The results showed that three LAB-EVs positively promoted the diversity of intestinal flora in mice. Additionally, the relative hepatic protein level of Nrf-2, HO-1, and CYP2E1 was also regulated by LAB-EVs. In summary, these facts suggest that the three LAB-EVs can alleviate alcohol-induced liver damage, by positively modulating the intestinal flora and activation of the Nrf-2 signaling pathway. These results may facilitate the understanding of the composition and function of Lactobacillus fermented food and also the development of Lactobacillus fermented functional food.
{"title":"<i>Lactobacillus</i> extracellular vesicles alleviate alcohol-induced liver injury in mice by regulating gut microbiota and activating the Nrf-2 signaling pathway.","authors":"Qianqian Jiao, Jin Liu, Lei Zhou, David Julian McClements, Wei Liu, Jun Luo, Shengfeng Peng","doi":"10.1039/d4fo04364b","DOIUrl":"https://doi.org/10.1039/d4fo04364b","url":null,"abstract":"<p><p><i>Lactobacillus</i> derived extracellular vesicles (LAB-EVs) are nanosized particles secreted from <i>Lactobacillus</i> during fermentation, and therefore exist universally in fermented foods such as yogurt, pickles, and fermented beverages. In this study, three LAB-EVs were prepared using a simple scalable method, and then their structures, compositions, and biosafety properties were characterized. The protective properties and potential mechanisms of action of the LAB-EVs against alcoholic liver disease were studied. All three LAB-EVs alleviated alcohol-induced liver injury. It was shown by reduction of liver index, histological damage, liver function impairment, inflammation, and liver oxidative status. The results showed that three LAB-EVs positively promoted the diversity of intestinal flora in mice. Additionally, the relative hepatic protein level of Nrf-2, HO-1, and CYP2E1 was also regulated by LAB-EVs. In summary, these facts suggest that the three LAB-EVs can alleviate alcohol-induced liver damage, by positively modulating the intestinal flora and activation of the Nrf-2 signaling pathway. These results may facilitate the understanding of the composition and function of <i>Lactobacillus</i> fermented food and also the development of <i>Lactobacillus</i> fermented functional food.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wanning Qiao, Hanxiao Feng, Yi-Feng Zhang, Zhilan Zhang, Jinzhao Yang, Manni Wu, Jiyu Xie, Juan Huang, Tao Zhou and Yang Zhang
Background: Cardiovascular diseases (CVDs) remain a leading cause of morbidity and mortality worldwide, with dietary interventions showing promise in reducing CVD risk factors. Phytosterols (PSs) in plant-based foods may reduce CVD risk by lowering low-density lipoprotein cholesterol. However, the relationship between dietary PS intake and CVD outcomes remains inconclusive. Methods: This study investigated the association between dietary PS intake and CVD outcomes, including coronary heart disease (CHD) and cardiovascular mortality, using a large cohort of 167 209 UK Biobank participants. PS intake was assessed through repeated 24 hour dietary recall data, with participants stratified into quintiles. The Cox proportional-hazards model was used to estimate hazard ratios (HRs) for CVD risk across quintiles of PS intake, adjusting for potential confounders. Restricted cubic splines were used to examine the nonlinear relationship between phytosterol intake and cardiovascular disease risk. Sensitivity and subgroup analyses explored interactions with demographic and lifestyle factors. Results: Higher dietary PS intake was significantly associated with a reduced risk of CVD events, including CHD and cardiovascular mortality. Each 100 mg increase in PS intake was linked to an 8% reduction in CVD risk (HR = 0.92, 95% CI: 0.87, 0.97). Multivariable-adjusted analyses revealed that participants in the highest quintile of PS intake had significantly lower CVD hazard ratios (HR = 0.81, 95% CI: 0.77, 0.84) compared to those in the lowest quintile. Significant inverse associations were also observed for cardiovascular mortality (HR: 0.86, 95% CI: 0.80, 0.94) and CHD (HR: 0.91, 95% CI: 0.84, 0.98). Subgroup analysis highlighted stronger inverse associations in current smokers, individuals with lower body mass index (BMI), and those with moderate to high physical activity levels, with variations observed based on dyslipidemia status. Sensitivity analyses, excluding early events and adjusting for energy intake, confirmed the robustness of the findings. Conclusions: This large cohort study provides evidence supporting the cardioprotective effects of dietary PS intake, particularly for CHD and cardiovascular mortality. Dietary PS may be considered an integral component of heart-healthy diets.
{"title":"Protective association between dietary phytosterol intake and cardiovascular health: an analysis of the UK Biobank cohort†","authors":"Wanning Qiao, Hanxiao Feng, Yi-Feng Zhang, Zhilan Zhang, Jinzhao Yang, Manni Wu, Jiyu Xie, Juan Huang, Tao Zhou and Yang Zhang","doi":"10.1039/D4FO05439C","DOIUrl":"10.1039/D4FO05439C","url":null,"abstract":"<p > <em>Background</em>: Cardiovascular diseases (CVDs) remain a leading cause of morbidity and mortality worldwide, with dietary interventions showing promise in reducing CVD risk factors. Phytosterols (PSs) in plant-based foods may reduce CVD risk by lowering low-density lipoprotein cholesterol. However, the relationship between dietary PS intake and CVD outcomes remains inconclusive. <em>Methods</em>: This study investigated the association between dietary PS intake and CVD outcomes, including coronary heart disease (CHD) and cardiovascular mortality, using a large cohort of 167 209 UK Biobank participants. PS intake was assessed through repeated 24 hour dietary recall data, with participants stratified into quintiles. The Cox proportional-hazards model was used to estimate hazard ratios (HRs) for CVD risk across quintiles of PS intake, adjusting for potential confounders. Restricted cubic splines were used to examine the nonlinear relationship between phytosterol intake and cardiovascular disease risk. Sensitivity and subgroup analyses explored interactions with demographic and lifestyle factors. <em>Results</em>: Higher dietary PS intake was significantly associated with a reduced risk of CVD events, including CHD and cardiovascular mortality. Each 100 mg increase in PS intake was linked to an 8% reduction in CVD risk (HR = 0.92, 95% CI: 0.87, 0.97). Multivariable-adjusted analyses revealed that participants in the highest quintile of PS intake had significantly lower CVD hazard ratios (HR = 0.81, 95% CI: 0.77, 0.84) compared to those in the lowest quintile. Significant inverse associations were also observed for cardiovascular mortality (HR: 0.86, 95% CI: 0.80, 0.94) and CHD (HR: 0.91, 95% CI: 0.84, 0.98). Subgroup analysis highlighted stronger inverse associations in current smokers, individuals with lower body mass index (BMI), and those with moderate to high physical activity levels, with variations observed based on dyslipidemia status. Sensitivity analyses, excluding early events and adjusting for energy intake, confirmed the robustness of the findings. <em>Conclusions</em>: This large cohort study provides evidence supporting the cardioprotective effects of dietary PS intake, particularly for CHD and cardiovascular mortality. Dietary PS may be considered an integral component of heart-healthy diets.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" 3","pages":" 1157-1168"},"PeriodicalIF":5.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunlong Jiang, Yuan Qi, Xiaoting Liu, Li Fang, Yawen Gao, Chunlei Liu, Dan Wu, Xiyan Wang, Fanrui Zhao, Ji Wang and Weihong Min
Correction for ‘Neuroprotective effects of fermented yak milk-derived peptide LYLKPR on H2O2-injured HT-22 cells’ by Yunlong Jiang et al., Food Funct., 2022, 13, 12021–12038, https://doi.org/10.1039/D2FO02131E.
{"title":"Correction: Neuroprotective effects of fermented yak milk-derived peptide LYLKPR on H2O2-injured HT-22 cells","authors":"Yunlong Jiang, Yuan Qi, Xiaoting Liu, Li Fang, Yawen Gao, Chunlei Liu, Dan Wu, Xiyan Wang, Fanrui Zhao, Ji Wang and Weihong Min","doi":"10.1039/D5FO90009C","DOIUrl":"10.1039/D5FO90009C","url":null,"abstract":"<p >Correction for ‘Neuroprotective effects of fermented yak milk-derived peptide LYLKPR on H<small><sub>2</sub></small>O<small><sub>2</sub></small>-injured HT-22 cells’ by Yunlong Jiang <em>et al.</em>, <em>Food Funct.</em>, 2022, <strong>13</strong>, 12021–12038, https://doi.org/10.1039/D2FO02131E.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" 3","pages":" 1171-1172"},"PeriodicalIF":5.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/fo/d5fo90009c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lu Zhang, Xueyi Zhang, Tao Zhang, Yiwen Guo, Wenjun Pei, Ruijie Liu, Ming Chang and Xingguo Wang
Correction for ‘Linolenic acid ameliorates sarcopenia in C. elegans by promoting mitophagy and fighting oxidative stress’ by Lu Zhang et al., Food Funct., 2023, 14, 1498–1509, https://doi.org/10.1039/D2FO02974J.
{"title":"Correction: Linolenic acid ameliorates sarcopenia in C. elegans by promoting mitophagy and fighting oxidative stress","authors":"Lu Zhang, Xueyi Zhang, Tao Zhang, Yiwen Guo, Wenjun Pei, Ruijie Liu, Ming Chang and Xingguo Wang","doi":"10.1039/D5FO90010G","DOIUrl":"10.1039/D5FO90010G","url":null,"abstract":"<p >Correction for ‘Linolenic acid ameliorates sarcopenia in <em>C. elegans</em> by promoting mitophagy and fighting oxidative stress’ by Lu Zhang <em>et al.</em>, <em>Food Funct.</em>, 2023, <strong>14</strong>, 1498–1509, https://doi.org/10.1039/D2FO02974J.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" 3","pages":" 1169-1170"},"PeriodicalIF":5.1,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/fo/d5fo90010g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chen Gao, Peng Liu, Wen Li, Wanchao Chen, Zhong Zhang, Di Wu, Jingjing Huang, Gangqiang Dong and Yan Yang
Morchella esculenta is a valuable edible fungus with multidimensional bioactivities; however, research on M. esculenta protein and its beneficial effects on nonalcoholic fatty liver disease (NAFLD) have been limited. In this study, M. esculenta protein (MEP) with 80.59% protein content was prepared, isolated, and characterized by the complete amino acid composition. The main molecular weight of the protein ranged from 65 to 120 kDa, with 100 kDa being the most dominant band, and it exhibited an alpha helix structure when analyzed by FT-IR and circular dichroism analysis. MEP could regulate body weight, fat accumulation, and alleviate lipid metabolism in adipose tissues in mice with high-fat diet-induced NAFLD. MEP prevented hepatic lipotoxicity, which was reflected in attenuating liver steatosis in vitro and in vivo, thereby regulating the levels of related factors involved in lipid metabolism (e.g., PPARs, HNF-4, SREBP, FASN, ACC-1, and CD36). Furthermore, it inhibited oxidative stress response, which can be attributed to the activation of the MAPK/PGC-1α pathway. Additionally, MEP exhibited probiotic effects, as demonstrated by the altered gut microbiota composition and improved the intestinal barrier integrity. Thus, this study confirmed the preventive effect of MEP against NAFLD by regulating the gut-liver cross-talk, which provided a theoretical basis for the development and utilization of M. esculenta.
{"title":"Preparation of Morchella esculenta protein and its preventive effect on nonalcoholic fatty liver disease in mice†","authors":"Chen Gao, Peng Liu, Wen Li, Wanchao Chen, Zhong Zhang, Di Wu, Jingjing Huang, Gangqiang Dong and Yan Yang","doi":"10.1039/D4FO04489D","DOIUrl":"10.1039/D4FO04489D","url":null,"abstract":"<p > <em>Morchella esculenta</em> is a valuable edible fungus with multidimensional bioactivities; however, research on <em>M. esculenta</em> protein and its beneficial effects on nonalcoholic fatty liver disease (NAFLD) have been limited. In this study, <em>M. esculenta</em> protein (MEP) with 80.59% protein content was prepared, isolated, and characterized by the complete amino acid composition. The main molecular weight of the protein ranged from 65 to 120 kDa, with 100 kDa being the most dominant band, and it exhibited an alpha helix structure when analyzed by FT-IR and circular dichroism analysis. MEP could regulate body weight, fat accumulation, and alleviate lipid metabolism in adipose tissues in mice with high-fat diet-induced NAFLD. MEP prevented hepatic lipotoxicity, which was reflected in attenuating liver steatosis <em>in vitro</em> and <em>in vivo</em>, thereby regulating the levels of related factors involved in lipid metabolism (<em>e.g.</em>, PPARs, HNF-4, SREBP, FASN, ACC-1, and CD36). Furthermore, it inhibited oxidative stress response, which can be attributed to the activation of the MAPK/PGC-1α pathway. Additionally, MEP exhibited probiotic effects, as demonstrated by the altered gut microbiota composition and improved the intestinal barrier integrity. Thus, this study confirmed the preventive effect of MEP against NAFLD by regulating the gut-liver cross-talk, which provided a theoretical basis for the development and utilization of <em>M. esculenta</em>.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" 3","pages":" 1086-1099"},"PeriodicalIF":5.1,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiang Lu, Jiahao Wang, Ying Tang, Wenna Li and Cailan Li
Helicobacter pylori (H. pylori), one of the most common infectious pathogens in the world, can cause gastritis, digestive ulcers, and even gastric cancer. H. pylori urease (HPU) is a distinctive virulence factor of H. pylori that allows it to be distinguished from other pathogens. Dried ginger is a famous edible and medicinal herb that is commonly used to prevent and treat gastrointestinal tract-related diseases. In this study, phytochemical analysis of the aqueous extract of dried ginger (DGE) and the inhibition of DGE on H. pylori was investigated. Subsequently, we evaluated the inhibitory activity of DGE against enzymes including HPU and jack bean urease (JBU) and determined its potential mechanism of action. UPLC-ESI-MS/MS analysis indicated that a total of 63 compounds including seven glycosides, nine terpenoids, two esters, seven phenols, eight lignans, five phenylpropanoids, and four phenolic acids were identified in DGE. DGE was observed to inhibit the growth of four H. pylori strains (ATCC 43504, NCTC 26695, SS1, and ICDC 111001) with minimum inhibitory concentration (MIC) values spanning the range of 0.05 to 1.50 mg mL−1. Moreover, DGE has higher enzyme inhibitory activity on HPU (IC50 = 0.49 ± 0.01 mg mL−1) than on JBU (IC50 = 0.54 ± 0.01 mg mL−1). Enzyme inhibitory kinetic analysis revealed that the inhibition type of DGE against HPU was slow-binding and anti-competitive, whereas it was slow-binding and mixed type on JBU. A further mechanism study indicated that the protective effect of sulfhydryl-containing compounds on enzyme activity was significantly better than that of inorganic compounds, indicating that the action site of DGE inhibition of enzyme was the sulfhydryl residue. The results of DTT reactivation experiments showed that the DGE–urease complex was reversible. Furthermore, molecular docking investigation showed that the main components of DGE interacted with sulfhydryl groups and Ni2+. In conclusion, DGE effectively inhibited the growth of H. pylori and the activity of its key virulence factor urease. And the in-depth study of the kinetic characteristics and the mechanism of action showed that the active site sulfhydryl group and Ni2+ might be the targets of urease inhibition by DGE. Our study may provide experimental evidence for the traditional application of dried ginger in the treatment of H. pylori-associated gastric diseases.
{"title":"Phytochemical analysis of dried ginger extract and its inhibitory effect and mechanism on Helicobacter pylori and associated ureases†","authors":"Qiang Lu, Jiahao Wang, Ying Tang, Wenna Li and Cailan Li","doi":"10.1039/D4FO04991H","DOIUrl":"10.1039/D4FO04991H","url":null,"abstract":"<p > <em>Helicobacter pylori</em> (<em>H. pylori</em>), one of the most common infectious pathogens in the world, can cause gastritis, digestive ulcers, and even gastric cancer. <em>H. pylori</em> urease (HPU) is a distinctive virulence factor of <em>H. pylori</em> that allows it to be distinguished from other pathogens. Dried ginger is a famous edible and medicinal herb that is commonly used to prevent and treat gastrointestinal tract-related diseases. In this study, phytochemical analysis of the aqueous extract of dried ginger (DGE) and the inhibition of DGE on <em>H. pylori</em> was investigated. Subsequently, we evaluated the inhibitory activity of DGE against enzymes including HPU and jack bean urease (JBU) and determined its potential mechanism of action. UPLC-ESI-MS/MS analysis indicated that a total of 63 compounds including seven glycosides, nine terpenoids, two esters, seven phenols, eight lignans, five phenylpropanoids, and four phenolic acids were identified in DGE. DGE was observed to inhibit the growth of four <em>H. pylori</em> strains (ATCC 43504, NCTC 26695, SS1, and ICDC 111001) with minimum inhibitory concentration (MIC) values spanning the range of 0.05 to 1.50 mg mL<small><sup>−1</sup></small>. Moreover, DGE has higher enzyme inhibitory activity on HPU (IC<small><sub>50</sub></small> = 0.49 ± 0.01 mg mL<small><sup>−1</sup></small>) than on JBU (IC<small><sub>50</sub></small> = 0.54 ± 0.01 mg mL<small><sup>−1</sup></small>). Enzyme inhibitory kinetic analysis revealed that the inhibition type of DGE against HPU was slow-binding and anti-competitive, whereas it was slow-binding and mixed type on JBU. A further mechanism study indicated that the protective effect of sulfhydryl-containing compounds on enzyme activity was significantly better than that of inorganic compounds, indicating that the action site of DGE inhibition of enzyme was the sulfhydryl residue. The results of DTT reactivation experiments showed that the DGE–urease complex was reversible. Furthermore, molecular docking investigation showed that the main components of DGE interacted with sulfhydryl groups and Ni<small><sup>2+</sup></small>. In conclusion, DGE effectively inhibited the growth of <em>H. pylori</em> and the activity of its key virulence factor urease. And the in-depth study of the kinetic characteristics and the mechanism of action showed that the active site sulfhydryl group and Ni<small><sup>2+</sup></small> might be the targets of urease inhibition by DGE. Our study may provide experimental evidence for the traditional application of dried ginger in the treatment of <em>H. pylori</em>-associated gastric diseases.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" 3","pages":" 1100-1115"},"PeriodicalIF":5.1,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sumudu Rajakaruna, Brant Bandow, Sergio Pérez-Burillo, Beatriz Navajas-Porras, José Ángel Rufián-Henares, David R. Cool, Kwang-Jin Cho and Oleg Paliy
Dietary consumption of green asparagus has been associated with several health benefits. These beneficial properties are attributed to the presence of many bioactive compounds in asparagus, including saponins, phenolics, flavonoids, as well as dietary fiber mostly comprising fructans and inulins, which are prebiotics capable of supporting the growth of beneficial members of gut microbiota. In this study, we used the in vitro Human Gut Simulator system to assess the fermentation of oro-gastro-intestinally digested asparagus powder by the human gut microbiota. Microbial community composition differed between communities grown on the asparagus digest and on the Western diet derived medium. Asparagus supported beneficial Ruminococcus but also hydrogen sulfide producing members of Desulfovibrionaceae. Fermentation of asparagus released more antioxidants into the environment compared to the Western diet medium, and supernatant of asparagus-grown cultures protected cultured human epithelial cells against damage and inflammation. We thus showed that asparagus powder has potential to be used as a functional food, offering protection against intestinal damage and inflammation – effects mediated by the gut microbiota.
{"title":"Human gut microbiota-fermented asparagus powder protects human epithelial cells from injury and inflammation†","authors":"Sumudu Rajakaruna, Brant Bandow, Sergio Pérez-Burillo, Beatriz Navajas-Porras, José Ángel Rufián-Henares, David R. Cool, Kwang-Jin Cho and Oleg Paliy","doi":"10.1039/D4FO03504F","DOIUrl":"10.1039/D4FO03504F","url":null,"abstract":"<p >Dietary consumption of green asparagus has been associated with several health benefits. These beneficial properties are attributed to the presence of many bioactive compounds in asparagus, including saponins, phenolics, flavonoids, as well as dietary fiber mostly comprising fructans and inulins, which are prebiotics capable of supporting the growth of beneficial members of gut microbiota. In this study, we used the <em>in vitro</em> Human Gut Simulator system to assess the fermentation of oro-gastro-intestinally digested asparagus powder by the human gut microbiota. Microbial community composition differed between communities grown on the asparagus digest and on the Western diet derived medium. Asparagus supported beneficial <em>Ruminococcus</em> but also hydrogen sulfide producing members of Desulfovibrionaceae. Fermentation of asparagus released more antioxidants into the environment compared to the Western diet medium, and supernatant of asparagus-grown cultures protected cultured human epithelial cells against damage and inflammation. We thus showed that asparagus powder has potential to be used as a functional food, offering protection against intestinal damage and inflammation – effects mediated by the gut microbiota.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" 3","pages":" 1060-1071"},"PeriodicalIF":5.1,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Low molecular weight galactomannan (LMGM), a soluble dietary fibre derived from guar gum, is recognized for its prebiotic functions, including promoting the growth of beneficial intestinal bacteria and the production of short-chain fatty acids, but the mechanism of alleviating diarrhea is not fully understood. This study established an acute diarrhea mouse model using senna leaf decoction and evaluated the therapeutic effects of LMGM by monitoring diarrhea scores, loose stool prevalence, intestinal tissue pathology and gene expression, and gut microbiota composition and metabolisms. The results indicated that LMGM significantly reduced diarrhea scores and loose stool prevalence within two hours post-treatment. Hematoxylin and eosin staining and quantitative real-time polymerase chain reaction analysis revealed that LMGM improved intestinal epithelial structure and up-regulated the expression of zonula occludens 1, occludin, mucin 2, aquaporin 3, and aquaporin 4 in ileum, jejunum, and colon tissues. Moreover, LMGM increased the abundance of beneficial bacteria such as Lactobacillaceae and Lachnospiraceae, and decreased Prevotellaceae in the cecum. Furthermore, LMGM promoted short-chain fatty acid production and reduced ammonia nitrogen and skatole concentrations in the intestinal content. The study suggests that LMGM could serve as a functional prebiotic for diarrhea alleviation, potentially by enhancing the intestinal barrier, modulating water transportation, and regulating the microbiota composition.
{"title":"Low molecular weight galactomannan alleviates diarrhea induced by senna leaf in mice via intestinal barrier improvement and gut microbiota modulation†","authors":"Jiayuan Bi, Xiaodan Fu, Yun Jiang, Jia Wang, Dongyu Li, Mengshi Xiao and Haijin Mou","doi":"10.1039/D4FO04375H","DOIUrl":"10.1039/D4FO04375H","url":null,"abstract":"<p >Low molecular weight galactomannan (LMGM), a soluble dietary fibre derived from guar gum, is recognized for its prebiotic functions, including promoting the growth of beneficial intestinal bacteria and the production of short-chain fatty acids, but the mechanism of alleviating diarrhea is not fully understood. This study established an acute diarrhea mouse model using senna leaf decoction and evaluated the therapeutic effects of LMGM by monitoring diarrhea scores, loose stool prevalence, intestinal tissue pathology and gene expression, and gut microbiota composition and metabolisms. The results indicated that LMGM significantly reduced diarrhea scores and loose stool prevalence within two hours post-treatment. Hematoxylin and eosin staining and quantitative real-time polymerase chain reaction analysis revealed that LMGM improved intestinal epithelial structure and up-regulated the expression of zonula occludens 1, occludin, mucin 2, aquaporin 3, and aquaporin 4 in ileum, jejunum, and colon tissues. Moreover, LMGM increased the abundance of beneficial bacteria such as Lactobacillaceae and Lachnospiraceae, and decreased Prevotellaceae in the cecum. Furthermore, LMGM promoted short-chain fatty acid production and reduced ammonia nitrogen and skatole concentrations in the intestinal content. The study suggests that LMGM could serve as a functional prebiotic for diarrhea alleviation, potentially by enhancing the intestinal barrier, modulating water transportation, and regulating the microbiota composition.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" 3","pages":" 1016-1031"},"PeriodicalIF":5.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pectin is an acidic heteropolysaccharide with natural, green, and inexpensive characteristics. Compared to polysaccharides, oligosaccharides are more easily utilized by the body, and the physiological function of hawthorn pectin oligosaccharides (POS) may vary depending on their degree of polymerization (DP). Therefore, we mainly studied the effects of hawthorn pectin (HP) and POS with different DP on gut microbiota disorders induced by high-fat diet (HFD). HP and POS both improved weight gain, dyslipidemia, and glucose homeostasis caused by HFD, and increased serum GLP-1 levels. Meanwhile, the increased expression of Gcg and Pcsk1 genes in the ileum of the treatment group further confirmed this result. In addition, HP and POS reduced certain opportunistic pathogens, while restoring the richness and diversity of the gut microbiota. Meanwhile, HP and POS can improve intestinal barrier dysfunction by increasing the claudin-1, occludin, ZO-1, and MUC2 genes. Furthermore, fecal metabolomics suggests that POS may enhance linoleic acid synthesis and improve lipid metabolism by upregulating 9,10-DHOME ((12Z)-9,10-dihydroxyoctadec-12-enoic acid), while HP cannot. Overall, the research results indicate that both HP and POS can improve the weight phenotype changes, gut microbiota disruption, and metabolites changes caused by HFD. Particularly, POS has a better effect than HP, and there are differences in the improvement effect of POS with different DP, among which POS with DP 5 has the most significant improvement effect. This discovery enhances a deeper comprehension of the biological activity of different POS, providing an important basis for further optimizing the application of POS as a functional food.
{"title":"Effects of hawthorn pectin and its oligomers on gut microbiota and metabolites in high-fat diet mice.","authors":"Xiushan Zhang, Yanmin Cui, Zuoyi Zhang, Xin Huang, Xiaowei Zhang, Xiaopei Hu, Tuoping Li, Suhong Li","doi":"10.1039/d4fo04686b","DOIUrl":"10.1039/d4fo04686b","url":null,"abstract":"<p><p>Pectin is an acidic heteropolysaccharide with natural, green, and inexpensive characteristics. Compared to polysaccharides, oligosaccharides are more easily utilized by the body, and the physiological function of hawthorn pectin oligosaccharides (POS) may vary depending on their degree of polymerization (DP). Therefore, we mainly studied the effects of hawthorn pectin (HP) and POS with different DP on gut microbiota disorders induced by high-fat diet (HFD). HP and POS both improved weight gain, dyslipidemia, and glucose homeostasis caused by HFD, and increased serum GLP-1 levels. Meanwhile, the increased expression of Gcg and Pcsk1 genes in the ileum of the treatment group further confirmed this result. In addition, HP and POS reduced certain opportunistic pathogens, while restoring the richness and diversity of the gut microbiota. Meanwhile, HP and POS can improve intestinal barrier dysfunction by increasing the claudin-1, occludin, ZO-1, and MUC2 genes. Furthermore, fecal metabolomics suggests that POS may enhance linoleic acid synthesis and improve lipid metabolism by upregulating 9,10-DHOME ((12<i>Z</i>)-9,10-dihydroxyoctadec-12-enoic acid), while HP cannot. Overall, the research results indicate that both HP and POS can improve the weight phenotype changes, gut microbiota disruption, and metabolites changes caused by HFD. Particularly, POS has a better effect than HP, and there are differences in the improvement effect of POS with different DP, among which POS with DP 5 has the most significant improvement effect. This discovery enhances a deeper comprehension of the biological activity of different POS, providing an important basis for further optimizing the application of POS as a functional food.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}