Yu Ma, Wenjing Li, Yi Liu, Wuqian Guo, Haojie Xu, Liwei Tang, Qingshun Fan, Hao Rong, Prof. Junhua Luo, Prof. Zhihua Sun
Precise stacking of distinct two-dimensional (2D) rigid slabs to build heterostructures has renewed the portfolio of 2D materials, e.g., magic-angle graphene, due to the emergence of exotic physical properties. Recently, single-crystal heterostructures of layered perovskites have emerged as an exciting branch, while it remains scarce to achieve strong ferroelectricity in this new heterostructure family. Here, we present the first ferroelectric of 2D perovskite heterostructures as single crystal, (EA3Pb2Br7)EA4Pb3Br10 (1, EA=ethylamine), by precisely tailoring inorganic sheets via a chemical molecular scissor. It has notable ferroelectricity of large spontaneous polarization (Ps~5.0 μC/cm2) and high Curie temperature (Tc~375 K). Structurally, its inorganic framework adopts a unique 2D heterostructure that contains two different rigid slabs of {EA3Pb2Br7}n and {EA4Pb3Br10}n. This motif is self-assembled by layer-by-layer clipping of rigid prototype sheets, using extra neopentylamine as a molecular chemical scissor. Unlike epitaxial growth, such a molecule-level stacking facilitates the growth of heterostructure single crystals. Combining its strong ferroelectricity and inherent anisotropy, crystal-based device of 1 exhibits an ultrahigh polarized-light sensitivity up to ~37 in self-powered mode, being the highest level of 2D perovskite ferroelectric family. Our work will facilitate the further development of ferroelectric materials for optoelectronic device applications.
{"title":"Precise Tailoring of Unprecedent Layered Perovskite-Type Heterostructure Ferroelectric via Chemical Molecular Scissor","authors":"Yu Ma, Wenjing Li, Yi Liu, Wuqian Guo, Haojie Xu, Liwei Tang, Qingshun Fan, Hao Rong, Prof. Junhua Luo, Prof. Zhihua Sun","doi":"10.1002/ange.202424279","DOIUrl":"https://doi.org/10.1002/ange.202424279","url":null,"abstract":"<p>Precise stacking of distinct two-dimensional (2D) rigid slabs to build heterostructures has renewed the portfolio of 2D materials, e.g., magic-angle graphene, due to the emergence of exotic physical properties. Recently, single-crystal heterostructures of layered perovskites have emerged as an exciting branch, while it remains scarce to achieve strong ferroelectricity in this new heterostructure family. Here, we present the first ferroelectric of 2D perovskite heterostructures as single crystal, (EA<sub>3</sub>Pb<sub>2</sub>Br<sub>7</sub>)EA<sub>4</sub>Pb<sub>3</sub>Br<sub>10</sub> (<b>1</b>, EA=ethylamine), by precisely tailoring inorganic sheets via <i>a</i> chemical molecular scissor. It has notable ferroelectricity of large spontaneous polarization (<i>P</i><sub>s</sub>~5.0 μC/cm<sup>2</sup>) and high Curie temperature (<i>T</i><sub>c</sub>~375 K). Structurally, its inorganic framework adopts a unique 2D heterostructure that contains two different rigid slabs of {EA<sub>3</sub>Pb<sub>2</sub>Br<sub>7</sub>}<sub>n</sub> and {EA<sub>4</sub>Pb<sub>3</sub>Br<sub>10</sub>}<sub>n</sub>. This motif is self-assembled by layer-by-layer clipping of rigid prototype sheets, using extra neopentylamine as a molecular chemical scissor. Unlike epitaxial growth, such a molecule-level stacking facilitates the growth of heterostructure single crystals. Combining its strong ferroelectricity and inherent anisotropy, crystal-based device of <b>1</b> exhibits an ultrahigh polarized-light sensitivity up to ~37 in self-powered mode, being the highest level of 2D perovskite ferroelectric family. Our work will facilitate the further development of ferroelectric materials for optoelectronic device applications.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143475389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heterobimetallic μ-methylidyne complexes [WPt(μ2-CH)(CO)2L2(Tp*)], where L2=(PPh3)2, (PPh3)(CO), (dppe), (PPh3)(CNC6H2Me3), have been obtained via the intermediacy of transient hydrido-μ-carbido complexes that undergo carbido-hydrido coupling to model a fundamental step in the proposed mechanism for Fischer–Tropsch synthesis.
{"title":"The Interplay of Methylidyne and Carbido Species: Modeling a Fundamental Step in the Fischer–Tropsch Synthesis","authors":"Dr. Liam K. Burt, Prof. Dr. Anthony F. Hill","doi":"10.1002/ange.202424699","DOIUrl":"https://doi.org/10.1002/ange.202424699","url":null,"abstract":"<p>Heterobimetallic μ-methylidyne complexes [WPt(μ<sub>2</sub>-CH)(CO)<sub>2</sub>L<sub>2</sub>(Tp*)], where L<sub>2</sub>=(PPh<sub>3</sub>)<sub>2</sub>, (PPh<sub>3</sub>)(CO), (dppe), (PPh<sub>3</sub>)(CNC<sub>6</sub>H<sub>2</sub>Me<sub>3</sub>), have been obtained via the intermediacy of transient hydrido-μ-carbido complexes that undergo carbido-hydrido coupling to model a fundamental step in the proposed mechanism for Fischer–Tropsch synthesis.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202424699","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143475390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu-Ting Huang, Hao-Yi Huang, Jing-Liang Cheng, Min Xie, Prof. Liang-Wen Feng, Prof. Zhongzheng Cai, Prof. Jian-Bo Zhu
Poly(lactic-co-glycolic acid) (PLGA) has been widely employed for various biomedical applications owing to its biodegradability and biocompatibility. The discovery of the stereocomplex formation between enantiomeric alternating PLGA pairs underscored its potential as high-performance biodegradable materials with diverse material properties and biodegradability. Herein, we have established a regio- and stereoselective ring-opening polymerization approach for the synthesis of stereocomplexed isoenriched alternating PLGA from racemic methyl-glycolide (rac-MG). The high sequence and tacticity control was accomplished by an optimized enantiopure scandium catalyst bearing a spiro-salen scaffold. Varying polymer stereoregularity Pm from 0.4 to 0.91 led to a transformation of the resulting alternating PLGA from amorphous to semicrystalline materials. Notably, the stereocomplexed alternating PLGA demonstrated enhanced melting transition temperature (Tm up to 191 °C) and crystallization rate. This regio- and stereocontrolled polymerization represented a versatile approach for the preparation of high-performance biodegradable PLGA materials.
{"title":"A Regio- and Stereoselective Ring-Opening Polymerization Approach to Isotactic Alternating Poly(lactic-co-glycolic acid) with Stereocomplexation","authors":"Yu-Ting Huang, Hao-Yi Huang, Jing-Liang Cheng, Min Xie, Prof. Liang-Wen Feng, Prof. Zhongzheng Cai, Prof. Jian-Bo Zhu","doi":"10.1002/ange.202422147","DOIUrl":"https://doi.org/10.1002/ange.202422147","url":null,"abstract":"<p>Poly(lactic-<i>co</i>-glycolic acid) (PLGA) has been widely employed for various biomedical applications owing to its biodegradability and biocompatibility. The discovery of the stereocomplex formation between enantiomeric alternating PLGA pairs underscored its potential as high-performance biodegradable materials with diverse material properties and biodegradability. Herein, we have established a regio- and stereoselective ring-opening polymerization approach for the synthesis of stereocomplexed isoenriched alternating PLGA from racemic methyl-glycolide (<i>rac</i>-MG). The high sequence and tacticity control was accomplished by an optimized enantiopure scandium catalyst bearing a spiro-salen scaffold. Varying polymer stereoregularity <i>P</i><sub>m</sub> from 0.4 to 0.91 led to a transformation of the resulting alternating PLGA from amorphous to semicrystalline materials. Notably, the stereocomplexed alternating PLGA demonstrated enhanced melting transition temperature (<i>T</i><sub>m</sub> up to 191 °C) and crystallization rate. This regio- and stereocontrolled polymerization represented a versatile approach for the preparation of high-performance biodegradable PLGA materials.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143475499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guoxin Ma, Ke Xu, Prof. Dr. Leixiao Yu, Prof. Dr. Rainer Haag
<p>Parodontitis ist eine der häufigsten chronischen Erkrankungen des Menschen, welche meist durch eine bakterielle Infektion hervorgerufen wird, und schnell voranschreitet. Sie beginnt mit der Bildung von Zahnfleischtaschen und führt über eine Geweberesorption letztendlich zum endgültigen Zahnverlust.<span><sup>1</sup></span> Die chronische Entzündung, die durch Parodontitis verursacht wird, kann zudem mit verschiedenen systemischen Erkrankungen wie Herz-Kreislauf-Erkrankungen, Diabetes mellitus und dem Koronarsyndrom in Zusammenhang gebracht werden.<span><sup>2</sup></span> Der aktuelle Stand der Technik für die primäre klinische Behandlung von Parodontitis umfasst die nicht-chirurgische Entfernung von Zahnstein und Plaque von der Parodontaloberfläche, gefolgt von einer systemischen Antibiotikatherapie.<span><sup>3</sup></span> Allerdings begünstigt die dynamische Natur unserer Mundumgebung, wie zum Beispiel der ständige Speichelfluss und die intensive Bewegung beim Schlucken, dass sich Bakterienkolonien in bisher unbehandelten, schwer zugänglichen Bereichen ansiedeln und in bereits behandelte Bereiche übertreten, was schließlich zu einem Wiederauftreten der Parodontitis führt.<span><sup>4</sup></span> Der Schlüssel zur Heilung der Parodontitis liegt darin, gesundes Zahnfleischgewebe wiederherzustellen, um das Risiko einer bakteriellen Infektion zu verringern und das Ausmaß der Entzündung zu senken.<span><sup>5</sup></span> Dies erfordert eine Kombination aus antimikrobiellen Mitteln und pro-angiogenetischen Medikamenten in der Phase nach der Wunddebridement-Behandlung. Aufgrund der schlechten Bioverteilung und der unzureichenden Verweildauer<span><sup>6</sup></span> der Medikamente am Wirkort wird jedoch häufig eine hohe Dosis verordnet. Diese Praxis birgt potenzielle Risiken, einschließlich einer verlängerten Behandlung, der Aktivierung entzündungsfördernder Mediatoren und einer Arzneimittelresistenz.<span><sup>7</sup></span> Zahlreiche lokale Wirkstofftransporter (LDDS) wurden entwickelt, um diese Risiken zu verringern, indem die lokale Wirkstoffkonzentration reguliert und unerwünschte Reaktionen minimiert werden.<span><sup>6b, 8</sup></span> Die LDDS ermöglichen den Einsatz neuer Medikamentenkategorien für die lokale Parodontaltherapie, insbesondere für wasserunlösliche Arzneimittel mit schlechter Absorption, wie zum Beispiel Chlorhexidin.<span><sup>9</sup></span> Unter den kürzlich berichteten LDDS gewinnen Nanopartikel zunehmend an Bedeutung, da sie aufgrund ihrer hervorragenden Flexibilität, Zielgerichtetheit und Biokompatibilität großes Potenzial bieten.<span><sup>10</sup></span> Darüber hinaus können die Nanopartikel in Bezug auf ihre Beladungskapazität, Zielgerichtetheit, Reaktionsfähigkeit auf spezifische Reize, kontrollierte Freisetzungsdynamik und weitere Eigenschaften optimiert werden.<span><sup>11</sup></span> Triclosan (TCS), ein antimikrobieller Wirkstoff mit breitem Wirkspektrum, wurde für die Verwendung in Mundpflegeprodukten
{"title":"pH-responsive Polyglycerol-Nanogele zur Behandlung von Parodontitis durch antibakterielle und pro-angiogenetische Wirkung","authors":"Guoxin Ma, Ke Xu, Prof. Dr. Leixiao Yu, Prof. Dr. Rainer Haag","doi":"10.1002/ange.202418882","DOIUrl":"https://doi.org/10.1002/ange.202418882","url":null,"abstract":"<p>Parodontitis ist eine der häufigsten chronischen Erkrankungen des Menschen, welche meist durch eine bakterielle Infektion hervorgerufen wird, und schnell voranschreitet. Sie beginnt mit der Bildung von Zahnfleischtaschen und führt über eine Geweberesorption letztendlich zum endgültigen Zahnverlust.<span><sup>1</sup></span> Die chronische Entzündung, die durch Parodontitis verursacht wird, kann zudem mit verschiedenen systemischen Erkrankungen wie Herz-Kreislauf-Erkrankungen, Diabetes mellitus und dem Koronarsyndrom in Zusammenhang gebracht werden.<span><sup>2</sup></span> Der aktuelle Stand der Technik für die primäre klinische Behandlung von Parodontitis umfasst die nicht-chirurgische Entfernung von Zahnstein und Plaque von der Parodontaloberfläche, gefolgt von einer systemischen Antibiotikatherapie.<span><sup>3</sup></span> Allerdings begünstigt die dynamische Natur unserer Mundumgebung, wie zum Beispiel der ständige Speichelfluss und die intensive Bewegung beim Schlucken, dass sich Bakterienkolonien in bisher unbehandelten, schwer zugänglichen Bereichen ansiedeln und in bereits behandelte Bereiche übertreten, was schließlich zu einem Wiederauftreten der Parodontitis führt.<span><sup>4</sup></span> Der Schlüssel zur Heilung der Parodontitis liegt darin, gesundes Zahnfleischgewebe wiederherzustellen, um das Risiko einer bakteriellen Infektion zu verringern und das Ausmaß der Entzündung zu senken.<span><sup>5</sup></span> Dies erfordert eine Kombination aus antimikrobiellen Mitteln und pro-angiogenetischen Medikamenten in der Phase nach der Wunddebridement-Behandlung. Aufgrund der schlechten Bioverteilung und der unzureichenden Verweildauer<span><sup>6</sup></span> der Medikamente am Wirkort wird jedoch häufig eine hohe Dosis verordnet. Diese Praxis birgt potenzielle Risiken, einschließlich einer verlängerten Behandlung, der Aktivierung entzündungsfördernder Mediatoren und einer Arzneimittelresistenz.<span><sup>7</sup></span> Zahlreiche lokale Wirkstofftransporter (LDDS) wurden entwickelt, um diese Risiken zu verringern, indem die lokale Wirkstoffkonzentration reguliert und unerwünschte Reaktionen minimiert werden.<span><sup>6b, 8</sup></span> Die LDDS ermöglichen den Einsatz neuer Medikamentenkategorien für die lokale Parodontaltherapie, insbesondere für wasserunlösliche Arzneimittel mit schlechter Absorption, wie zum Beispiel Chlorhexidin.<span><sup>9</sup></span> Unter den kürzlich berichteten LDDS gewinnen Nanopartikel zunehmend an Bedeutung, da sie aufgrund ihrer hervorragenden Flexibilität, Zielgerichtetheit und Biokompatibilität großes Potenzial bieten.<span><sup>10</sup></span> Darüber hinaus können die Nanopartikel in Bezug auf ihre Beladungskapazität, Zielgerichtetheit, Reaktionsfähigkeit auf spezifische Reize, kontrollierte Freisetzungsdynamik und weitere Eigenschaften optimiert werden.<span><sup>11</sup></span> Triclosan (TCS), ein antimikrobieller Wirkstoff mit breitem Wirkspektrum, wurde für die Verwendung in Mundpflegeprodukten ","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202418882","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143475618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xi-Long Wang, Yuan Li, Dr. Jia Liu, Shi-Jie Yang, Jiang-Kui Hu, Wei-Qi Mai, Prof. Rui Wen, Prof. Hong Yuan, Prof. Jia-Qi Huang
Solid-state lithium (Li) metal batteries (SSLMBs) are considered as one of the most promising next-generation battery technologies due to their high energy density and intrinsic safety. However, interfacial issues such as side reactions and Li dendrite growth severely hinder the practical application of SSLMBs. In this contribution, we proposed a cationic built-in electrostatic field to drive the generation of an anion-derived dual-layered solid electrolyte interphase (SEI). The specific adsorption of tributylmethyl-phosphonium bis(trifluoromethanesulfonyl)imide (TMPB) cations onto negatively charged Li anode surface significantly prevents interfacial side reactions between vulnerable polyethylene oxide (PEO) and Li metal. More importantly, the formed cationic built-in electrostatic field induces the targeted trapping of Li-salt anions onto the Li metal surface, leading to the generation of an anion-derived dual-layered SEI, composed of a mechanically flexible organic-rich surface layer and a Li-ion conductive inorganic-rich bottom layer. As a result, the Li||Li cell demonstrated an extended lifespan of over 1900 hours with the reduced polarization voltage. The Li||LiFePO4 full cell also exhibited excellent cycling stability, maintaining an average Coulombic efficiency of 99.7 % over 200 cycles at 0.5 C. This work provides valuable insights into mitigating interfacial degradation and promoting uniform Li deposition through surface electrostatic field regulation.
{"title":"A Robust Dual-Layered Solid Electrolyte Interphase Enabled by Cation Specific Adsorption-Induced Built-In Electrostatic Field for Long-Cycling Solid-State Lithium Metal Batteries","authors":"Xi-Long Wang, Yuan Li, Dr. Jia Liu, Shi-Jie Yang, Jiang-Kui Hu, Wei-Qi Mai, Prof. Rui Wen, Prof. Hong Yuan, Prof. Jia-Qi Huang","doi":"10.1002/ange.202421101","DOIUrl":"https://doi.org/10.1002/ange.202421101","url":null,"abstract":"<p>Solid-state lithium (Li) metal batteries (SSLMBs) are considered as one of the most promising next-generation battery technologies due to their high energy density and intrinsic safety. However, interfacial issues such as side reactions and Li dendrite growth severely hinder the practical application of SSLMBs. In this contribution, we proposed a cationic built-in electrostatic field to drive the generation of an anion-derived dual-layered solid electrolyte interphase (SEI). The specific adsorption of tributylmethyl-phosphonium bis(trifluoromethanesulfonyl)imide (TMPB) cations onto negatively charged Li anode surface significantly prevents interfacial side reactions between vulnerable polyethylene oxide (PEO) and Li metal. More importantly, the formed cationic built-in electrostatic field induces the targeted trapping of Li-salt anions onto the Li metal surface, leading to the generation of an anion-derived dual-layered SEI, composed of a mechanically flexible organic-rich surface layer and a Li-ion conductive inorganic-rich bottom layer. As a result, the Li||Li cell demonstrated an extended lifespan of over 1900 hours with the reduced polarization voltage. The Li||LiFePO<sub>4</sub> full cell also exhibited excellent cycling stability, maintaining an average Coulombic efficiency of 99.7 % over 200 cycles at 0.5 C. This work provides valuable insights into mitigating interfacial degradation and promoting uniform Li deposition through surface electrostatic field regulation.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143530727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Zhao, Ninggui Ma, Yuhang Wang, Zhaowei Wang, Tairan Wang, Bochun Liang, Yaqin Zhang, Jian Han, Chunyi Zhi, Jun Fan
Recently, aqueous proton batteries have shown promise for electrochemical energy storage using MXene electrodes. However, designing high-performance MXene proton batteries remains challenging due to the inevitable hydrogen evolution reaction (HER), the vast chemical composition space of MXene, and the unclear proton transport mechanism. To tackle these challenges, we established a general descriptor based on structural units of MXenes, termed the octahedral net charge descriptor (Qoct). This descriptor correlates well with HER activity, capacity, and proton transport performance. Based on the descriptor, prediction reveals a dual-proton storage mechanism per site in N-functionalized MXene. Meanwhile, the accuracy of the descriptor is verified across a broader MXene chemical space. Additionally, the kinetic process shows the topological transformation energy barrier of the interfacial solution is profoundly influenced by Qoct, thereby impacting the proton transfer performance. This universal descriptor originates from the different electron filling states on the molecular orbitals of the octahedron. Overall, this work provides an efficient strategy for designing MXene proton batteries and can be extended to other battery and catalysis fields.
{"title":"Employing Octahedral Net Charge Descriptors for Designing High-Performance Aqueous Proton Batteries","authors":"Jun Zhao, Ninggui Ma, Yuhang Wang, Zhaowei Wang, Tairan Wang, Bochun Liang, Yaqin Zhang, Jian Han, Chunyi Zhi, Jun Fan","doi":"10.1002/ange.202421224","DOIUrl":"https://doi.org/10.1002/ange.202421224","url":null,"abstract":"<p>Recently, aqueous proton batteries have shown promise for electrochemical energy storage using MXene electrodes. However, designing high-performance MXene proton batteries remains challenging due to the inevitable hydrogen evolution reaction (HER), the vast chemical composition space of MXene, and the unclear proton transport mechanism. To tackle these challenges, we established a general descriptor based on structural units of MXenes, termed the octahedral net charge descriptor (<i>Q</i><sub>oct</sub>). This descriptor correlates well with HER activity, capacity, and proton transport performance. Based on the descriptor, prediction reveals a dual-proton storage mechanism per site in N-functionalized MXene. Meanwhile, the accuracy of the descriptor is verified across a broader MXene chemical space. Additionally, the kinetic process shows the topological transformation energy barrier of the interfacial solution is profoundly influenced by <i>Q</i><sub>oct</sub>, thereby impacting the proton transfer performance. This universal descriptor originates from the different electron filling states on the molecular orbitals of the octahedron. Overall, this work provides an efficient strategy for designing MXene proton batteries and can be extended to other battery and catalysis fields.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143530728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr. Jianzhu Jiang, Dr. Junning Kou, Dr. Qi Wu, Dr. Li Chen, Prof. Dr. Yun Geng, Prof. Dr. Guogang Shan, Prof. Dr. Chunyi Sun, Prof. Dr. Zhongmin Su, Prof. Dr. Xinlong Wang
High capacity, selective recovery and separation of precious metals from complex aqueous solutions is essential but remains a challenge in practical applications. Here, we prepared a thiophene-modified aromatic porous organic cage (T-PAC) with high stability for precise recognition and recovery of gold. T-PAC exhibits an outstanding gold uptake capacity of up to 2260 mg/g with fast adsorption kinetics and high adsorption selectivity. It's also used to selectively recover gold from a variety of complex aqueous solutions in a stable and efficient manner. The theoretical calculations and dedicated experiments suggest that anion-π interactions between the [AuCl4]− and TFP fractions on T-PAC cooperated with S/N boning and redox effects play the decisive role in the highly efficient gold recovery performance.
{"title":"Anion-π Interactions on Functionalized Porous Aromatic Cages for Gold Recovery from Complex Aqueous with High Capacity","authors":"Dr. Jianzhu Jiang, Dr. Junning Kou, Dr. Qi Wu, Dr. Li Chen, Prof. Dr. Yun Geng, Prof. Dr. Guogang Shan, Prof. Dr. Chunyi Sun, Prof. Dr. Zhongmin Su, Prof. Dr. Xinlong Wang","doi":"10.1002/ange.202410665","DOIUrl":"https://doi.org/10.1002/ange.202410665","url":null,"abstract":"<p>High capacity, selective recovery and separation of precious metals from complex aqueous solutions is essential but remains a challenge in practical applications. Here, we prepared a thiophene-modified aromatic porous organic cage (T-PAC) with high stability for precise recognition and recovery of gold. T-PAC exhibits an outstanding gold uptake capacity of up to 2260 mg/g with fast adsorption kinetics and high adsorption selectivity. It's also used to selectively recover gold from a variety of complex aqueous solutions in a stable and efficient manner. The theoretical calculations and dedicated experiments suggest that anion-π interactions between the [AuCl<sub>4</sub>]<sup>−</sup> and TFP fractions on T-PAC cooperated with S/N boning and redox effects play the decisive role in the highly efficient gold recovery performance.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143475679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
“If I were not a scientist, I would be an artist. Both science and art strive to explore and explain the physical and emotional world around us… I recharge my batteries by playing chess. It helps me clear my mind and focus entirely on the pieces and strategy of the game…” Find out more about Nikolaos Eleftheriadis in his Introducing… Profile.