首页 > 最新文献

Angewandte Chemie最新文献

英文 中文
Dynamic Modulation of H· to H−&H+ Enabled by Chemical Looping for Hydrogenation-Dehydrogenation Tandem Reaction 氢化-脱氢串联反应中H·到H−&H+的化学环动态调制
Pub Date : 2026-01-05 DOI: 10.1002/ange.202519253
Huifang Wu, Qian Wang, Xuanlin Guo, Xinyang Han, Yang Zhao, Junting Feng

Coupling hydrogenation and dehydrogenation is of great significance, as both are pivotal bond reconstruction modes and co-occur in about 10% of chemical syntheses. However, stoichiometric imbalance often necessitates exogenous hydrogen, which causes “seesaw effect” and inhibits dehydrogenation, challenging thermodynamics and kinetics of tandem process. Herein, we propose a dynamic strategy based on chemical looping to modulate hydrogen species. We designed Run@NiCu-VM catalyst with metal vacancy (VM) induced “electron allocator” properties, enabling reversible electron capture and release via chemical looping, which drives the neutral H· to convert into H&H+, while simultaneously completing electron cycling. The converted H&H+ promote hydrogenation of polar ─C═N bonds in the tandem reaction of 5-hydroxymethylfurfural to 2,5-furandimethanamine, while neutral H· enhances the dehydrogenation rate by avoiding charge repulsion with H&H+ generated from dehydrogenation of ─CH2OH. The coupled hydrogenation-dehydrogenation process achieves a 1.7-fold rate enhancement, delivers 92% 2,5-furandimethanamine yield, outperforms most reported catalysts, and exhibits broad substrate applicability.

偶联加氢和脱氢具有重要的意义,因为两者都是关键的键重建模式,并且在大约10%的化学合成中共同发生。然而,化学计量失衡往往需要外源氢,引起“跷跷板效应”,抑制脱氢,对串联过程的热力学和动力学提出了挑战。在此,我们提出了一种基于化学环的动态策略来调节氢的种类。我们设计了具有金属空位(VM)诱导的“电子分配器”特性的Run@NiCu-VM催化剂,通过化学环实现可逆的电子捕获和释放,驱动中性H·转化为H−& H+,同时完成电子循环。在5-羟甲基糠醛与2,5-呋喃二甲胺的串联反应中,转化的H−&;H+促进极性C = N键的加氢,而中性H·通过避免与CH2OH脱氢产生的H−&;H+的电荷排斥而提高脱氢速率。加氢-脱氢耦合工艺实现了1.7倍的速率提高,2,5-呋喃二甲胺收率达到92%,优于大多数报道的催化剂,并且具有广泛的底物适用性。
{"title":"Dynamic Modulation of H· to H−&H+ Enabled by Chemical Looping for Hydrogenation-Dehydrogenation Tandem Reaction","authors":"Huifang Wu,&nbsp;Qian Wang,&nbsp;Xuanlin Guo,&nbsp;Xinyang Han,&nbsp;Yang Zhao,&nbsp;Junting Feng","doi":"10.1002/ange.202519253","DOIUrl":"https://doi.org/10.1002/ange.202519253","url":null,"abstract":"<p>Coupling hydrogenation and dehydrogenation is of great significance, as both are pivotal bond reconstruction modes and co-occur in about 10% of chemical syntheses. However, stoichiometric imbalance often necessitates exogenous hydrogen, which causes “seesaw effect” and inhibits dehydrogenation, challenging thermodynamics and kinetics of tandem process. Herein, we propose a dynamic strategy based on chemical looping to modulate hydrogen species. We designed Ru<sub>n</sub>@NiCu-V<sub>M</sub> catalyst with metal vacancy (V<sub>M</sub>) induced “electron allocator” properties, enabling reversible electron capture and release via chemical looping, which drives the neutral H· to convert into H<sup>−</sup>&amp;H<sup>+</sup>, while simultaneously completing electron cycling. The converted H<sup>−</sup>&amp;H<sup>+</sup> promote hydrogenation of polar ─C═N bonds in the tandem reaction of 5-hydroxymethylfurfural to 2,5-furandimethanamine, while neutral H· enhances the dehydrogenation rate by avoiding charge repulsion with H<sup>−</sup>&amp;H<sup>+</sup> generated from dehydrogenation of ─CH<sub>2</sub>OH. The coupled hydrogenation-dehydrogenation process achieves a 1.7-fold rate enhancement, delivers 92% 2,5-furandimethanamine yield, outperforms most reported catalysts, and exhibits broad substrate applicability.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intermolekulare, Enantioselektive Nickel-Katalysierte Arylierung von Nicht-Aktivierten C(sp3)–H Bindungen 非活化C(sp3) - H键的分子间对映选择性镍催化芳基化
Pub Date : 2026-01-05 DOI: 10.1002/ange.202523241
Dr. Erwan Brunard, Fengjie Huang, Dr. Àlex Díaz-Jiménez, Sofiya Kostiukovska, Prof. Dr. Joanna Wencel-Delord

Ni: neue Lösung für asymmetrische C(sp3)-H-Aktivierung.

Die stereoselektive Synthese vollständig kohlenstoffsubstituierter quartärer Stereozentren gelingt durch eine enantioselektive C(sp3)-H-Arylierung unter Verwendung eines Ni-Katalysators auf der Basis eines BINOL-Derivaten. Das rationale Design des katalytischen Zyklus erschließt einen neuen Reaktionsweg, der während des stereoselektiven und geschwindigkeitsbestimmenden Metallisierungsschritts effizient chirale Information induzieren kann.

Ni:不对称C(sp3)-H活化的新解。全碳取代季立体中心的立体选择性合成是通过对映选择性C(sp3)- h芳基化,使用基于二醇衍生物的氮催化剂实现的。催化循环的合理设计开辟了一种新的反应途径,可以在立体选择性和速度决定金属化步骤中有效地诱导手性信息。
{"title":"Intermolekulare, Enantioselektive Nickel-Katalysierte Arylierung von Nicht-Aktivierten C(sp3)–H Bindungen","authors":"Dr. Erwan Brunard,&nbsp;Fengjie Huang,&nbsp;Dr. Àlex Díaz-Jiménez,&nbsp;Sofiya Kostiukovska,&nbsp;Prof. Dr. Joanna Wencel-Delord","doi":"10.1002/ange.202523241","DOIUrl":"https://doi.org/10.1002/ange.202523241","url":null,"abstract":"<p>Ni: neue Lösung für asymmetrische C(sp<sup>3</sup>)-H-Aktivierung.</p><p>Die stereoselektive Synthese vollständig kohlenstoffsubstituierter quartärer Stereozentren gelingt durch eine enantioselektive C(sp<sup>3</sup>)-H-Arylierung unter Verwendung eines Ni-Katalysators auf der Basis eines BINOL-Derivaten. Das rationale Design des katalytischen Zyklus erschließt einen neuen Reaktionsweg, der während des stereoselektiven und geschwindigkeitsbestimmenden Metallisierungsschritts effizient chirale Information induzieren kann.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202523241","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy-Transfer-Enabled Copper-Catalyzed Direct Site-Selective Cycloaddition of Unprotected Oximes with Alkenes 能量转移铜催化无保护肟与烯烃的直接选择性环加成反应
Pub Date : 2026-01-05 DOI: 10.1002/ange.202524475
Mengqi Wang, Zhonghui Wu, Prof.Dr. Xiaoming Jie, Xiaofeng Zhang, Prof.Dr. Yaping Shang, Prof.Dr. Weiping Su

While methodologies for N─O bond scission in O-functionalized oximes are well established, the analogous activation of free oximes remains challenging, largely due to the formidable hurdles associated with selective N─O bond cleavage and competing side reactions involving the acidic O─H moiety. Herein, we report a dual photo- and copper-catalyzed strategy that directly promotes homolytic cleavage of the N─O bond in free oximes through photosensitization of oxime-ligated copper complexes, thereby overcoming prior limitations. Mechanistic studies, including full characterization of key copper intermediates, support an energy transfer (EnT) pathway. This distinctive activation mode enables a previously elusive intermolecular cyclization between unprotected oximes and alkenes, delivering valuable 1-pyrrolines with high efficiency.

虽然O功能化氧肟中N─O键断裂的方法已经建立,但自由氧肟的类似活化仍然具有挑战性,这主要是由于与选择性N─O键断裂和涉及酸性O─H部分的竞争性副反应相关的巨大障碍。在此,我们报道了一种双光催化和铜催化的策略,该策略通过肟连接铜配合物的光敏性直接促进了自由肟中N─O键的均裂,从而克服了先前的限制。机制研究,包括关键铜中间体的完整表征,支持能量转移(EnT)途径。这种独特的激活模式使得以前难以捉摸的无保护的肟和烯烃之间的分子间环化,高效地提供有价值的1-吡咯。
{"title":"Energy-Transfer-Enabled Copper-Catalyzed Direct Site-Selective Cycloaddition of Unprotected Oximes with Alkenes","authors":"Mengqi Wang,&nbsp;Zhonghui Wu,&nbsp;Prof.Dr. Xiaoming Jie,&nbsp;Xiaofeng Zhang,&nbsp;Prof.Dr. Yaping Shang,&nbsp;Prof.Dr. Weiping Su","doi":"10.1002/ange.202524475","DOIUrl":"https://doi.org/10.1002/ange.202524475","url":null,"abstract":"<p>While methodologies for N─O bond scission in O-functionalized oximes are well established, the analogous activation of free oximes remains challenging, largely due to the formidable hurdles associated with selective N─O bond cleavage and competing side reactions involving the acidic O─H moiety. Herein, we report a dual photo- and copper-catalyzed strategy that directly promotes homolytic cleavage of the N─O bond in free oximes through photosensitization of oxime-ligated copper complexes, thereby overcoming prior limitations. Mechanistic studies, including full characterization of key copper intermediates, support an energy transfer (EnT) pathway. This distinctive activation mode enables a previously elusive intermolecular cyclization between unprotected oximes and alkenes, delivering valuable 1-pyrrolines with high efficiency.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146154620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sequence-Defined Polysulfates via S(VI)-Fluoride Exchange Iterative Exponential Growth (SuFEx IEG) 通过S(VI)-氟化物交换迭代指数增长(SuFEx IEG)确定序列的多硫酸盐
Pub Date : 2026-01-05 DOI: 10.1002/ange.202525487
Jun Woo Kang, Do Gyun Kim, Se Hwa Park, Prof. Sung You Hong, Prof. Kyoung Taek Kim

Leveraging the high reactivity, modularity, and orthogonality of the S(VI)-fluoride exchange (SuFEx) reaction, a new addition to click chemistry, we report here the SuFEx iterative exponential growth (SuFEx IEG) method for synthesizing uniform polymers and block copolymers (BCPs) with molecular weights up to 21 kDa. The key step in SuFEx IEG was the on-demand, orthogonal activation of the pair of functional groups, the SuFEx-inactive tetrahydropyranyl and imidazylate groups, into SuFEx-active tert-butyldimethylsilyl (TBS) and sulfonyl fluoride. With SuFEx IEG, we demonstrate the synthetic encoding of 16-bit information into the sequence-defined polysulfate of diphenyl sulfide and diphenyl ether. The modular nature of the SuFEx click reaction enabled the synthesis of uniform polysulfates, including hydrophilic oligo(ethylene glycol)-based polysulfates, that served as modules to create block copolymers (BCPs) and triblock copolymers without molecular weight distribution. The chain ends of the polymers and BCPs produced via SuFEx IEG were used to prepare uniform cyclic polymers and BCPs via intramolecular SuFEx cyclization. The SuFEx IEG method provides a robust and versatile approach for precisely constructing uniform linear and cyclic polymers, as well as sequence-defined polymers, across a broad molecular weight range.

利用S(VI)-氟化物交换(SuFEx)反应的高反应性、模块化和正交性,我们在这里报道了SuFEx迭代指数增长(SuFEx IEG)方法,用于合成分子量高达21 kDa的均匀聚合物和嵌段共聚物(bcp)。SuFEx IEG的关键步骤是将SuFEx无活性的四氢吡喃基和咪唑酸基对官能团按需正交活化成SuFEx活性的叔丁基二甲基硅基(TBS)和磺酰氟。利用SuFEx IEG,我们演示了将16位信息合成编码到序列定义的二苯基硫化物和二苯基醚聚硫酸盐中。SuFEx点击反应的模块化特性使其能够合成均匀的聚硫酸盐,包括亲水性低聚(乙二醇)基聚硫酸盐,这些聚硫酸盐可作为模块生成无分子量分布的嵌段共聚物(bcp)和三嵌段共聚物。利用SuFEx IEG合成的聚合物和bcp的链端,通过分子内SuFEx环化制备均匀的环状聚合物和bcp。SuFEx IEG方法提供了一种强大而通用的方法,可以在广泛的分子量范围内精确构建均匀的线性和环状聚合物,以及序列定义的聚合物。
{"title":"Sequence-Defined Polysulfates via S(VI)-Fluoride Exchange Iterative Exponential Growth (SuFEx IEG)","authors":"Jun Woo Kang,&nbsp;Do Gyun Kim,&nbsp;Se Hwa Park,&nbsp;Prof. Sung You Hong,&nbsp;Prof. Kyoung Taek Kim","doi":"10.1002/ange.202525487","DOIUrl":"10.1002/ange.202525487","url":null,"abstract":"<p>Leveraging the high reactivity, modularity, and orthogonality of the S(VI)-fluoride exchange (SuFEx) reaction, a new addition to click chemistry, we report here the SuFEx iterative exponential growth (SuFEx IEG) method for synthesizing uniform polymers and block copolymers (BCPs) with molecular weights up to 21 kDa. The key step in SuFEx IEG was the on-demand, orthogonal activation of the pair of functional groups, the SuFEx-inactive tetrahydropyranyl and imidazylate groups, into SuFEx-active <i>tert</i>-butyldimethylsilyl (TBS) and sulfonyl fluoride. With SuFEx IEG, we demonstrate the synthetic encoding of 16-bit information into the sequence-defined polysulfate of diphenyl sulfide and diphenyl ether. The modular nature of the SuFEx click reaction enabled the synthesis of uniform polysulfates, including hydrophilic oligo(ethylene glycol)-based polysulfates, that served as modules to create block copolymers (BCPs) and triblock copolymers without molecular weight distribution. The chain ends of the polymers and BCPs produced via SuFEx IEG were used to prepare uniform cyclic polymers and BCPs via intramolecular SuFEx cyclization. The SuFEx IEG method provides a robust and versatile approach for precisely constructing uniform linear and cyclic polymers, as well as sequence-defined polymers, across a broad molecular weight range.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146154647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intermolekulare, Enantioselektive Nickel-Katalysierte Arylierung von Nicht-Aktivierten C(sp3)–H Bindungen 非活化C(sp3) - H键的分子间对映选择性镍催化芳基化
Pub Date : 2026-01-05 DOI: 10.1002/ange.202523241
Dr. Erwan Brunard, Fengjie Huang, Dr. Àlex Díaz-Jiménez, Sofiya Kostiukovska, Prof. Dr. Joanna Wencel-Delord

Ni: neue Lösung für asymmetrische C(sp3)-H-Aktivierung.

Die stereoselektive Synthese vollständig kohlenstoffsubstituierter quartärer Stereozentren gelingt durch eine enantioselektive C(sp3)-H-Arylierung unter Verwendung eines Ni-Katalysators auf der Basis eines BINOL-Derivaten. Das rationale Design des katalytischen Zyklus erschließt einen neuen Reaktionsweg, der während des stereoselektiven und geschwindigkeitsbestimmenden Metallisierungsschritts effizient chirale Information induzieren kann.

Ni:不对称C(sp3)-H活化的新解。全碳取代季立体中心的立体选择性合成是通过对映选择性C(sp3)- h芳基化,使用基于二醇衍生物的氮催化剂实现的。催化循环的合理设计开辟了一种新的反应途径,可以在立体选择性和速度决定金属化步骤中有效地诱导手性信息。
{"title":"Intermolekulare, Enantioselektive Nickel-Katalysierte Arylierung von Nicht-Aktivierten C(sp3)–H Bindungen","authors":"Dr. Erwan Brunard,&nbsp;Fengjie Huang,&nbsp;Dr. Àlex Díaz-Jiménez,&nbsp;Sofiya Kostiukovska,&nbsp;Prof. Dr. Joanna Wencel-Delord","doi":"10.1002/ange.202523241","DOIUrl":"https://doi.org/10.1002/ange.202523241","url":null,"abstract":"<p>Ni: neue Lösung für asymmetrische C(sp<sup>3</sup>)-H-Aktivierung.</p><p>Die stereoselektive Synthese vollständig kohlenstoffsubstituierter quartärer Stereozentren gelingt durch eine enantioselektive C(sp<sup>3</sup>)-H-Arylierung unter Verwendung eines Ni-Katalysators auf der Basis eines BINOL-Derivaten. Das rationale Design des katalytischen Zyklus erschließt einen neuen Reaktionsweg, der während des stereoselektiven und geschwindigkeitsbestimmenden Metallisierungsschritts effizient chirale Information induzieren kann.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202523241","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Modulation of H· to H−&H+ Enabled by Chemical Looping for Hydrogenation-Dehydrogenation Tandem Reaction 氢化-脱氢串联反应中H·到H−&H+的化学环动态调制
Pub Date : 2026-01-05 DOI: 10.1002/ange.202519253
Huifang Wu, Qian Wang, Xuanlin Guo, Xinyang Han, Yang Zhao, Junting Feng

Coupling hydrogenation and dehydrogenation is of great significance, as both are pivotal bond reconstruction modes and co-occur in about 10% of chemical syntheses. However, stoichiometric imbalance often necessitates exogenous hydrogen, which causes “seesaw effect” and inhibits dehydrogenation, challenging thermodynamics and kinetics of tandem process. Herein, we propose a dynamic strategy based on chemical looping to modulate hydrogen species. We designed Run@NiCu-VM catalyst with metal vacancy (VM) induced “electron allocator” properties, enabling reversible electron capture and release via chemical looping, which drives the neutral H· to convert into H&H+, while simultaneously completing electron cycling. The converted H&H+ promote hydrogenation of polar ─C═N bonds in the tandem reaction of 5-hydroxymethylfurfural to 2,5-furandimethanamine, while neutral H· enhances the dehydrogenation rate by avoiding charge repulsion with H&H+ generated from dehydrogenation of ─CH2OH. The coupled hydrogenation-dehydrogenation process achieves a 1.7-fold rate enhancement, delivers 92% 2,5-furandimethanamine yield, outperforms most reported catalysts, and exhibits broad substrate applicability.

偶联加氢和脱氢具有重要的意义,因为两者都是关键的键重建模式,并且在大约10%的化学合成中共同发生。然而,化学计量失衡往往需要外源氢,引起“跷跷板效应”,抑制脱氢,对串联过程的热力学和动力学提出了挑战。在此,我们提出了一种基于化学环的动态策略来调节氢的种类。我们设计了具有金属空位(VM)诱导的“电子分配器”特性的Run@NiCu-VM催化剂,通过化学环实现可逆的电子捕获和释放,驱动中性H·转化为H−& H+,同时完成电子循环。在5-羟甲基糠醛与2,5-呋喃二甲胺的串联反应中,转化的H−&;H+促进极性C = N键的加氢,而中性H·通过避免与CH2OH脱氢产生的H−&;H+的电荷排斥而提高脱氢速率。加氢-脱氢耦合工艺实现了1.7倍的速率提高,2,5-呋喃二甲胺收率达到92%,优于大多数报道的催化剂,并且具有广泛的底物适用性。
{"title":"Dynamic Modulation of H· to H−&H+ Enabled by Chemical Looping for Hydrogenation-Dehydrogenation Tandem Reaction","authors":"Huifang Wu,&nbsp;Qian Wang,&nbsp;Xuanlin Guo,&nbsp;Xinyang Han,&nbsp;Yang Zhao,&nbsp;Junting Feng","doi":"10.1002/ange.202519253","DOIUrl":"https://doi.org/10.1002/ange.202519253","url":null,"abstract":"<p>Coupling hydrogenation and dehydrogenation is of great significance, as both are pivotal bond reconstruction modes and co-occur in about 10% of chemical syntheses. However, stoichiometric imbalance often necessitates exogenous hydrogen, which causes “seesaw effect” and inhibits dehydrogenation, challenging thermodynamics and kinetics of tandem process. Herein, we propose a dynamic strategy based on chemical looping to modulate hydrogen species. We designed Ru<sub>n</sub>@NiCu-V<sub>M</sub> catalyst with metal vacancy (V<sub>M</sub>) induced “electron allocator” properties, enabling reversible electron capture and release via chemical looping, which drives the neutral H· to convert into H<sup>−</sup>&amp;H<sup>+</sup>, while simultaneously completing electron cycling. The converted H<sup>−</sup>&amp;H<sup>+</sup> promote hydrogenation of polar ─C═N bonds in the tandem reaction of 5-hydroxymethylfurfural to 2,5-furandimethanamine, while neutral H· enhances the dehydrogenation rate by avoiding charge repulsion with H<sup>−</sup>&amp;H<sup>+</sup> generated from dehydrogenation of ─CH<sub>2</sub>OH. The coupled hydrogenation-dehydrogenation process achieves a 1.7-fold rate enhancement, delivers 92% 2,5-furandimethanamine yield, outperforms most reported catalysts, and exhibits broad substrate applicability.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy-Transfer-Enabled Copper-Catalyzed Direct Site-Selective Cycloaddition of Unprotected Oximes with Alkenes 能量转移铜催化无保护肟与烯烃的直接选择性环加成反应
Pub Date : 2026-01-05 DOI: 10.1002/ange.202524475
Mengqi Wang, Zhonghui Wu, Prof.Dr. Xiaoming Jie, Xiaofeng Zhang, Prof.Dr. Yaping Shang, Prof.Dr. Weiping Su

While methodologies for N─O bond scission in O-functionalized oximes are well established, the analogous activation of free oximes remains challenging, largely due to the formidable hurdles associated with selective N─O bond cleavage and competing side reactions involving the acidic O─H moiety. Herein, we report a dual photo- and copper-catalyzed strategy that directly promotes homolytic cleavage of the N─O bond in free oximes through photosensitization of oxime-ligated copper complexes, thereby overcoming prior limitations. Mechanistic studies, including full characterization of key copper intermediates, support an energy transfer (EnT) pathway. This distinctive activation mode enables a previously elusive intermolecular cyclization between unprotected oximes and alkenes, delivering valuable 1-pyrrolines with high efficiency.

虽然O功能化氧肟中N─O键断裂的方法已经建立,但自由氧肟的类似活化仍然具有挑战性,这主要是由于与选择性N─O键断裂和涉及酸性O─H部分的竞争性副反应相关的巨大障碍。在此,我们报道了一种双光催化和铜催化的策略,该策略通过肟连接铜配合物的光敏性直接促进了自由肟中N─O键的均裂,从而克服了先前的限制。机制研究,包括关键铜中间体的完整表征,支持能量转移(EnT)途径。这种独特的激活模式使得以前难以捉摸的无保护的肟和烯烃之间的分子间环化,高效地提供有价值的1-吡咯。
{"title":"Energy-Transfer-Enabled Copper-Catalyzed Direct Site-Selective Cycloaddition of Unprotected Oximes with Alkenes","authors":"Mengqi Wang,&nbsp;Zhonghui Wu,&nbsp;Prof.Dr. Xiaoming Jie,&nbsp;Xiaofeng Zhang,&nbsp;Prof.Dr. Yaping Shang,&nbsp;Prof.Dr. Weiping Su","doi":"10.1002/ange.202524475","DOIUrl":"https://doi.org/10.1002/ange.202524475","url":null,"abstract":"<p>While methodologies for N─O bond scission in O-functionalized oximes are well established, the analogous activation of free oximes remains challenging, largely due to the formidable hurdles associated with selective N─O bond cleavage and competing side reactions involving the acidic O─H moiety. Herein, we report a dual photo- and copper-catalyzed strategy that directly promotes homolytic cleavage of the N─O bond in free oximes through photosensitization of oxime-ligated copper complexes, thereby overcoming prior limitations. Mechanistic studies, including full characterization of key copper intermediates, support an energy transfer (EnT) pathway. This distinctive activation mode enables a previously elusive intermolecular cyclization between unprotected oximes and alkenes, delivering valuable 1-pyrrolines with high efficiency.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146154815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailored Hierarchical Bonding Networks Derive Ultra-Stable Underwater Adhesion in Harsh Environments 定制的分层键合网络在恶劣环境下获得超稳定的水下粘附
Pub Date : 2026-01-05 DOI: 10.1002/ange.202521651
Shuang-Mei He, Nan Jiang, Lin Zhang, Jian-Wen Ma, Hao Chen, Zhi-Wei Zeng, Fu-Rong Zeng, Bo-Wen Liu, Fang Wang, Jie Zhang, Yu-Zhong Wang, Hai-Bo Zhao

The development of high-performance water-resistant and underwater adhesives is critical for advancing underwater technologies, yet achieving robust functional adhesion with long-term durability in complex underwater environments remains a significant challenge. Here, we present a hierarchical bonding network strategy to realize stable adhesion under harsh underwater conditions. By engineering a cross-linked polysiloxane backbone embedded with dense active interaction sites, including hydroxyl groups, benzene rings, cations, and hydrophobic moieties, we create synergistic multiscale interactions that amplify both cohesion and interfacial adhesion. The optimized adhesive achieves a strong bonding strength of 12.2 MPa and an underwater adhesion of 3.4 MPa on steel substrates and retains stability in corrosive underwater environments (acidic, alkaline, and saline solutions) over extended periods. It further demonstrates exceptional thermal resilience, maintaining functionality across temperatures from -196 to 150 °C. Integrating quaternary ammonium cations with long-chain alkanes endows the material with potent antibacterial activity (≥99.9999% inhibition) and the highest antifungal grade. This work provides a new avenue for designing high-performance multifunctional adhesives with strong adhesion, long-term durability, extreme temperature resistance, and antimicrobial properties, offering broad potential for applications in demanding underwater environments.

高性能防水和水下胶粘剂的开发对于推进水下技术的发展至关重要,但在复杂的水下环境中实现长期耐用的强大功能粘合仍然是一个重大挑战。在这里,我们提出了一种分层粘合网络策略,以实现在恶劣的水下条件下的稳定粘合。通过设计一个交联的聚硅氧烷骨架,嵌入密集的活性相互作用位点,包括羟基、苯环、阳离子和疏水部分,我们创造了协同的多尺度相互作用,增强了内聚和界面粘附。优化后的胶粘剂在钢基体上的粘接强度为12.2 MPa,水下附着力为3.4 MPa,在腐蚀性水下环境(酸性、碱性和盐水溶液)中长时间保持稳定性。它进一步展示了卓越的热弹性,在-196至150°C的温度范围内保持功能。将季铵盐阳离子与长链烷烃结合,使该材料具有较强的抗菌活性(抑制率≥99.9999%)和最高的抗菌等级。这项工作为设计具有强附着力、长期耐久性、耐极端温度和抗菌性能的高性能多功能胶粘剂提供了新的途径,在苛刻的水下环境中具有广泛的应用潜力。
{"title":"Tailored Hierarchical Bonding Networks Derive Ultra-Stable Underwater Adhesion in Harsh Environments","authors":"Shuang-Mei He,&nbsp;Nan Jiang,&nbsp;Lin Zhang,&nbsp;Jian-Wen Ma,&nbsp;Hao Chen,&nbsp;Zhi-Wei Zeng,&nbsp;Fu-Rong Zeng,&nbsp;Bo-Wen Liu,&nbsp;Fang Wang,&nbsp;Jie Zhang,&nbsp;Yu-Zhong Wang,&nbsp;Hai-Bo Zhao","doi":"10.1002/ange.202521651","DOIUrl":"https://doi.org/10.1002/ange.202521651","url":null,"abstract":"<p>The development of high-performance water-resistant and underwater adhesives is critical for advancing underwater technologies, yet achieving robust functional adhesion with long-term durability in complex underwater environments remains a significant challenge. Here, we present a hierarchical bonding network strategy to realize stable adhesion under harsh underwater conditions. By engineering a cross-linked polysiloxane backbone embedded with dense active interaction sites, including hydroxyl groups, benzene rings, cations, and hydrophobic moieties, we create synergistic multiscale interactions that amplify both cohesion and interfacial adhesion. The optimized adhesive achieves a strong bonding strength of 12.2 MPa and an underwater adhesion of 3.4 MPa on steel substrates and retains stability in corrosive underwater environments (acidic, alkaline, and saline solutions) over extended periods. It further demonstrates exceptional thermal resilience, maintaining functionality across temperatures from -196 to 150 °C. Integrating quaternary ammonium cations with long-chain alkanes endows the material with potent antibacterial activity (≥99.9999% inhibition) and the highest antifungal grade. This work provides a new avenue for designing high-performance multifunctional adhesives with strong adhesion, long-term durability, extreme temperature resistance, and antimicrobial properties, offering broad potential for applications in demanding underwater environments.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CO-Induced Reconstruction of Cu–ZnZrOx Catalyst Enables Synergistic CO2/CO Co-Hydrogenation to Methanol Cu-ZnZrOx催化剂CO诱导重构实现CO /CO协同加氢制甲醇
Pub Date : 2026-01-05 DOI: 10.1002/ange.202525886
Xiaojing Wu, Yanqing Liu, Jianian Cheng, Jieyun Zhang, Zhihe Mao, Ruihui Zhang, Bin Wang, Shirui Cui, Hao Wang, Jing Du, Zelong Li, Can Li

Catalytically active phase depends strongly on reaction conditions. In CO2 hydrogenation, efforts have largely emphasized CO2 activation while overlooking how to design active phase for the co-conversion of CO2 and the kinetically distinct byproduct CO. Here, it is found that adding CO to CO2–H2 feeds boosts methanol productivity by up to 2.2-fold via a pronounced synergistic promotion of both CO2 and CO hydrogenation over a Cu–ZnZrOx catalyst. In situ spectroscopy reveals that CO accelerates Zn reduction and migration onto Cu, increasing Zn0/Cu ratio, Zn2+/Cu, and Cu+/Cu fraction, while reducing exposed surface Cu from 42% to 19%. This CO-induced restructuring enriches Zn exposure, drives CuZn alloy formation, and creates abundant CuZn alloy–ZnOx interfaces that stabilize Cu+ sites. These interfaces enable a cooperative dual-pathway mechanism: CO2 is hydrogenated mainly via the formate route at alloy–ZnOx sites, whereas CO follows the formyl route on Cu sites. Additionally, in situ-formed water accelerates conversion of the rate-determining CH3O* intermediate in the CO pathway. Together, CO-driven evolution of active sites, synergistic dual-pathway catalysis, and water-assisted promotion yield highly efficient methanol synthesis from mixed CO–CO2 feeds.

催化活性相在很大程度上取决于反应条件。在二氧化碳加氢过程中,人们在很大程度上强调了二氧化碳的活化,而忽略了如何为二氧化碳和动力学上不同的副产物CO的共转化设计活性相。在这里,研究发现,在Cu-ZnZrOx催化剂上,向CO2 - h2进料中添加CO,通过显著的协同促进CO2和CO的加氢,可以提高甲醇生产率高达2.2倍。原位光谱分析表明,CO加速了Zn的还原和向Cu的迁移,提高了Zn0/Cu比、Zn2+/Cu和Cu+/Cu分数,同时将暴露表面Cu从42%降低到19%。这种co诱导的结构调整丰富了Zn的暴露,驱动了CuZn合金的形成,并创造了丰富的CuZn合金- znox界面,稳定了Cu+位。这些界面实现了一种合作的双途径机制:CO在合金- znox位点上主要通过甲酸途径氢化,而CO在Cu位点上则遵循甲酸途径氢化。此外,原位形成的水加速了CO途径中决定速率的中间体ch30 *的转化。co驱动的活性位点进化、协同双途径催化和水辅助促进共同实现了CO-CO2混合原料的高效甲醇合成。
{"title":"CO-Induced Reconstruction of Cu–ZnZrOx Catalyst Enables Synergistic CO2/CO Co-Hydrogenation to Methanol","authors":"Xiaojing Wu,&nbsp;Yanqing Liu,&nbsp;Jianian Cheng,&nbsp;Jieyun Zhang,&nbsp;Zhihe Mao,&nbsp;Ruihui Zhang,&nbsp;Bin Wang,&nbsp;Shirui Cui,&nbsp;Hao Wang,&nbsp;Jing Du,&nbsp;Zelong Li,&nbsp;Can Li","doi":"10.1002/ange.202525886","DOIUrl":"10.1002/ange.202525886","url":null,"abstract":"<p>Catalytically active phase depends strongly on reaction conditions. In CO<sub>2</sub> hydrogenation, efforts have largely emphasized CO<sub>2</sub> activation while overlooking how to design active phase for the co-conversion of CO<sub>2</sub> and the kinetically distinct byproduct CO. Here, it is found that adding CO to CO<sub>2</sub>–H<sub>2</sub> feeds boosts methanol productivity by up to 2.2-fold via a pronounced synergistic promotion of both CO<sub>2</sub> and CO hydrogenation over a Cu–ZnZrO<i><sub>x</sub></i> catalyst. In situ spectroscopy reveals that CO accelerates Zn reduction and migration onto Cu, increasing Zn<sup>0</sup>/Cu ratio, Zn<sup>2+</sup>/Cu, and Cu<sup>+</sup>/Cu fraction, while reducing exposed surface Cu from 42% to 19%. This CO-induced restructuring enriches Zn exposure, drives CuZn alloy formation, and creates abundant CuZn alloy–ZnO<i><sub>x</sub></i> interfaces that stabilize Cu<sup>+</sup> sites. These interfaces enable a cooperative dual-pathway mechanism: CO<sub>2</sub> is hydrogenated mainly via the formate route at alloy–ZnO<i><sub>x</sub></i> sites, whereas CO follows the formyl route on Cu sites. Additionally, in situ-formed water accelerates conversion of the rate-determining CH<sub>3</sub>O<sup>*</sup> intermediate in the CO pathway. Together, CO-driven evolution of active sites, synergistic dual-pathway catalysis, and water-assisted promotion yield highly efficient methanol synthesis from mixed CO–CO<sub>2</sub> feeds.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146154646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Doughnut-Like Eu30 Catalyst for CO2 Photoreduction with Turnover Numbers Over Ten Million 一种周转量超过千万的环形Eu30型CO2光还原催化剂
Pub Date : 2026-01-05 DOI: 10.1002/ange.202525260
Dr. Ying Lu, Prof. Hua-Hong Zou, Prof. Jia-Wei Wang, Prof. Zhong-Hong Zhu, Prof. Fu-Pei Liang, Prof. Dongcheng Liu

Polynuclear metal clusters can be potentially high-performance catalysts for the CO2 reduction owing to the unique spatial structures among multiple active centers. Herein, two 30-nuclear doughnut-like lanthanide clusters (Eu30 and Dy30) were synthesized via in situ tandem reaction following a stepwise annular growth mechanism. In contrast to the Dy-based analog, Eu30 serves as a high-performance catalyst in visible-light-driven CO2-to-CO conversion with 98% selectivity and a record-high turnover number reaching 1.720 × 107, a rare case with only lanthanide metals as the active centers. Experimental and computational results indicate that the excellent performance of Eu30, as the first example of pure lanthanide cluster catalyst, can be attributed to its high redox activity with an appropriate LUMO energy level.

多核金属团簇由于其在多个活性中心间独特的空间结构,可以成为潜在的高性能CO2还原催化剂。本文通过原位串联反应,按照逐步环形生长机制合成了两个30核的甜甜圈状镧系元素团簇(Eu30和Dy30)。与基于镝的类似物相比,Eu30作为一种高性能催化剂,在可见光驱动的co2 - co转化中具有98%的选择性和创纪录的高周转率,达到1.720 × 107,这是仅镧系金属作为活性中心的罕见情况。实验和计算结果表明,Eu30作为纯镧系簇催化剂的第一个例子,其优异的性能可归因于其具有较高的氧化还原活性和适当的LUMO能级。
{"title":"A Doughnut-Like Eu30 Catalyst for CO2 Photoreduction with Turnover Numbers Over Ten Million","authors":"Dr. Ying Lu,&nbsp;Prof. Hua-Hong Zou,&nbsp;Prof. Jia-Wei Wang,&nbsp;Prof. Zhong-Hong Zhu,&nbsp;Prof. Fu-Pei Liang,&nbsp;Prof. Dongcheng Liu","doi":"10.1002/ange.202525260","DOIUrl":"10.1002/ange.202525260","url":null,"abstract":"<p>Polynuclear metal clusters can be potentially high-performance catalysts for the CO<sub>2</sub> reduction owing to the unique spatial structures among multiple active centers. Herein, two 30-nuclear doughnut-like lanthanide clusters (<b>Eu30</b> and <b>Dy30</b>) were synthesized via in situ tandem reaction following a stepwise annular growth mechanism. In contrast to the Dy-based analog, <b>Eu30</b> serves as a high-performance catalyst in visible-light-driven CO<sub>2</sub>-to-CO conversion with 98% selectivity and a record-high turnover number reaching 1.720 × 10<sup>7</sup>, a rare case with only lanthanide metals as the active centers. Experimental and computational results indicate that the excellent performance of <b>Eu30</b>, as the first example of pure lanthanide cluster catalyst, can be attributed to its high redox activity with an appropriate LUMO energy level.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146154621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Angewandte Chemie
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1