In recent years, important efforts have been made to elucidate the mechanisms of epigenetic regulation, and one of the most studied epigenetic modifications was DNA methylation/demethylation. In this study, the voltammetric behaviour of 5-hydroxymethylcytosine was studied in the pH range of 2.00–11.00 using pencil graphite electrodes by differential pulse and square wave voltammetry. The effect of buffer solutions, scan rate, square wave voltammetry parameters, and stripping conditions on the voltammetric responses of 5-hydroxymethylcytosine were performed. The electrochemical oxidation process of 5-hydroxymethylcytosine on the pencil graphite electrode was realized under adsorption control. In human urine, by square wave stripping voltammetry, 5-hydroxymethylcytosine was quantified in a concentration range of 1.00 × 10−5 M-2.00 × 10−4 M. The proposed method was tested in the presence of cytosine in human urine. The recovery value of 5-hydroxymethylcytosine was found to be 99.57 %.
The integration of fiber optics and plasmonic sensors is promising to improve the practical usability over conventional bulky sensors and systems. To achieve high sensitivity, it typically requires fabrication of well-defined plasmonic nanostructures on optical fibers, which greatly increases the cost and complexity of the sensors. Here, we present a fiber-optic sensor system by using chemical absorption of gold nanoparticles and a replaceable configuration. By functioning gold nanoparticles with aptamers or antibodies, we demonstrate the applications in chemical sensing using two different modes. Measuring shift in resonance wavelength enables the Pb2+ detection with a high linearity and a limit of detection of 0.097 nM, and measuring absorption peak amplitude enables the detection of E. coli in urinary tract infection with a dynamic range between 103 to 108 CFU/mL. The high sensitivity, simple fabrication and disposability of this sensing approach could pave the way for point-of-care testing with fiber-optic plasmonic sensors.
Our study delved into the intricate dynamics of antifungal susceptibility testing for Candida spp., employing a Design of Experiments approach. We systematically investigated the influence of pH, temperature, inoculum size, and glucose concentration on both growth patterns and inhibitory concentrations of Candida spp. Our findings underscore the nuanced interplay between these factors, revealing significant impacts on susceptibility outcomes. Notably, even minor adjustments in these parameters yielded substantial variations in growth and inhibitory concentrations, underscoring the critical importance of meticulous control over growth conditions in antifungal susceptibility testing protocols. Each Candida isolates exhibited unique susceptibility profiles, necessitating tailored culture conditions for accurate testing. Our study sheds light on the variability inherent in Candida spp. growth patterns and emphasizes the need for standardized protocols to ensure consistency across laboratories. By leveraging the design of experiments, our research provides a systematic framework for unraveling the complexities of antifungal susceptibility testing, offering valuable insights for optimizing testing protocols and informing clinical decision-making in antifungal treatment. These findings represent a significant step towards enhancing the efficacy and reliability of antifungal susceptibility testing in clinical practice.