Yun Yang, Lei Jia, Ziheng Wang, Jie Suo, Xiaorui Yang, Shuping Xue, Yingying Zhang, Hui Li, Tingting Cai
Efficient monitoring and recognition of movement are crucial in enhancing athletic performance. Traditional methods have limitations in terms of high site requirements and power consumption, making them unsuitable for long-term tracking and monitoring. A potential solution to low-power monitoring of body area networks is triboelectric sensors. However, the current analysis method for badminton triboelectric sensing data is relatively simple, while flexible, triboelectric sensors based on 3D printing face issues such as discomfort when joints are bent or twisted in a large range. In light of this, a flexible arch-shaped triboelectric sensor based on 3D printing (FA-Sensor) is proposed. By combining neural network algorithms with the signal acquisition module and the master computer, an intelligent multi-sensor node system for badminton monitoring is established. The FA-Sensor exhibits high sensitivity to bending and twisting motions due to its elastic TPE shell and arched shape design. It minimizes interference with human motion during bending (10°–150°) or twisting (20°–100°) over a wide range. The peak output voltage of the FA-Sensor demonstrates a clear functional relationship with the bending angle, exhibiting piecewise sensitivities of 7.98 and 29.28 mV/°, respectively. For seven different parts of the human body, it can be quickly customized to different sizes, with stable and repeatable response outputs. In application, the badminton sports monitoring system enables real-time feedback and recognition of four typical technical movements, achieving a recognition accuracy rate of 97.2%. The system enables athletes to analyze and enhance badminton technology while also exhibiting promising potential for application in other intelligent sports domains.
有效监测和识别运动对提高运动成绩至关重要。传统方法存在场地要求高和功耗大的局限性,不适合长期跟踪和监测。三电传感器是体区网络低功耗监测的一个潜在解决方案。然而,目前羽毛球三电感应数据的分析方法相对简单,而基于 3D 打印技术的柔性三电感应器则面临关节大范围弯曲或扭曲时的不适等问题。有鉴于此,我们提出了一种基于 3D 打印的柔性拱形三电传感器(FA-Sensor)。通过将神经网络算法与信号采集模块和主控计算机相结合,建立了用于羽毛球运动监测的智能多传感器节点系统。FA 传感器采用弹性 TPE 外壳和弧形设计,对弯曲和扭转运动具有高灵敏度。它能在较大范围内最大限度地减少弯曲(10°-150°)或扭转(20°-100°)时对人体运动的干扰。FA 传感器的峰值输出电压与弯曲角度有明显的功能关系,片状灵敏度分别为 7.98 和 29.28 mV/°。对于人体的七个不同部位,它可以根据不同的尺寸快速定制,并具有稳定和可重复的响应输出。在应用中,羽毛球运动监测系统可对四个典型技术动作进行实时反馈和识别,识别准确率达到 97.2%。该系统在帮助运动员分析和提升羽毛球技术的同时,也展现出在其他智能运动领域的应用潜力。
{"title":"Flexible arch-shaped triboelectric sensor based on 3D printing for badminton movement monitoring and intelligent recognition of technical movements","authors":"Yun Yang, Lei Jia, Ziheng Wang, Jie Suo, Xiaorui Yang, Shuping Xue, Yingying Zhang, Hui Li, Tingting Cai","doi":"10.1063/5.0219223","DOIUrl":"https://doi.org/10.1063/5.0219223","url":null,"abstract":"Efficient monitoring and recognition of movement are crucial in enhancing athletic performance. Traditional methods have limitations in terms of high site requirements and power consumption, making them unsuitable for long-term tracking and monitoring. A potential solution to low-power monitoring of body area networks is triboelectric sensors. However, the current analysis method for badminton triboelectric sensing data is relatively simple, while flexible, triboelectric sensors based on 3D printing face issues such as discomfort when joints are bent or twisted in a large range. In light of this, a flexible arch-shaped triboelectric sensor based on 3D printing (FA-Sensor) is proposed. By combining neural network algorithms with the signal acquisition module and the master computer, an intelligent multi-sensor node system for badminton monitoring is established. The FA-Sensor exhibits high sensitivity to bending and twisting motions due to its elastic TPE shell and arched shape design. It minimizes interference with human motion during bending (10°–150°) or twisting (20°–100°) over a wide range. The peak output voltage of the FA-Sensor demonstrates a clear functional relationship with the bending angle, exhibiting piecewise sensitivities of 7.98 and 29.28 mV/°, respectively. For seven different parts of the human body, it can be quickly customized to different sizes, with stable and repeatable response outputs. In application, the badminton sports monitoring system enables real-time feedback and recognition of four typical technical movements, achieving a recognition accuracy rate of 97.2%. The system enables athletes to analyze and enhance badminton technology while also exhibiting promising potential for application in other intelligent sports domains.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"24 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141770260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeSn materials with Sn contents ranging between 0% and 11% have been successfully grown by using Ge2H6 and SnCl4 in a hot-wall UHV-CVD system at low reaction pressures of 0.2–0.4 Torr. Both fully strained and partially relaxed materials have been produced. It was found that the materials were of high crystallinity as evidenced by few threading dislocations from cross-sectional TEM. Photoluminescence studies have shown that the PL spectra shift to longer wavelengths, and the PL intensity increases exponentially as the Sn contents increase. The photoemission cutoff for a 9.5% Sn sample is beyond 2600 nm, and low temperature PL measurements have confirmed that this sample is already in the direct gap material regime. Prototype photoconductor devices were fabricated with a partially strained 5% Sn sample, showing much smaller dark currents and similar spectral coverage as compared to a fully strained 7.8% Sn device reported in the literature. The reported technical route has provided a new path toward high quality, low cost GeSn epitaxy, and will contribute to the development of group IV optoelectronics.
{"title":"High-quality Ge1−xSnx (x = 0–0.11) realized by UHV-CVD using Ge2H6 and SnCl4: Materials growth, structural/optical properties, and prototype IR photodetectors","authors":"Changjiang Xie, Yue Li, Zhengjie Wu, Songsong Wu, Yixin Wang, Guangyang Lin, Cheng Li, Hui Cong, Chi Xu, Chunlai Xue","doi":"10.1063/5.0213230","DOIUrl":"https://doi.org/10.1063/5.0213230","url":null,"abstract":"GeSn materials with Sn contents ranging between 0% and 11% have been successfully grown by using Ge2H6 and SnCl4 in a hot-wall UHV-CVD system at low reaction pressures of 0.2–0.4 Torr. Both fully strained and partially relaxed materials have been produced. It was found that the materials were of high crystallinity as evidenced by few threading dislocations from cross-sectional TEM. Photoluminescence studies have shown that the PL spectra shift to longer wavelengths, and the PL intensity increases exponentially as the Sn contents increase. The photoemission cutoff for a 9.5% Sn sample is beyond 2600 nm, and low temperature PL measurements have confirmed that this sample is already in the direct gap material regime. Prototype photoconductor devices were fabricated with a partially strained 5% Sn sample, showing much smaller dark currents and similar spectral coverage as compared to a fully strained 7.8% Sn device reported in the literature. The reported technical route has provided a new path toward high quality, low cost GeSn epitaxy, and will contribute to the development of group IV optoelectronics.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"25 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141784985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Perovskite semiconductors have achieved great success during the last decades in the application of solar cells, light-emitting diodes, and photodiodes. Developing strategies to pattern perovskites with high-resolution is crucial to broaden the application scenarios of perovskite displays and on-chip lighting. However, the widely used lithography procedure has the problem of high-cost and complexity. In this study, we demonstrate a method to pattern a luminescent perovskite-acrylic polymer composite that is prepared by direct injection at room temperature. This strategy uses standard photoresists and UV lithography at room temperature, and then the pattern in the photoresists can be easily transferred to the perovskite-acrylic polymer composite. Finally, we can obtain high-quality micron-scale features. Furthermore, we demonstrate the universality of this strategy by adapting perovskite with different color emissions into the composite and patterning it using the same procedure. Another advantage of this patternable perovskite-acrylic polymer composite is its superb water-repellent properties, which are believed to be of great potential in underwater applications.
{"title":"Patterning luminescent and stable perovskite-acrylic polymer composites via a convenient strategy","authors":"Jinxin Guo, Jing Wang, Shuang Chen, Peige Tong, Yifei Liu, Yiwei Zhang, Xinping Zhang","doi":"10.1063/5.0223656","DOIUrl":"https://doi.org/10.1063/5.0223656","url":null,"abstract":"Perovskite semiconductors have achieved great success during the last decades in the application of solar cells, light-emitting diodes, and photodiodes. Developing strategies to pattern perovskites with high-resolution is crucial to broaden the application scenarios of perovskite displays and on-chip lighting. However, the widely used lithography procedure has the problem of high-cost and complexity. In this study, we demonstrate a method to pattern a luminescent perovskite-acrylic polymer composite that is prepared by direct injection at room temperature. This strategy uses standard photoresists and UV lithography at room temperature, and then the pattern in the photoresists can be easily transferred to the perovskite-acrylic polymer composite. Finally, we can obtain high-quality micron-scale features. Furthermore, we demonstrate the universality of this strategy by adapting perovskite with different color emissions into the composite and patterning it using the same procedure. Another advantage of this patternable perovskite-acrylic polymer composite is its superb water-repellent properties, which are believed to be of great potential in underwater applications.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"9 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Arif, Junaid Riaz, Amina Bibi, Hongran Yang, Ting Zhu
This work describes a low-cost wet chemical synthesis technique to produce TiN–ZnS nanocomposites suitable for high energy density supercapacitors. Ti, Zn, N, and S elements in the synthesized materials were verified using comprehensive morphological, structural, and surface chemical investigations. Due to improved electric conductivity and electroactivity, this TiN–ZnS nanocomposite electrode exhibited excellent capacitance and charge transport kinetics, outperforming individual TiN and ZnS electrodes in electrochemical performance. The TiN–ZnS || MnO2 electrode configuration in an asymmetric supercapacitor system exhibited a high energy density of 74.13 Wh kg−1 and an exceptional power density of 7648 W kg−1 at a current density of 9 A g−1. The TiN–ZnS electrode also showed a remarkable retention rate of 96.8% even after 10 000 cycles. This work highlights the potential of the TiN–ZnS composite as a high-performance electrode for supercapacitors.
本研究介绍了一种低成本湿化学合成技术,用于生产适用于高能量密度超级电容器的 TiN-ZnS 纳米复合材料。通过全面的形态、结构和表面化学研究,验证了合成材料中的钛、锌、N 和 S 元素。由于电导率和电活性的提高,这种 TiN-ZnS 纳米复合电极表现出优异的电容和电荷传输动力学性能,在电化学性能方面优于单独的 TiN 和 ZnS 电极。非对称超级电容器系统中的 TiN-ZnS || MnO2 电极配置在电流密度为 9 A g-1 时表现出 74.13 Wh kg-1 的高能量密度和 7648 W kg-1 的超高功率密度。此外,TiN-ZnS 电极在经过 10 000 次循环后仍显示出 96.8% 的出色保持率。这项工作凸显了 TiN-ZnS 复合材料作为超级电容器高性能电极的潜力。
{"title":"Enhancing supercapacitor energy density by TiN–ZnS composites unveiled as a promising electrode","authors":"Muhammad Arif, Junaid Riaz, Amina Bibi, Hongran Yang, Ting Zhu","doi":"10.1063/5.0221353","DOIUrl":"https://doi.org/10.1063/5.0221353","url":null,"abstract":"This work describes a low-cost wet chemical synthesis technique to produce TiN–ZnS nanocomposites suitable for high energy density supercapacitors. Ti, Zn, N, and S elements in the synthesized materials were verified using comprehensive morphological, structural, and surface chemical investigations. Due to improved electric conductivity and electroactivity, this TiN–ZnS nanocomposite electrode exhibited excellent capacitance and charge transport kinetics, outperforming individual TiN and ZnS electrodes in electrochemical performance. The TiN–ZnS || MnO2 electrode configuration in an asymmetric supercapacitor system exhibited a high energy density of 74.13 Wh kg−1 and an exceptional power density of 7648 W kg−1 at a current density of 9 A g−1. The TiN–ZnS electrode also showed a remarkable retention rate of 96.8% even after 10 000 cycles. This work highlights the potential of the TiN–ZnS composite as a high-performance electrode for supercapacitors.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"19 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study introduces the concept of nonlocal effect into a monoatomic mass–spring periodic structure, leading to unique characteristics of dispersion curves. Through the incorporation of the second neighboring nonlocal effect, we have observed the emergence of negative group velocity and specific points with zero group velocity (ZGV) within the dispersion curves. By harnessing the distinctive property of ZGV, we successfully attained the localization of transmission at specific frequencies, leading to a rainbow trapping effect. Notably, with the appropriate tuning of the third neighboring nonlocal effect, we observe that multi-frequency can be localized at predetermined positions. Waves under these frequencies are trapped at the same location, demonstrating a multi-frequency rainbow trapping phenomenon. The results from this research provide a novel perspective on elastic wave manipulation in periodic structures, with potential implications for the design of advanced materials and devices.
{"title":"Harnessing nonlocal effects for wave localization and multi-frequency rainbow trapping in periodic structures","authors":"Jiao Wang, Nan Gao, Weiqiu Chen","doi":"10.1063/5.0201585","DOIUrl":"https://doi.org/10.1063/5.0201585","url":null,"abstract":"This study introduces the concept of nonlocal effect into a monoatomic mass–spring periodic structure, leading to unique characteristics of dispersion curves. Through the incorporation of the second neighboring nonlocal effect, we have observed the emergence of negative group velocity and specific points with zero group velocity (ZGV) within the dispersion curves. By harnessing the distinctive property of ZGV, we successfully attained the localization of transmission at specific frequencies, leading to a rainbow trapping effect. Notably, with the appropriate tuning of the third neighboring nonlocal effect, we observe that multi-frequency can be localized at predetermined positions. Waves under these frequencies are trapped at the same location, demonstrating a multi-frequency rainbow trapping phenomenon. The results from this research provide a novel perspective on elastic wave manipulation in periodic structures, with potential implications for the design of advanced materials and devices.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"19 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to ensure the flight safety of an aircraft and reduce the loss of humidity to the precision instruments and equipment in the aircraft, this study designs a small-size resonator antenna shape based on Radio Frequency Identification (RFID) technology and sensor principles. The resonator antenna makes use of the characteristics of the square ring and bent resonator and, at the same time, adopts the polyvinyl alcohol film with strong hygroscopic performance as the moisture-sensitive material. The equivalent resonant circuit of the sensor is constructed, and the parameters are optimized according to the principle of “coarse tuning of inductance parameters and fine tuning of capacitance parameters” to determine the optimal size. The relationship between the resonance frequency and the resonance response of humidity was investigated by the optimized model of the RFID resonator and polyvinyl alcohol (PVA). The simulation results show that as the relative humidity increases from 29.1 %RH to 90.9 %RH, the dielectric constant of the PVA film increases from 5.3 to 22 and the resonance frequency of the resonator decreases significantly from 4.74 to 4.12 GHz, with a total offset of 620 MHz, and the sensitivity is as high as 10.03 MHz/%RH. The results show that the designed sensor has a high sensitivity to humidity changes and a wide humidity detection range, providing an advanced solution for the detection and control of humidity inside aircraft.
{"title":"Air vehicle humidity sensor based on PVA film humidity sensing principle","authors":"Bo Wang, Bei Han, Ke Wang, Shengli Cao","doi":"10.1063/5.0213766","DOIUrl":"https://doi.org/10.1063/5.0213766","url":null,"abstract":"In order to ensure the flight safety of an aircraft and reduce the loss of humidity to the precision instruments and equipment in the aircraft, this study designs a small-size resonator antenna shape based on Radio Frequency Identification (RFID) technology and sensor principles. The resonator antenna makes use of the characteristics of the square ring and bent resonator and, at the same time, adopts the polyvinyl alcohol film with strong hygroscopic performance as the moisture-sensitive material. The equivalent resonant circuit of the sensor is constructed, and the parameters are optimized according to the principle of “coarse tuning of inductance parameters and fine tuning of capacitance parameters” to determine the optimal size. The relationship between the resonance frequency and the resonance response of humidity was investigated by the optimized model of the RFID resonator and polyvinyl alcohol (PVA). The simulation results show that as the relative humidity increases from 29.1 %RH to 90.9 %RH, the dielectric constant of the PVA film increases from 5.3 to 22 and the resonance frequency of the resonator decreases significantly from 4.74 to 4.12 GHz, with a total offset of 620 MHz, and the sensitivity is as high as 10.03 MHz/%RH. The results show that the designed sensor has a high sensitivity to humidity changes and a wide humidity detection range, providing an advanced solution for the detection and control of humidity inside aircraft.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"23 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Material-by-design has been a long-standing aspiration that has recently become a reality. Such designer materials have been repeatedly demonstrated using the top-down approach of mechanical exfoliation and stacking, leading to a variety of artificial 2D heterostructures with new properties that are otherwise unattainable. Consequently, tremendous research frontiers in physics, chemistry, engineering, and life science have been created. While thousands of layered crystals exist in nature, only a few dozen of them with manageable chemical-stability have been made into heterostructures using this method. Moreover, experimental investigations of materials that have received limited exploration in the 2D realm, such as cuprates, halides, and perovskites, along with their heterostructures, have been fundamentally hindered by their rapid chemical degradation. Another critical challenge imposed by exfoliating and stacking 2D layers in ambient environment is the absorption of itinerant gas molecules that further contaminate sensitive 2D interfaces in the heterostructures. Such contamination and compromised material properties significantly hinder surface-sensitive local probes—scanning probe microscopy (SPM)—that often require nanometer to atomic scale surface cleanliness. In this article, we aim to provide a technical review of recent development toward 2D materials and heterostructure fabrication in more controlled environments that are suitable for SPM characterizations. These include the development of more efficient mechanical exfoliation and dry-transfer techniques, as well as the incorporation of 2D material exfoliation and transfer in inert gas, low vacuum, and, eventually, ultra-high vacuum environments. Finally, we provide an outlook on the remaining challenges and opportunities in ultra-clean 2D material fabrication techniques.
{"title":"Fabrication of pristine 2D heterostructures for scanning probe microscopy","authors":"James McKenzie, Nileema Sharma, Xiaolong Liu","doi":"10.1063/5.0213542","DOIUrl":"https://doi.org/10.1063/5.0213542","url":null,"abstract":"Material-by-design has been a long-standing aspiration that has recently become a reality. Such designer materials have been repeatedly demonstrated using the top-down approach of mechanical exfoliation and stacking, leading to a variety of artificial 2D heterostructures with new properties that are otherwise unattainable. Consequently, tremendous research frontiers in physics, chemistry, engineering, and life science have been created. While thousands of layered crystals exist in nature, only a few dozen of them with manageable chemical-stability have been made into heterostructures using this method. Moreover, experimental investigations of materials that have received limited exploration in the 2D realm, such as cuprates, halides, and perovskites, along with their heterostructures, have been fundamentally hindered by their rapid chemical degradation. Another critical challenge imposed by exfoliating and stacking 2D layers in ambient environment is the absorption of itinerant gas molecules that further contaminate sensitive 2D interfaces in the heterostructures. Such contamination and compromised material properties significantly hinder surface-sensitive local probes—scanning probe microscopy (SPM)—that often require nanometer to atomic scale surface cleanliness. In this article, we aim to provide a technical review of recent development toward 2D materials and heterostructure fabrication in more controlled environments that are suitable for SPM characterizations. These include the development of more efficient mechanical exfoliation and dry-transfer techniques, as well as the incorporation of 2D material exfoliation and transfer in inert gas, low vacuum, and, eventually, ultra-high vacuum environments. Finally, we provide an outlook on the remaining challenges and opportunities in ultra-clean 2D material fabrication techniques.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"61 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In a ferromagnet/superconductor/ferromagnet (F/S/F) superconducting spin-valve (SSV), a change in the magnetization alignment of the two F layers modulates the critical temperature (Tc) of the S layer. The Tc-switching effect (the SSV effect) is based on the interplay between superconductivity and magnetism. The fast and large resistive switching associated with Tc-switching is suitable for nonvolatile cryogenic memory applications. However, the external magnetic field-based operation of SSVs is hindering their miniaturization, and therefore, electric field control of the SSV effect is desired. Here, we report epitaxial growth of a La0.67Ca0.33MnO3/YBa2Cu3O7/La0.67Ca0.33MnO3 SSV on a piezo-electric [Pb(Mg0.33Nb0.67)O3]0.7-[PbTiO3]0.3 (001) substrate and demonstrate electric field control of the SSV effect. Electric field-induced strain-transfer from the piezo-electric substrate increases the magnetization and Tc of the SSV and leads to an enhancement of the magnitude of Tc-switching. The results are promising for the development of magnetic-field-free superconducting spintronic devices, in which the S/F interaction is not only sensitive to the magnetization alignment but also to an applied electric field.
{"title":"Electric field enhancement of the superconducting spin-valve effect via strain-transfer across a ferromagnetic/ferroelectric interface","authors":"Tomohiro Kikuta, Sachio Komori, Keiichiro Imura, Tomoyasu Taniyama","doi":"10.1063/5.0211769","DOIUrl":"https://doi.org/10.1063/5.0211769","url":null,"abstract":"In a ferromagnet/superconductor/ferromagnet (F/S/F) superconducting spin-valve (SSV), a change in the magnetization alignment of the two F layers modulates the critical temperature (Tc) of the S layer. The Tc-switching effect (the SSV effect) is based on the interplay between superconductivity and magnetism. The fast and large resistive switching associated with Tc-switching is suitable for nonvolatile cryogenic memory applications. However, the external magnetic field-based operation of SSVs is hindering their miniaturization, and therefore, electric field control of the SSV effect is desired. Here, we report epitaxial growth of a La0.67Ca0.33MnO3/YBa2Cu3O7/La0.67Ca0.33MnO3 SSV on a piezo-electric [Pb(Mg0.33Nb0.67)O3]0.7-[PbTiO3]0.3 (001) substrate and demonstrate electric field control of the SSV effect. Electric field-induced strain-transfer from the piezo-electric substrate increases the magnetization and Tc of the SSV and leads to an enhancement of the magnitude of Tc-switching. The results are promising for the development of magnetic-field-free superconducting spintronic devices, in which the S/F interaction is not only sensitive to the magnetization alignment but also to an applied electric field.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"40 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tatyana V. Ivanova, Daniel Andres-Penares, Yiping Wang, Jiaqiang Yan, Daniel Forbes, Servet Ozdemir, Kenneth S. Burch, Brian D. Gerardot, Mauro Brotons-Gisbert
α-RuCl3, a narrow-band Mott insulator with a large work function, offers intriguing potential as a quantum material or as a charge acceptor for electrical contacts in van der Waals devices. In this work, we perform a systematic study of the optical reflection contrast of α-RuCl3 nanoflakes on oxidized silicon wafers and estimate the accuracy of this imaging technique to assess the crystal thickness. Via spectroscopic micro-ellipsometry measurements, we characterize the wavelength-dependent complex refractive index of α-RuCl3 nanoflakes of varying thickness in the visible and near-infrared. Building on these results, we simulate the optical contrast of α-RuCl3 nanoflakes with thicknesses below 100 nm on SiO2/Si substrates under different illumination conditions. We compare the simulated optical contrast with experimental values extracted from optical microscopy images and obtain good agreement. Finally, we show that optical contrast imaging allows us to retrieve the thickness of the RuCl3 nanoflakes exfoliated on an oxidized silicon substrate with a mean deviation of −0.2 nm for thicknesses below 100 nm with a standard deviation of only 1 nm. Our results demonstrate that optical contrast can be used as a non-invasive, fast, and reliable technique to estimate the α-RuCl3 thickness.
{"title":"Optical contrast analysis of α-RuCl3 nanoflakes on oxidized silicon wafers","authors":"Tatyana V. Ivanova, Daniel Andres-Penares, Yiping Wang, Jiaqiang Yan, Daniel Forbes, Servet Ozdemir, Kenneth S. Burch, Brian D. Gerardot, Mauro Brotons-Gisbert","doi":"10.1063/5.0212132","DOIUrl":"https://doi.org/10.1063/5.0212132","url":null,"abstract":"α-RuCl3, a narrow-band Mott insulator with a large work function, offers intriguing potential as a quantum material or as a charge acceptor for electrical contacts in van der Waals devices. In this work, we perform a systematic study of the optical reflection contrast of α-RuCl3 nanoflakes on oxidized silicon wafers and estimate the accuracy of this imaging technique to assess the crystal thickness. Via spectroscopic micro-ellipsometry measurements, we characterize the wavelength-dependent complex refractive index of α-RuCl3 nanoflakes of varying thickness in the visible and near-infrared. Building on these results, we simulate the optical contrast of α-RuCl3 nanoflakes with thicknesses below 100 nm on SiO2/Si substrates under different illumination conditions. We compare the simulated optical contrast with experimental values extracted from optical microscopy images and obtain good agreement. Finally, we show that optical contrast imaging allows us to retrieve the thickness of the RuCl3 nanoflakes exfoliated on an oxidized silicon substrate with a mean deviation of −0.2 nm for thicknesses below 100 nm with a standard deviation of only 1 nm. Our results demonstrate that optical contrast can be used as a non-invasive, fast, and reliable technique to estimate the α-RuCl3 thickness.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"82 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antiferromagnetic Mn3X (X = Sn, Ge, Ga, and Pt) possessing non-collinear spin structures with Kagome lattices have attracted increasing interest because of their unique properties, such as significant anomalous Hall and magneto-optical Kerr effects. Recent advances in spintronic devices that use non-collinear antiferromagnets have inspired research into various materials for exploiting their potential. In this study, we investigated the magnetic and magneto-transport properties of 11̄00-oriented epitaxial and polycrystalline Mn3Ge films deposited by magnetron sputtering. Anomalous Hall conductivity monotonically decreases with temperature in an epitaxial Mn3Ge film, whereas the polycrystalline sample demonstrates a different trend. Furthermore, we obtained a large in-Kagome-plane uniaxial magnetic anisotropy of epitaxial Mn3Ge above ambient temperature, thereby leading to higher thermal stability and robustness against the external field. Our results indicate the potential of Mn3Ge for future functional, high-speed, and high-density spintronics devices using antiferromagnets.
{"title":"Magnetic and magneto-transport properties of non-collinear antiferromagnetic Mn3Ge epitaxial films","authors":"Yutaro Takeuchi, Hossein Sepehri-Amin, Satoshi Sugimoto, Takanobu Hiroto, Shinya Kasai","doi":"10.1063/5.0217710","DOIUrl":"https://doi.org/10.1063/5.0217710","url":null,"abstract":"Antiferromagnetic Mn3X (X = Sn, Ge, Ga, and Pt) possessing non-collinear spin structures with Kagome lattices have attracted increasing interest because of their unique properties, such as significant anomalous Hall and magneto-optical Kerr effects. Recent advances in spintronic devices that use non-collinear antiferromagnets have inspired research into various materials for exploiting their potential. In this study, we investigated the magnetic and magneto-transport properties of 11̄00-oriented epitaxial and polycrystalline Mn3Ge films deposited by magnetron sputtering. Anomalous Hall conductivity monotonically decreases with temperature in an epitaxial Mn3Ge film, whereas the polycrystalline sample demonstrates a different trend. Furthermore, we obtained a large in-Kagome-plane uniaxial magnetic anisotropy of epitaxial Mn3Ge above ambient temperature, thereby leading to higher thermal stability and robustness against the external field. Our results indicate the potential of Mn3Ge for future functional, high-speed, and high-density spintronics devices using antiferromagnets.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"81 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}