Pub Date : 2021-09-26DOI: 10.5604/01.3001.0015.3186
T. Kłosińska
American tulipwood (Liriodendron tulipifera L.) as an innovative material in CLT technology. CLT (cross laminated timber, X-Lam) is one type of engineered wood products. The first idea of CLT was presented in the seventies of the last century. It is manufactured with timber boards placed side by side commonly with 3, 5 and 7 layers glued at 90 degrees to adjacent layer. The CLT production technology was developed for softwood. The main species in CLT production is Norway spruce (Picea abies L.) and less often White fir (Abies alba Mill.). Hardwood is also used more and more for production of CLT, most often, the wood of Silver birch (Betula pendula Roth.), Ash (Fraxinus excelsior L.), poplars (Populus spp.), Locust tree (Robinia pseudoacacia L.). This paper describes the suitability of cheap tulipwood (Liriodendron tulipifera L.) as a raw material for the production of CLT. Examples of the use of this type of panels in construction are also presented. The tulipwood has similar physical characteristics to softwood, for which CLT production technologies were previously developed. This makes it possible to use the technology previously for softwood CLT was developed. In addition, the tulipwood is characterized by aesthetic visual quality (wood surface similar to marble). Thanks to this, CLT boards to make exposed surfaces can be used.
{"title":"American tulipwood (Liriodendron tulipifera L.) as an innovative material in CLT technology","authors":"T. Kłosińska","doi":"10.5604/01.3001.0015.3186","DOIUrl":"https://doi.org/10.5604/01.3001.0015.3186","url":null,"abstract":"American tulipwood (Liriodendron tulipifera L.) as an innovative material in CLT technology. CLT (cross laminated timber, X-Lam) is one type of engineered wood products. The first idea of CLT was presented in the seventies of the last century. It is manufactured with timber boards placed side by side commonly with 3, 5 and 7 layers glued at 90 degrees to adjacent layer. The CLT production technology was developed for softwood. The main species in CLT production is Norway spruce (Picea abies L.) and less often White fir (Abies alba Mill.). Hardwood is also used more and more for production of CLT, most often, the wood of Silver birch (Betula pendula Roth.), Ash (Fraxinus excelsior L.), poplars (Populus spp.), Locust tree (Robinia pseudoacacia L.). This paper describes the suitability of cheap tulipwood (Liriodendron tulipifera L.) as a raw material for the production of CLT. Examples of the use of this type of panels in construction are also presented. The tulipwood has similar physical characteristics to softwood, for which CLT production technologies were previously developed. This makes it possible to use the technology previously for softwood CLT was developed. In addition, the tulipwood is characterized by aesthetic visual quality (wood surface similar to marble). Thanks to this, CLT boards to make exposed surfaces can be used.\u0000\u0000","PeriodicalId":8020,"journal":{"name":"Annals of WULS, Forestry and Wood Technology","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86323418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-26DOI: 10.5604/01.3001.0015.6623
S. Oleńska, J. Biernacka
Management of post-production wood waste in the aspect of circular economy. Sustainable resource management involves turning waste into resources. The estimation of various waste streams and their potential use as secondary raw materials underlies the circular economy. The management of wood waste in terms of the Circular Economy should assume material use of this waste before energy use. One of the possibilities of material management of this waste is the use of biological treatment through composting. Input materials for the composting process should have technological and physical-chemical characteristics, respectively. The aim of this study was to characterize the wood raw material (wood waste as a by-product) and qualify it for the composting process on the basis of its composition. Based on the literature research, it was found that there is possibility of using these wastes for management through biological disposal. The obtained composts from wood waste can be used as a raw material to supply the soil with humic substances and mineral compounds.
{"title":"Management of post-production wood waste in the aspect of circular economy","authors":"S. Oleńska, J. Biernacka","doi":"10.5604/01.3001.0015.6623","DOIUrl":"https://doi.org/10.5604/01.3001.0015.6623","url":null,"abstract":"Management of post-production wood waste in the aspect of circular economy. Sustainable resource management involves turning waste into resources. The estimation of various waste streams and their potential use as secondary raw materials underlies the circular economy. The management of wood waste in terms of the Circular Economy should assume material use of this waste before energy use. One of the possibilities of material management of this waste is the use of biological treatment through composting. Input materials for the composting process should have technological and physical-chemical characteristics, respectively. \u0000The aim of this study was to characterize the wood raw material (wood waste as a by-product) and qualify it for the composting process on the basis of its composition. Based on the literature research, it was found that there is possibility of using these wastes for management through biological disposal.\u0000The obtained composts from wood waste can be used as a raw material to supply the soil with humic substances and mineral compounds.\u0000\u0000","PeriodicalId":8020,"journal":{"name":"Annals of WULS, Forestry and Wood Technology","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91379917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-26DOI: 10.5604/01.3001.0015.5967
M. Komorowicz, D. Janiszewska, H. Wróblewska, K. Stuper-Szablewska
Management of post-production wood waste in the aspect of circular economy. Sustainable resource management involves turning waste into resources. The estimation of various waste streams and their potential use as secondary raw materials underlies the circular economy. The management of wood waste in terms of the Circular Economy should assume material use of this waste before energy use. One of the possibilities of material management of this waste is the use of biological treatment through composting. Input materials for the composting process should have technological and physical-chemical characteristics, respectively. The aim of this study was to characterize the wood raw material (wood waste as a by-product) and qualify it for the composting process on the basis of its composition. Based on the literature research, it was found that there is possibility of using these wastes for management through biological disposal. The obtained composts from wood waste can be used as a raw material to supply the soil with humic substances and mineral compounds.
{"title":"Management of post-production wood waste in the aspect of circular economy","authors":"M. Komorowicz, D. Janiszewska, H. Wróblewska, K. Stuper-Szablewska","doi":"10.5604/01.3001.0015.5967","DOIUrl":"https://doi.org/10.5604/01.3001.0015.5967","url":null,"abstract":"Management of post-production wood waste in the aspect of circular economy. Sustainable resource management involves turning waste into resources. The estimation of various waste streams and their potential use as secondary raw materials underlies the circular economy. The management of wood waste in terms of the Circular Economy should assume material use of this waste before energy use. One of the possibilities of material management of this waste is the use of biological treatment through composting. Input materials for the composting process should have technological and physical-chemical characteristics, respectively.\u0000The aim of this study was to characterize the wood raw material (wood waste as a by-product) and qualify it for the composting process on the basis of its composition. Based on the literature research, it was found that there is possibility of using these wastes for management through biological disposal.\u0000The obtained composts from wood waste can be used as a raw material to supply the soil with humic substances and mineral compounds.","PeriodicalId":8020,"journal":{"name":"Annals of WULS, Forestry and Wood Technology","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88009038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-26DOI: 10.5604/01.3001.0015.2915
P. Kozakiewicz, Kaja McKinney
Study of selected properties of red maple wood (Acer rubrum) form the experimental plot of the forest arboretum in Rogów. As part of the work, investigation on the dendrometric, physical and mechanical properties of red maple trees and its wood from the Forest Experimental Plant in Rogów has been carried out. The obtained results of the research on the species experimentally introduced in Rogów were compared with the features of the Acer rubrum from the area of natural occurrence in North America. The results of the investigation showed that the trees from the Arboretum area have a lower height, a much smaller trunk diameter and their physical and mechanical properties are weaker than the maple wood grown in native conditions. Despite the above statements, the significant influence of the location of the wood in the trunk (distance to the core) on its density, acoustic properties and static modulus of elasticity, bending and compression strength along the fibers are noted.
{"title":"Study of selected properties of red maple wood (Acer rubrum) from the experimental plot of the forest arboretum in Rogów","authors":"P. Kozakiewicz, Kaja McKinney","doi":"10.5604/01.3001.0015.2915","DOIUrl":"https://doi.org/10.5604/01.3001.0015.2915","url":null,"abstract":"Study of selected properties of red maple wood (Acer rubrum) form the experimental plot of the forest arboretum in Rogów. As part of the work, investigation on the dendrometric, physical and mechanical properties of red maple trees and its wood from the Forest Experimental Plant in Rogów has been carried out. The obtained results of the research on the species experimentally introduced in Rogów were compared with the features of the Acer rubrum from the area of natural occurrence in North America. The results of the investigation showed that the trees from the Arboretum area have a lower height, a much smaller trunk diameter and their physical and mechanical properties are weaker than the maple wood grown in native conditions. Despite the above statements, the significant influence of the location of the wood in the trunk (distance to the core) on its density, acoustic properties and static modulus of elasticity, bending and compression strength along the fibers are noted.\u0000\u0000","PeriodicalId":8020,"journal":{"name":"Annals of WULS, Forestry and Wood Technology","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79250965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-28DOI: 10.5604/01.3001.0015.2389
E. Skorupińska, K. Wiaderek, M. Sydor
Influence of technological parameters of the upholstery seams in furniture. Based on the real problem of weak seams in covers of wooden furniture, a multifaceted analysis of the issue was performed. As a result, it was decided to carry out comparative laboratory strength tests of seams made with the use of various technological parameters. For the production of test samples, we used different yarn threads to find the best and sufficiently strong seams for used fabrics. The test results show that not only the thread and fabric used, but also the sewing technology parameters have a significant influence on the seam strength. Overall, these results indicate that to increase the seam strength, it is necessary to choose thread type B with very high strength and low elongation at break. This solution will minimize the risk of broken threads in case of deviation of material features and technological parameters, which can be variable in the long duration of large-scale production.
{"title":"Influence of technological parameters on the upholstery seams in furniture","authors":"E. Skorupińska, K. Wiaderek, M. Sydor","doi":"10.5604/01.3001.0015.2389","DOIUrl":"https://doi.org/10.5604/01.3001.0015.2389","url":null,"abstract":"Influence of technological parameters of the upholstery seams in furniture. Based on the real problem of weak seams in covers of wooden furniture, a multifaceted analysis of the issue was performed. As a result, it was decided to carry out comparative laboratory strength tests of seams made with the use of various technological parameters. For the production of test samples, we used different yarn threads to find the best and sufficiently strong seams for used fabrics. The test results show that not only the thread and fabric used, but also the sewing technology parameters have a significant influence on the seam strength. Overall, these results indicate that to increase the seam strength, it is necessary to choose thread type B with very high strength and low elongation at break. This solution will minimize the risk of broken threads in case of deviation of material features and technological parameters, which can be variable in the long duration of large-scale production.\u0000\u0000","PeriodicalId":8020,"journal":{"name":"Annals of WULS, Forestry and Wood Technology","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79380135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-28DOI: 10.5604/01.3001.0015.2375
Krzysztof Kryński, G. Kowaluk
Application of beeswax as a hydrophobic agent in MDF technology. The aim of this study was to investigate the possibility of using beeswax as a hydrophobic agent in MDF board technology. In scope of the work, dry-formed fibreboards in four variants of wax content were produced under laboratory conditions: 0; 0.5; 1 and 5%, and boards with 1% of industrial hydrophobic agent. Produced boards were tested for selected physical and mechanical properties. Obtained results proved that beeswax can be used as a sterling hydrophobic agent. Furthermore, the tests confirmed an improvement in mechanical properties after the application of beeswax.
{"title":"Application of beeswax as a hydrophobic agent in MDF technology","authors":"Krzysztof Kryński, G. Kowaluk","doi":"10.5604/01.3001.0015.2375","DOIUrl":"https://doi.org/10.5604/01.3001.0015.2375","url":null,"abstract":"Application of beeswax as a hydrophobic agent in MDF technology. The aim of this study was to investigate the possibility of using beeswax as a hydrophobic agent in MDF board technology. In scope of the work, dry-formed fibreboards in four variants of wax content were produced under laboratory conditions: 0; 0.5; 1 and 5%, and boards with 1% of industrial hydrophobic agent. Produced boards were tested for selected physical and mechanical properties. Obtained results proved that beeswax can be used as a sterling hydrophobic agent. Furthermore, the tests confirmed an improvement in mechanical properties after the application of beeswax.\u0000\u0000","PeriodicalId":8020,"journal":{"name":"Annals of WULS, Forestry and Wood Technology","volume":"3 2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76045315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-28DOI: 10.5604/01.3001.0015.2377
S. Krzosek, T. Kłosińska
CLT – material for the measure of the future. CLT (cross laminated timber, X-Lam) is one type of engineered wood products. The first idea of CLT was presented in the seventies of the last century in Austria. Over the following years, the concept of cross-gluing wood was intensively developer in Europa, USA, Canada and China. Based on the literature data, this work presents history, structure, production process ,selected mechanical and physical parameters and applications of CLT. CLT is a wood panel product made from gluing together layers of solid-sawn lumber. The number of wooden layers is unpaired, most often 3, 5 or 7. Each layer consists of closely spaced and parallel boards. Adjacent layers are perpendicular to each other. The physical and mechanical properties of this product depend on many factors, e.g. number of layers and their thickness, the width and thickness of the boards in the layer, class of lumber, species of wood. Despite the fact that CLT is rather new material often used, especially in construction industry (both single-storey and multi-storey buildings). The short time of project implementation and their ecological character indicate that CLT is the material of the future in construction industry.
{"title":"CLT – material for the measure of the future","authors":"S. Krzosek, T. Kłosińska","doi":"10.5604/01.3001.0015.2377","DOIUrl":"https://doi.org/10.5604/01.3001.0015.2377","url":null,"abstract":"CLT – material for the measure of the future. CLT (cross laminated timber, X-Lam) is one type of engineered wood products. The first idea of CLT was presented in the seventies of the last century in Austria. Over the following years, the concept of cross-gluing wood was intensively developer in Europa, USA, Canada and China. Based on the literature data, this work presents history, structure, production process ,selected mechanical and physical parameters and applications of CLT. CLT is a wood panel product made from gluing together layers of solid-sawn lumber. The number of wooden layers is unpaired, most often 3, 5 or 7. Each layer consists of closely spaced and parallel boards. Adjacent layers are perpendicular to each other. The physical and mechanical properties of this product depend on many factors, e.g. number of layers and their thickness, the width and thickness of the boards in the layer, class of lumber, species of wood. Despite the fact that CLT is rather new material often used, especially in construction industry (both single-storey and multi-storey buildings). The short time of project implementation and their ecological character indicate that CLT is the material of the future in construction industry.\u0000\u0000","PeriodicalId":8020,"journal":{"name":"Annals of WULS, Forestry and Wood Technology","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81833909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-28DOI: 10.5604/01.3001.0015.2383
Zdzisław Kwidzyński, J. Bednarz, Ł. Sienkiewicz, Marta Pędzik, T. Rogoziński
TechnoPORTA. Intelligent, customized technological line for the automated production of technical doors - selected technical and economic indicators. The development and implementation of innovative production of technical doors in a pilot technological line made it possible to automate the production process. It became possible to manufacture doors with dimensions and weight significantly exceeding the current technological capabilities of the company. An additional benefit resulting from the implementation of the TechnoPORTA line is the improvement of technical and economic indicators related to the consumption of basic materials, additional materials and energy. It relates to annual savings of material in the production line, the unit consumption of electricity and the unit application of the adhesive during postforming.
{"title":"TechnoPORTA intelligent, customized technological line for the automated production of technical doors - selected technical and economic indicators","authors":"Zdzisław Kwidzyński, J. Bednarz, Ł. Sienkiewicz, Marta Pędzik, T. Rogoziński","doi":"10.5604/01.3001.0015.2383","DOIUrl":"https://doi.org/10.5604/01.3001.0015.2383","url":null,"abstract":"TechnoPORTA. Intelligent, customized technological line for the automated production of technical doors - selected technical and economic indicators. The development and implementation of innovative production of technical doors in a pilot technological line made it possible to automate the production process. It became possible to manufacture doors with dimensions and weight significantly exceeding the current technological capabilities of the company. An additional benefit resulting from the implementation of the TechnoPORTA line is the improvement of technical and economic indicators related to the consumption of basic materials, additional materials and energy. It relates to annual savings of material in the production line, the unit consumption of electricity and the unit application of the adhesive during postforming.\u0000\u0000","PeriodicalId":8020,"journal":{"name":"Annals of WULS, Forestry and Wood Technology","volume":"166 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85912090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-28DOI: 10.5604/01.3001.0015.2376
R. Auriga, P. Borysiuk, A. Auriga
An attempt to use „Tetra Pak” waste material in particleboard technology. The study investigates the effect of addition Tetra Pak waste material in the core layer on physical and mechanical properties of chipboard. Three-layer chipboards with a thickness of 16 mm and a density of 650 kg / m3 were manufactured. The share of Tetra Pak waste material in the boards was varied: 0%, 5%, 10% and 25%. The density profile was measured to determine the impact of Tetra Pak share on the density distribution. In addition, the manufactured boards were tested for strength (MOR, MOE, IB), thickness swelling and water absorption after immersion in water for 2 and 24 hours. The tests revealed that Tetra Pak share does not affect significantly the value of static bending strength and modulus of elasticity of the chipboard, but it significantly decreases IB. Also, it has been found that Tetra Pak insignificantly decreases the value of swelling and water absorption of the chipboards.
尝试将“利乐”废料用于刨花板技术。研究了在芯层中加入利乐废料对刨花板物理力学性能的影响。制作厚度为16mm,密度为650 kg / m3的三层刨花板。利乐废料在董事会中所占的比例不同:0%、5%、10%和25%。测量了密度分布,以确定利乐份额对密度分布的影响。此外,在水中浸泡2小时和24小时后,测试了所制板的强度(MOR, MOE, IB),厚度膨胀和吸水率。试验结果表明,利乐股份对刨花板的静态抗弯强度和弹性模量的影响不显著,但会显著降低刨花板的IB值,同时发现利乐股份对刨花板的膨胀率和吸水率的影响不显著。
{"title":"An attempt to use „Tetra Pak” waste material in particleboard technology","authors":"R. Auriga, P. Borysiuk, A. Auriga","doi":"10.5604/01.3001.0015.2376","DOIUrl":"https://doi.org/10.5604/01.3001.0015.2376","url":null,"abstract":"An attempt to use „Tetra Pak” waste material in particleboard technology. The study investigates the effect of addition Tetra Pak waste material in the core layer on physical and mechanical properties of chipboard. Three-layer chipboards with a thickness of 16 mm and a density of 650 kg / m3 were manufactured. The share of Tetra Pak waste material in the boards was varied: 0%, 5%, 10% and 25%. The density profile was measured to determine the impact of Tetra Pak share on the density distribution. In addition, the manufactured boards were tested for strength (MOR, MOE, IB), thickness swelling and water absorption after immersion in water for 2 and 24 hours. The tests revealed that Tetra Pak share does not affect significantly the value of static bending strength and modulus of elasticity of the chipboard, but it significantly decreases IB. Also, it has been found that Tetra Pak insignificantly decreases the value of swelling and water absorption of the chipboards.\u0000\u0000","PeriodicalId":8020,"journal":{"name":"Annals of WULS, Forestry and Wood Technology","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81449896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-28DOI: 10.5604/01.3001.0015.2373
M. Marchwicka
Influence of pH and Cellic® CTec2 enzymes dose on the glucose yield after enzymatic hydrolysis of cellulose at 50 °C. Cellulose obtained by the Kürschner-Hoffer method from the wood of 3-year-old poplar (Populus trichocarpa) was subjected to enzymatic hydrolysis. Cellic® CTec2 enzymes (Novozymes, Denmark) were used. The enzymatic hydrolysis was tested within the conditions recommended by the manufacturer and the literature. The process was carried out at 50 °C at various pH – 4.8, 5.0, 5.5 and enzymes doses - 25, 50 and 100 mg per 100 mg of the dry mass of cellulose. The process was ended after 24 h. The hydrolysates were analysed by high-performance liquid chromatography (HPLC) to determine the glucose content, and then the highest glucose yield. The highest glucose yield was obtained for pH 4.8 and 100 mg of enzymes per 100 mg of the dry mass of cellulose – 72 %.
{"title":"Influence of pH and Cellic® CTec2 enzymes dose on the glucose yield after enzymatic hydrolysis of cellulose at 50 °C","authors":"M. Marchwicka","doi":"10.5604/01.3001.0015.2373","DOIUrl":"https://doi.org/10.5604/01.3001.0015.2373","url":null,"abstract":"Influence of pH and Cellic® CTec2 enzymes dose on the glucose yield after enzymatic hydrolysis of cellulose at 50 °C. Cellulose obtained by the Kürschner-Hoffer method from the wood of 3-year-old poplar (Populus trichocarpa) was subjected to enzymatic hydrolysis. Cellic® CTec2 enzymes (Novozymes, Denmark) were used. The enzymatic hydrolysis was tested within the conditions recommended by the manufacturer and the literature. The process was carried out at 50 °C at various pH – 4.8, 5.0, 5.5 and enzymes doses - 25, 50 and 100 mg per 100 mg of the dry mass of cellulose. The process was ended after 24 h. The hydrolysates were analysed by high-performance liquid chromatography (HPLC) to determine the glucose content, and then the highest glucose yield. The highest glucose yield was obtained for pH 4.8 and 100 mg of enzymes per 100 mg of the dry mass of cellulose – 72 %.\u0000\u0000","PeriodicalId":8020,"journal":{"name":"Annals of WULS, Forestry and Wood Technology","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77502597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}