Pub Date : 2021-10-25DOI: 10.1146/annurev-nucl-102020-090209
D. London, J. Matias
At the present time (2022), there are discrepancies with the predictions of the Standard Model in several observables involving b → sℓ+ℓ− and [Formula: see text] decays. These are the B flavor anomalies. In this review, we summarize the data as of Moriond 2021 and present theoretical new physics explanations from both a model-independent effective field theory point of view and through the building of explicit models. Throughout, we stress the complementarity of these two approaches. In addition, we discuss combined explanations of both B anomalies and present models that also explain other problems, such as dark matter, ( g − 2)μ, neutrino properties, and hadronic anomalies.
{"title":"B Flavor Anomalies: 2021 Theoretical Status Report","authors":"D. London, J. Matias","doi":"10.1146/annurev-nucl-102020-090209","DOIUrl":"https://doi.org/10.1146/annurev-nucl-102020-090209","url":null,"abstract":"At the present time (2022), there are discrepancies with the predictions of the Standard Model in several observables involving b → sℓ+ℓ− and [Formula: see text] decays. These are the B flavor anomalies. In this review, we summarize the data as of Moriond 2021 and present theoretical new physics explanations from both a model-independent effective field theory point of view and through the building of explicit models. Throughout, we stress the complementarity of these two approaches. In addition, we discuss combined explanations of both B anomalies and present models that also explain other problems, such as dark matter, ( g − 2)μ, neutrino properties, and hadronic anomalies.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":" ","pages":""},"PeriodicalIF":12.4,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48866924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-21DOI: 10.1146/annurev-nucl-102419-054905
Augusto Ceccucci
Historically important in the development of the Standard Model (SM) of particle physics, rare kaon decays are still a privileged tool for looking beyond it. The main reasons to continue the study of rare kaon decays are to test the CKM quark-mixing and CP-violation paradigm, to make quantitative comparisons with the B sector, and to search for explicit violations of the SM. Current research on rare kaon decays focuses mostly on decays, which are predicted with good accuracy within the SM and beyond. Experimentally, these decays, especially that of the charged kaon, have a long history. Their theoretical importance is matched only by their experimental difficulty. This article reviews the progress of the past 10 years, describes the state of the art, and looks toward future perspectives.
{"title":"Rare Kaon Decays","authors":"Augusto Ceccucci","doi":"10.1146/annurev-nucl-102419-054905","DOIUrl":"https://doi.org/10.1146/annurev-nucl-102419-054905","url":null,"abstract":"<p>Historically important in the development of the Standard Model (SM) of particle physics, rare kaon decays are still a privileged tool for looking beyond it. The main reasons to continue the study of rare kaon decays are to test the CKM quark-mixing and <i>CP</i>-violation paradigm, to make quantitative comparisons with the <i>B</i> sector, and to search for explicit violations of the SM. Current research on rare kaon decays focuses mostly on <span><span><img alt=\"\" src=\"/na101/home/literatum/publisher/ar/journals/content/nucl/2021/nucl.2021.71.issue-1/annurev-nucl-102419-054905/20210907/images/medium/eq-054905-001.gif\"/></span></span><span></span> decays, which are predicted with good accuracy within the SM and beyond. Experimentally, these decays, especially that of the charged kaon, have a long history. Their theoretical importance is matched only by their experimental difficulty. This article reviews the progress of the past 10 years, describes the state of the art, and looks toward future perspectives.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":"1 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-21DOI: 10.1146/annurev-nucl-021621-035759
R. Cahn
John David (“Dave”) Jackson, a Canadian-born theoretical physicist, contributed significantly to particle, nuclear, and atomic physics. He is best known, however, for his text Classical Electrodynamics, which has been a fixture in physics graduate education around the world for more than 50 years. It is generally referred to simply as “Jackson.” This textbook, which has inspired fear and wonder alike in generations of students, clearly reflects the author's fascination with physical phenomena, his renowned mathematical dexterity, and his appreciation of the elegance of physical laws. Jackson's major contributions to research included the theory of muon-catalyzed fusion; the analysis, with Kurt Gottfried, of angular distributions in quasi-two-body elementary particle collisions; and the elucidation of charmonium-state decays. Jackson influenced the development of physics research throughout the United States as well as internationally—particularly through his work on the nascent Superconducting Super Collider. An active promoter of civil liberties and human rights, he was one of the leaders of the efforts to free Andrei Sakharov, Yuri Orlov, and Anatoly Shcharansky from Soviet imprisonment.
John David(“Dave”)Jackson,加拿大出生的理论物理学家,对粒子、核和原子物理学做出了重大贡献。然而,他最为人所知的是他的著作《经典电动力学》,这本书50多年来一直是世界各地物理学研究生教育的固定教材。它通常被简称为“杰克逊”。这本教科书激发了几代学生的恐惧和好奇,清楚地反映了作者对物理现象的着迷、他著名的数学技巧以及他对物理定律优雅的欣赏。杰克逊对研究的主要贡献包括μ介子催化聚变理论;与Kurt Gottfried一起分析了准两体基本粒子碰撞中的角分布;而对charmonium态的阐明也随之衰减。杰克逊影响了整个美国和国际物理学研究的发展,特别是通过他在新生的超导超级对撞机上的工作。作为公民自由和人权的积极推动者,他是将安德烈·萨哈罗夫、尤里·奥尔洛夫和阿纳托利·什查兰斯基从苏联监禁中解救出来的努力的领导者之一。
{"title":"J. David Jackson (January 19, 1925–May 20, 2016): A Biographical Memoir","authors":"R. Cahn","doi":"10.1146/annurev-nucl-021621-035759","DOIUrl":"https://doi.org/10.1146/annurev-nucl-021621-035759","url":null,"abstract":"John David (“Dave”) Jackson, a Canadian-born theoretical physicist, contributed significantly to particle, nuclear, and atomic physics. He is best known, however, for his text Classical Electrodynamics, which has been a fixture in physics graduate education around the world for more than 50 years. It is generally referred to simply as “Jackson.” This textbook, which has inspired fear and wonder alike in generations of students, clearly reflects the author's fascination with physical phenomena, his renowned mathematical dexterity, and his appreciation of the elegance of physical laws. Jackson's major contributions to research included the theory of muon-catalyzed fusion; the analysis, with Kurt Gottfried, of angular distributions in quasi-two-body elementary particle collisions; and the elucidation of charmonium-state decays. Jackson influenced the development of physics research throughout the United States as well as internationally—particularly through his work on the nascent Superconducting Super Collider. An active promoter of civil liberties and human rights, he was one of the leaders of the efforts to free Andrei Sakharov, Yuri Orlov, and Anatoly Shcharansky from Soviet imprisonment.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":" ","pages":""},"PeriodicalIF":12.4,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45172302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-21DOI: 10.1146/annurev-nucl-111119-053716
M. Gaillard
Despite some gender-related bumps in the road, the author had the good fortune that her career spanned the evolution of the Standard Model from its inception in the late 1960s and early 1970s to its final confirmation with the discovery of the Higgs boson in 2012. Her major contributions to these developments and other facets of her career are described.
{"title":"Adventures with Particles","authors":"M. Gaillard","doi":"10.1146/annurev-nucl-111119-053716","DOIUrl":"https://doi.org/10.1146/annurev-nucl-111119-053716","url":null,"abstract":"Despite some gender-related bumps in the road, the author had the good fortune that her career spanned the evolution of the Standard Model from its inception in the late 1960s and early 1970s to its final confirmation with the discovery of the Higgs boson in 2012. Her major contributions to these developments and other facets of her career are described.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":"1 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41677777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-09DOI: 10.1146/ANNUREV-NUCL-122320-041022
M. McCullough
It has been almost a decade since the first hints of the Higgs boson discovery began to emerge from CERN, making a review of our updated expectations for the Higgs boson properties, in light of New Physics models, timely. In this review I attempt to draw connections between modified Higgs boson couplings and the big questions that broad classes of New Physics models aim to answer. Questions considered include whether the Higgs boson is composite and whether a new space-time supersymmetry exists. The goal is to present these topics, framed in reference to the Higgs boson, in a conceptually driven manner and, to make them accessible to a relatively broad audience, without a great deal of technicality. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 71 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Implications of New Physics Models for the Couplings of the Higgs Boson","authors":"M. McCullough","doi":"10.1146/ANNUREV-NUCL-122320-041022","DOIUrl":"https://doi.org/10.1146/ANNUREV-NUCL-122320-041022","url":null,"abstract":"It has been almost a decade since the first hints of the Higgs boson discovery began to emerge from CERN, making a review of our updated expectations for the Higgs boson properties, in light of New Physics models, timely. In this review I attempt to draw connections between modified Higgs boson couplings and the big questions that broad classes of New Physics models aim to answer. Questions considered include whether the Higgs boson is composite and whether a new space-time supersymmetry exists. The goal is to present these topics, framed in reference to the Higgs boson, in a conceptually driven manner and, to make them accessible to a relatively broad audience, without a great deal of technicality. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 71 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":"71 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41368710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-06DOI: 10.1146/ANNUREV-NUCL-102419-124827
J. Lattimer
Neutron stars provide a window into the properties of dense nuclear matter. Several recent observational and theoretical developments provide powerful constraints on their structure and internal composition. Among these are the first observed binary neutron star merger, GW170817, whose gravitational radiation was accompanied by electromagnetic radiation from a short γ-ray burst and an optical afterglow believed to be due to the radioactive decay of newly minted heavy r-process nuclei. These observations give important constraints on the radii of typical neutron stars and on the upper limit to the neutron star maximum mass and complement recent pulsar observations that established a lower limit. Pulse-profile observations by the Neutron Star Interior Composition Explorer (NICER) X-ray telescope provide an independent, consistent measure of the neutron star radius. Theoretical many-body studies of neutron matter reinforce these estimates of neutron star radii. Studies using parameterized dense matter equations of state (EOSs) reveal several EOS-independent relations connecting global neutron star properties. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 71 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Neutron Stars and the Nuclear Matter Equation of State","authors":"J. Lattimer","doi":"10.1146/ANNUREV-NUCL-102419-124827","DOIUrl":"https://doi.org/10.1146/ANNUREV-NUCL-102419-124827","url":null,"abstract":"Neutron stars provide a window into the properties of dense nuclear matter. Several recent observational and theoretical developments provide powerful constraints on their structure and internal composition. Among these are the first observed binary neutron star merger, GW170817, whose gravitational radiation was accompanied by electromagnetic radiation from a short γ-ray burst and an optical afterglow believed to be due to the radioactive decay of newly minted heavy r-process nuclei. These observations give important constraints on the radii of typical neutron stars and on the upper limit to the neutron star maximum mass and complement recent pulsar observations that established a lower limit. Pulse-profile observations by the Neutron Star Interior Composition Explorer (NICER) X-ray telescope provide an independent, consistent measure of the neutron star radius. Theoretical many-body studies of neutron matter reinforce these estimates of neutron star radii. Studies using parameterized dense matter equations of state (EOSs) reveal several EOS-independent relations connecting global neutron star properties. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 71 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":" ","pages":""},"PeriodicalIF":12.4,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48542110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-25DOI: 10.1146/annurev-nucl-102419-033642
A. Tumino, C. Bertulani, M. Cognata, L. Lamia, R. Pizzone, S. Romano, S. Typel
The Trojan Horse Method (THM) represents an indirect path to determine the bare nucleus astrophysical S-factor for reactions among charged particles at astrophysical energies. This is achieved by measuring the quasi-free cross section of a suitable three-body process. The method is also suited to study neutron-induced reactions, especially in the case of radioactive ion beams. A comprehensive review of the theoretical as well as experimental features behind the THM is presented here. An overview is given of some recent applications to demonstrate the method's practical use for reactions that have a great impact on selected astrophysical scenarios. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 71 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"The Trojan Horse Method: A Nuclear Physics Tool for Astrophysics","authors":"A. Tumino, C. Bertulani, M. Cognata, L. Lamia, R. Pizzone, S. Romano, S. Typel","doi":"10.1146/annurev-nucl-102419-033642","DOIUrl":"https://doi.org/10.1146/annurev-nucl-102419-033642","url":null,"abstract":"The Trojan Horse Method (THM) represents an indirect path to determine the bare nucleus astrophysical S-factor for reactions among charged particles at astrophysical energies. This is achieved by measuring the quasi-free cross section of a suitable three-body process. The method is also suited to study neutron-induced reactions, especially in the case of radioactive ion beams. A comprehensive review of the theoretical as well as experimental features behind the THM is presented here. An overview is given of some recent applications to demonstrate the method's practical use for reactions that have a great impact on selected astrophysical scenarios. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 71 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":" ","pages":""},"PeriodicalIF":12.4,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47571700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-14DOI: 10.1146/annurev-nucl-110320-051823
Mathew Graham, C. Hearty, Mike Williams
Dark matter particles may interact with other dark matter particles via a new force mediated by a dark photon, A′, which would be the dark-sector analog to the ordinary photon of electromagnetism. The dark photon can obtain a highly suppressed mixing-induced coupling to the electromagnetic current, providing a portal through which dark photons can interact with ordinary matter. This review focuses on A′ scenarios that are potentially accessible to accelerator-based experiments. We summarize the existing constraints placed by such experiments on dark photons, highlight what could be observed in the near future, and discuss the major experimental challenges that must be overcome to improve sensitivities. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 71 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Searches for Dark Photons at Accelerators","authors":"Mathew Graham, C. Hearty, Mike Williams","doi":"10.1146/annurev-nucl-110320-051823","DOIUrl":"https://doi.org/10.1146/annurev-nucl-110320-051823","url":null,"abstract":"Dark matter particles may interact with other dark matter particles via a new force mediated by a dark photon, A′, which would be the dark-sector analog to the ordinary photon of electromagnetism. The dark photon can obtain a highly suppressed mixing-induced coupling to the electromagnetic current, providing a portal through which dark photons can interact with ordinary matter. This review focuses on A′ scenarios that are potentially accessible to accelerator-based experiments. We summarize the existing constraints placed by such experiments on dark photons, highlight what could be observed in the near future, and discuss the major experimental challenges that must be overcome to improve sensitivities. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 71 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":" ","pages":""},"PeriodicalIF":12.4,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47455999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-26DOI: 10.1146/annurev-nucl-102419-032845
A. Kievsky, M. Gattobigio, L. Girlanda, M. Viviani
Physical systems characterized by a shallow two-body bound or virtual state are governed at large distances by continuous scale invariance, which is broken into discrete scale invariance when three...
{"title":"Efimov Physics and Connections to Nuclear Physics","authors":"A. Kievsky, M. Gattobigio, L. Girlanda, M. Viviani","doi":"10.1146/annurev-nucl-102419-032845","DOIUrl":"https://doi.org/10.1146/annurev-nucl-102419-032845","url":null,"abstract":"Physical systems characterized by a shallow two-body bound or virtual state are governed at large distances by continuous scale invariance, which is broken into discrete scale invariance when three...","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":" ","pages":""},"PeriodicalIF":12.4,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41615522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-09DOI: 10.1146/annurev-nucl-020821-035016
S. Vahsen, C. O’Hare, D. Loomba
Searches for dark matter–induced recoils have made impressive advances in the last few years. Yet the field is confronted by several outstanding problems. First, the inevitable background of solar neutrinos will soon inhibit the conclusive identification of many dark matter models. Second, and more fundamentally, current experiments have no practical way of confirming a detected signal's Galactic origin. The concept of directional detection addresses both of these issues while offering opportunities to study novel dark matter– and neutrino-related physics. The concept remains experimentally challenging, but gas time projection chambers are an increasingly attractive option and, when properly configured, would allow directional measurements of both nuclear and electron recoils. In this review, we reassess the required detector performance and survey relevant technologies. Fortuitously, the highly segmented detectors required to achieve good directionality also enable several fundamental and applied physics measurements. We comment on near-term challenges and how the field could be advanced. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 71 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Directional Recoil Detection","authors":"S. Vahsen, C. O’Hare, D. Loomba","doi":"10.1146/annurev-nucl-020821-035016","DOIUrl":"https://doi.org/10.1146/annurev-nucl-020821-035016","url":null,"abstract":"Searches for dark matter–induced recoils have made impressive advances in the last few years. Yet the field is confronted by several outstanding problems. First, the inevitable background of solar neutrinos will soon inhibit the conclusive identification of many dark matter models. Second, and more fundamentally, current experiments have no practical way of confirming a detected signal's Galactic origin. The concept of directional detection addresses both of these issues while offering opportunities to study novel dark matter– and neutrino-related physics. The concept remains experimentally challenging, but gas time projection chambers are an increasingly attractive option and, when properly configured, would allow directional measurements of both nuclear and electron recoils. In this review, we reassess the required detector performance and survey relevant technologies. Fortuitously, the highly segmented detectors required to achieve good directionality also enable several fundamental and applied physics measurements. We comment on near-term challenges and how the field could be advanced. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 71 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":" ","pages":""},"PeriodicalIF":12.4,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46072257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}