首页 > 最新文献

Archives of Foundry Engineering最新文献

英文 中文
The Influence of Wall Thickness and Mould Temperature on Structure and Properties of Thin Wall Ductile Iron Castings 壁厚和结晶器温度对薄壁球墨铸铁件组织和性能的影响
IF 0.6 Q3 Materials Science Pub Date : 2023-11-06 DOI: 10.24425/AFE.2019.127116
M. Górny, M. Kawalec, G. Witek, A. Rejek
The excellent property combination of thin wall ductile iron castings (TWDI), including thin wall alloyed cast iron (e.g. austenitic TWDI) has opened new horizons for cast iron to replace steel castings and forgings in many engineering applications with considerable cost benefits. TWDI is considered as a potential material for the preparation of light castings with good mechanical and utility properties, the cost of which is relatively low. In this study, unalloyed and high Ni-alloyed (25% Ni) spheroidal graphite cast iron, with an austenitic metallic matrix were investigated. The research was conducted for thin-walled iron castings with 2, 3 and 5mm wall thickness, using different mould temperature (20°C, and 160°C) to achieve various cooling rates. The metallographic examinations i.e. characteristic of graphite nodules, metallic matrix, and primary grains of austenite dendrites (in high-nickel NTWDI) and mechanical properties were investigated. The study shows that homogeneity of the casting structure of thin-walled castings varies when changing the wall thickness and mould temperature. Finally, mechanical properties of thin-walled ductile iron castings with ferritic-pearlitic and austenitic metallic matrix have been shown.
薄壁球墨铸铁(TWDI)的优异性能组合,包括薄壁合金铸铁(如奥氏体TWDI),为铸铁在许多工程应用中取代钢铸件和锻件开辟了新的领域,具有可观的成本效益。TWDI被认为是制备轻质铸件的潜在材料,具有良好的机械性能和实用性能,其成本相对较低。本研究研究了奥氏体基体的非合金和高镍合金(25% Ni)球墨铸铁。对壁厚为2,3和5mm的薄壁铸铁件进行了研究,使用不同的模具温度(20°C和160°C)来实现不同的冷却速度。研究了高镍NTWDI中奥氏体枝晶的石墨结节、金属基体和初生晶粒特征及其力学性能。研究表明,随着壁厚和模具温度的变化,薄壁铸件组织的均匀性发生变化。最后,研究了铁素体-珠光体和奥氏体金属基体薄壁球墨铸铁件的力学性能。
{"title":"The Influence of Wall Thickness and Mould Temperature on Structure and Properties of Thin Wall Ductile Iron Castings","authors":"M. Górny, M. Kawalec, G. Witek, A. Rejek","doi":"10.24425/AFE.2019.127116","DOIUrl":"https://doi.org/10.24425/AFE.2019.127116","url":null,"abstract":"The excellent property combination of thin wall ductile iron castings (TWDI), including thin wall alloyed cast iron (e.g. austenitic TWDI) has opened new horizons for cast iron to replace steel castings and forgings in many engineering applications with considerable cost benefits. TWDI is considered as a potential material for the preparation of light castings with good mechanical and utility properties, the cost of which is relatively low. In this study, unalloyed and high Ni-alloyed (25% Ni) spheroidal graphite cast iron, with an austenitic metallic matrix were investigated. The research was conducted for thin-walled iron castings with 2, 3 and 5mm wall thickness, using different mould temperature (20°C, and 160°C) to achieve various cooling rates. The metallographic examinations i.e. characteristic of graphite nodules, metallic matrix, and primary grains of austenite dendrites (in high-nickel NTWDI) and mechanical properties were investigated. The study shows that homogeneity of the casting structure of thin-walled castings varies when changing the wall thickness and mould temperature. Finally, mechanical properties of thin-walled ductile iron castings with ferritic-pearlitic and austenitic metallic matrix have been shown.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68944687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Estimation of Mold Filling Ability and Volume Deficit Characteristics of Cast Al-Si Alloys 铸铝硅合金充型能力及体积缺陷特性的估计
IF 0.6 Q3 Materials Science Pub Date : 2023-11-06 DOI: 10.24425/afe.2019.127140
S. Santhi, S. Vadayar, S. Srinivasan
Production of defect free castings requires good understanding of casting characteristics like mold filling ability and volume deficit characteristic. Pin test piece with cylindrical cores proposed by Engler and Ellerbrok was used to study the mold filling ability. Volume deficit characteristics experiments were conducted using the method designed by Engler. Alloy composition, Mold coat and Pouring temperature were considered as process parameters for the present study and experimental plan has been taken up through design of experiments. The alloy composition is most significant in influencing the mold filling ability, where as pouring temperature is for volume deficit. The Correlation Co-efficient value obtained is -0.98901 indicating strong a negative relation between mold filling ability and volume deficit characteristics. Negative values indicate a relationship between mold filling ability and volume deficit such that as values for mold filling ability increase, for volume deficit decrease.
生产无缺陷铸件需要很好地了解铸件的特性,如充型能力和体积缺陷特性。采用Engler和Ellerbrok提出的圆柱形芯销试件对充型能力进行了研究。采用Engler设计的方法进行了体积亏缺特性实验。本研究以合金成分、铸型涂层和浇注温度为工艺参数,通过试验设计确定了试验方案。合金成分对充型能力的影响最为显著,而浇注温度对体积缺陷影响最大。得到的相关系数值为-0.98901,表明充型能力与体积亏缺特性之间存在较强的负相关关系。负值表示充模能力和体积亏缺之间的关系,例如充模能力值增加,体积亏缺值减少。
{"title":"Estimation of Mold Filling Ability and Volume Deficit Characteristics of Cast Al-Si Alloys","authors":"S. Santhi, S. Vadayar, S. Srinivasan","doi":"10.24425/afe.2019.127140","DOIUrl":"https://doi.org/10.24425/afe.2019.127140","url":null,"abstract":"Production of defect free castings requires good understanding of casting characteristics like mold filling ability and volume deficit characteristic. Pin test piece with cylindrical cores proposed by Engler and Ellerbrok was used to study the mold filling ability. Volume deficit characteristics experiments were conducted using the method designed by Engler. Alloy composition, Mold coat and Pouring temperature were considered as process parameters for the present study and experimental plan has been taken up through design of experiments. The alloy composition is most significant in influencing the mold filling ability, where as pouring temperature is for volume deficit. The Correlation Co-efficient value obtained is -0.98901 indicating strong a negative relation between mold filling ability and volume deficit characteristics. Negative values indicate a relationship between mold filling ability and volume deficit such that as values for mold filling ability increase, for volume deficit decrease.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68944814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of the Proportion of Charge from Waste Materials on the Quality of High Pressure Castings 废料装药比例对高压铸件质量的影响
Q3 Materials Science Pub Date : 2023-11-06 DOI: 10.24425/afe.2019.127110
P. Schlafka, A.W. Bydałek
Nowadays, the most popular production method for manufacturing high quality casts of aluminium alloys is the hot and cold chamber die casting. Die casts made of hypereutectoid silumin Silafont 36 AlSi9Mg are used for construction elements in the automotive industry. The influence of the metal input and circulating scrap proportion on porosity and mechanical properties of the cast has been examined and the results have been shown in this article. A little porosity in samples has not influenced the details strength and the addition of the circulating scrap has contributed to the growth of the maximum tensile force. Introducing 80% of the circulating scrap has caused great porosity which led to reduce the strength of the detail. The proportion of 40% of the metal input and 60% of the circulating scrap is a configuration safe for the details quality in terms of porosity and mechanical strength.
{"title":"The Influence of the Proportion of Charge from Waste Materials on the Quality of High Pressure Castings","authors":"P. Schlafka, A.W. Bydałek","doi":"10.24425/afe.2019.127110","DOIUrl":"https://doi.org/10.24425/afe.2019.127110","url":null,"abstract":"Nowadays, the most popular production method for manufacturing high quality casts of aluminium alloys is the hot and cold chamber die casting. Die casts made of hypereutectoid silumin Silafont 36 AlSi9Mg are used for construction elements in the automotive industry. The influence of the metal input and circulating scrap proportion on porosity and mechanical properties of the cast has been examined and the results have been shown in this article. A little porosity in samples has not influenced the details strength and the addition of the circulating scrap has contributed to the growth of the maximum tensile force. Introducing 80% of the circulating scrap has caused great porosity which led to reduce the strength of the detail. The proportion of 40% of the metal input and 60% of the circulating scrap is a configuration safe for the details quality in terms of porosity and mechanical strength.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135544381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Increasing Precision and Yield in Casting Production by Simulation of the Solidification Process Based on Realistic Material Data Evaluated from Thermal Analysis (Using the ATAS MetStar System) 基于热分析评估的真实材料数据的凝固过程模拟提高铸件生产的精度和成品率(使用ATAS MetStar系统)
Q3 Materials Science Pub Date : 2023-11-06 DOI: 10.24425/afe.2019.127104
P-E Persson, Z. Ignaszak, H. Fransson, V. Kropotkin, R. Andersson, A. Kump
The conducted work shows and confirms how thermal analysis of grey and ductile iron is an important source for calculating metallurgical data to be used as input to increase the precision in simulation of cooling and solidification of cast iron. The aim with the methodology is to achieve a higher quality in the prediction of macro– and micro porosity in castings. As comparison objects standard type of sampling cups for thermal analysis (solidification module M ≈ 0.6 cm) is used. The results from thermal analysis elaborated with the ATAS MetStar system are evaluated parallel with the material quality (including tendency to external and internal defects) of the tested specimen. Significant temperatures and calculated quality parameters are evaluated in the ATAS MetStar system and used as input to calibrate the density curve as temperature function in NovaFlow&Solid simulation system. The modified data are imported to the NovaFlow&Solid simulation system and compared with real results.
{"title":"Increasing Precision and Yield in Casting Production by Simulation of the Solidification Process Based on Realistic Material Data Evaluated from Thermal Analysis (Using the ATAS MetStar System)","authors":"P-E Persson, Z. Ignaszak, H. Fransson, V. Kropotkin, R. Andersson, A. Kump","doi":"10.24425/afe.2019.127104","DOIUrl":"https://doi.org/10.24425/afe.2019.127104","url":null,"abstract":"The conducted work shows and confirms how thermal analysis of grey and ductile iron is an important source for calculating metallurgical data to be used as input to increase the precision in simulation of cooling and solidification of cast iron. The aim with the methodology is to achieve a higher quality in the prediction of macro– and micro porosity in castings. As comparison objects standard type of sampling cups for thermal analysis (solidification module M ≈ 0.6 cm) is used. The results from thermal analysis elaborated with the ATAS MetStar system are evaluated parallel with the material quality (including tendency to external and internal defects) of the tested specimen. Significant temperatures and calculated quality parameters are evaluated in the ATAS MetStar system and used as input to calibrate the density curve as temperature function in NovaFlow&Solid simulation system. The modified data are imported to the NovaFlow&Solid simulation system and compared with real results.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135544883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Effect of Thermal Nodes Reduction in Wall Connections of the Charge-Handling Furnace Grates on Thermal Stresses 加料炉篦壁连接热节点减少对热应力的影响
Q3 Materials Science Pub Date : 2023-11-06 DOI: 10.24425/afe.2021.138665
The paper presents FEM approach for comparative analyses of wall connections applied in cast grates used for charge transport in furnaces for heat and thermal-chemical treatment. Nine variants of wall connection were compared in term of temperature differences arising during cooling process and stresses caused by the differences. The presented comparative methodology consists of two steps. In first, the calculations of heat flow during cooling in oil for analysed constructions were carried out. As a result the temperature distributions vs cooling time in cross-sections of analysed wall connections were determined. In the second step, based on heat flow analyses, calculations of stresses caused by the temperature gradient in the wall connections were performed. The conducted calculations were used to evaluate an impact of thermal nodes reduction on maximum temperature differences and to quantitative comparison of various base design of the cast grate wall connection in term of level of thermal stresses and their distribution during cooling process. The obtained results clearly show which solution of wall connection should be applied in cast grate used for charge transport in real constructions and which of them should be avoided because the risk of high thermal stresses forming during cooling process
{"title":"Effect of Thermal Nodes Reduction in Wall Connections of the Charge-Handling Furnace Grates on Thermal Stresses","authors":"","doi":"10.24425/afe.2021.138665","DOIUrl":"https://doi.org/10.24425/afe.2021.138665","url":null,"abstract":"The paper presents FEM approach for comparative analyses of wall connections applied in cast grates used for charge transport in furnaces for heat and thermal-chemical treatment. Nine variants of wall connection were compared in term of temperature differences arising during cooling process and stresses caused by the differences. The presented comparative methodology consists of two steps. In first, the calculations of heat flow during cooling in oil for analysed constructions were carried out. As a result the temperature distributions vs cooling time in cross-sections of analysed wall connections were determined. In the second step, based on heat flow analyses, calculations of stresses caused by the temperature gradient in the wall connections were performed. The conducted calculations were used to evaluate an impact of thermal nodes reduction on maximum temperature differences and to quantitative comparison of various base design of the cast grate wall connection in term of level of thermal stresses and their distribution during cooling process. The obtained results clearly show which solution of wall connection should be applied in cast grate used for charge transport in real constructions and which of them should be avoided because the risk of high thermal stresses forming during cooling process","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135633920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of the Interface of Carbon Nanotube-Reinforced Aluminum Matrix Composites on the Mechanical Properties – a Review 碳纳米管增强铝基复合材料界面对力学性能的影响
Q3 Materials Science Pub Date : 2023-11-06 DOI: 10.24425/afe.2022.140213
Carbon nanotubes (CNTs) are a good reinforcement for metal matrix composite materials; they can significantly improve the mechanical, wear-resistant, and heat-resistant properties of the materials. Due to the differences in the atomic structure and surface energy between CNTs and aluminum-based materials, the bonding interface effect that occurs when nanoscale CNTs are added to the aluminum alloy system as a reinforcement becomes more pronounced
{"title":"Influence of the Interface of Carbon Nanotube-Reinforced Aluminum Matrix Composites on the Mechanical Properties – a Review","authors":"","doi":"10.24425/afe.2022.140213","DOIUrl":"https://doi.org/10.24425/afe.2022.140213","url":null,"abstract":"Carbon nanotubes (CNTs) are a good reinforcement for metal matrix composite materials; they can significantly improve the mechanical, wear-resistant, and heat-resistant properties of the materials. Due to the differences in the atomic structure and surface energy between CNTs and aluminum-based materials, the bonding interface effect that occurs when nanoscale CNTs are added to the aluminum alloy system as a reinforcement becomes more pronounced","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure and Microhardness of Piston Alloy Al-10Si-2Cu Irradiated by Pulsed Electron Beam 脉冲电子束辐照活塞合金Al-10Si-2Cu的显微组织和显微硬度
Q3 Materials Science Pub Date : 2023-11-06 DOI: 10.24425/afe.2020.133336
The paper presents the research data on structure, phase composition, defect substructure state, and microhardness of surface layers in the piston alloy Al-10wt%Si-2wt%Cu irradiated by an electron beam with various energy densities and pulse times. An important finding to emerge from the study is that the processing by an electron beam with an energy density of 10 J/cm 2 brings about slight surface melting, whereas a weak thermal impact of an electron beam hardly changes the phase composition. Once an energy density of an electron beam is set 30 J/cm 2 , intermetallic compounds dissolve and numerous micropores arise. Irradiating by an electron beam with an energy density of 50 J/cm 2 , randomly located microcracks are detected on the treated surface with no regard to a pulse time. A structure of high-speed cellular crystallization with cells from 500 to 600 nm forms in the surface layer. A thickness of the modified layer is related to a beam energy density. As a beam energy density goes up, a thickness of a high-speed cellular crystallization layer increases. Atoms of Si, Cu, Ni, as well as a small quantity of Fe and Mg are detected in the surface, in thin layers surrounding crystallization cells. In a layer 60-80 µm below the irradiated surface, in material between high-speed crystallization cells, there are Si atoms and an insignificant number of Cu atoms. An analysis of a deeper material part has shown a structure similar to the as cast alloy. A drop of microhardness – if compared with the as cast material – is reported at an energy density of 10 J/cm 2 because an energy amount supplied by an electron beam to the alloy surface is insufficient for melting of the material and dissolution of the intermetallic phase. A raise of a beam energy density up to 20-50 J/cm 2 causes a max increase of microhardness up to 1.13 GPa for 40 J/cm 2 , 50  s, and up to 1.16 GPa for 40 J/cm 2 , 200  s.
{"title":"Microstructure and Microhardness of Piston Alloy Al-10Si-2Cu Irradiated by Pulsed Electron Beam","authors":"","doi":"10.24425/afe.2020.133336","DOIUrl":"https://doi.org/10.24425/afe.2020.133336","url":null,"abstract":"The paper presents the research data on structure, phase composition, defect substructure state, and microhardness of surface layers in the piston alloy Al-10wt%Si-2wt%Cu irradiated by an electron beam with various energy densities and pulse times. An important finding to emerge from the study is that the processing by an electron beam with an energy density of 10 J/cm 2 brings about slight surface melting, whereas a weak thermal impact of an electron beam hardly changes the phase composition. Once an energy density of an electron beam is set 30 J/cm 2 , intermetallic compounds dissolve and numerous micropores arise. Irradiating by an electron beam with an energy density of 50 J/cm 2 , randomly located microcracks are detected on the treated surface with no regard to a pulse time. A structure of high-speed cellular crystallization with cells from 500 to 600 nm forms in the surface layer. A thickness of the modified layer is related to a beam energy density. As a beam energy density goes up, a thickness of a high-speed cellular crystallization layer increases. Atoms of Si, Cu, Ni, as well as a small quantity of Fe and Mg are detected in the surface, in thin layers surrounding crystallization cells. In a layer 60-80 µm below the irradiated surface, in material between high-speed crystallization cells, there are Si atoms and an insignificant number of Cu atoms. An analysis of a deeper material part has shown a structure similar to the as cast alloy. A drop of microhardness – if compared with the as cast material – is reported at an energy density of 10 J/cm 2 because an energy amount supplied by an electron beam to the alloy surface is insufficient for melting of the material and dissolution of the intermetallic phase. A raise of a beam energy density up to 20-50 J/cm 2 causes a max increase of microhardness up to 1.13 GPa for 40 J/cm 2 , 50  s, and up to 1.16 GPa for 40 J/cm 2 , 200  s.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Microstructure and Properties of Laser Additive Deposited of Nickel Base Super Alloy Inconel 625 激光沉积镍基高温合金Inconel 625的组织与性能
Q3 Materials Science Pub Date : 2023-11-06 DOI: 10.24425/afe.2020.133330
Article presents results of laser overlaying welding of metal powder Inconel 625. Laser metal deposition by laser engineered net shaping (LENS) is modern manufacturing process for low scale production series. High alloy materials such as Inconel 625 nickel based super alloy have high thermal resistant and good mechanical properties, nevertheless it's hard to machining. Plastic forming of high alloy materials such as Inconel 625 are difficult. Due to high strength characteristic performing components made from Inconel alloy are complex, selective melting of metallic powder using laser beam are alternative method for Inconel tooling. Paper present research of additive deposition of spatial structure made from Inconel 625 metallic powder with CO 2 laser and integrated powder feeder. Microstructure analysis as well as strength characteristic in normal condition and at elevated temperature was performed. Possibility of using LENS technology for manufacturing components dedicated for work in high temperature conditions are presented.
{"title":"Microstructure and Properties of Laser Additive Deposited of Nickel Base Super Alloy Inconel 625","authors":"","doi":"10.24425/afe.2020.133330","DOIUrl":"https://doi.org/10.24425/afe.2020.133330","url":null,"abstract":"Article presents results of laser overlaying welding of metal powder Inconel 625. Laser metal deposition by laser engineered net shaping (LENS) is modern manufacturing process for low scale production series. High alloy materials such as Inconel 625 nickel based super alloy have high thermal resistant and good mechanical properties, nevertheless it's hard to machining. Plastic forming of high alloy materials such as Inconel 625 are difficult. Due to high strength characteristic performing components made from Inconel alloy are complex, selective melting of metallic powder using laser beam are alternative method for Inconel tooling. Paper present research of additive deposition of spatial structure made from Inconel 625 metallic powder with CO 2 laser and integrated powder feeder. Microstructure analysis as well as strength characteristic in normal condition and at elevated temperature was performed. Possibility of using LENS technology for manufacturing components dedicated for work in high temperature conditions are presented.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Effect of Methyl Silicone Oil to Moisture Resistance of Sodium Silicate Sands by Microwave Hardening 甲基硅油对微波硬化硅酸钠砂耐湿性的影响
Q3 Materials Science Pub Date : 2023-11-06 DOI: 10.24425/afe.2022.140215
The sodium silicate sands hardened by microwave have the advantages of high strength, fast hardening speed and low residual strength with the lower addition of sodium silicate. However, the sodium ion in the sands will absorb moisture from the atmosphere, which would lead to lower storing strength, so the protection of a bonding bridge of sodium silicate between the sands is crucial. Methyl silicone oil is a cheap hydrophobic industrial raw material. The influence of the addition amount of methyl silicone oil modifier on compressive strength and moisture absorption of sodium silicate sands was studied in this work. The microscopic analysis of modified before and after sodium silicate sands has been carried on employing scanning electron microscopy(SEM) and energy spectrum analysis(EDS). The results showed that the strength of modified sodium silicate sands was significantly higher than that of unmodified sodium silicate sands, and the best addition of methyl silicone oil in the quantity of sodium silicate was 15%. It was also found that the bonding bridge of modified sodium silicate sands was the density and the adhesive film was smooth, and the methyl silicone oil was completely covered on the surface of the sodium silicate bonding bridge to protect it.
{"title":"Effect of Methyl Silicone Oil to Moisture Resistance of Sodium Silicate Sands by Microwave Hardening","authors":"","doi":"10.24425/afe.2022.140215","DOIUrl":"https://doi.org/10.24425/afe.2022.140215","url":null,"abstract":"The sodium silicate sands hardened by microwave have the advantages of high strength, fast hardening speed and low residual strength with the lower addition of sodium silicate. However, the sodium ion in the sands will absorb moisture from the atmosphere, which would lead to lower storing strength, so the protection of a bonding bridge of sodium silicate between the sands is crucial. Methyl silicone oil is a cheap hydrophobic industrial raw material. The influence of the addition amount of methyl silicone oil modifier on compressive strength and moisture absorption of sodium silicate sands was studied in this work. The microscopic analysis of modified before and after sodium silicate sands has been carried on employing scanning electron microscopy(SEM) and energy spectrum analysis(EDS). The results showed that the strength of modified sodium silicate sands was significantly higher than that of unmodified sodium silicate sands, and the best addition of methyl silicone oil in the quantity of sodium silicate was 15%. It was also found that the bonding bridge of modified sodium silicate sands was the density and the adhesive film was smooth, and the methyl silicone oil was completely covered on the surface of the sodium silicate bonding bridge to protect it.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135636576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of Operating Performance of a Cast-Iron Heat Exchanger by Application of a Copper Alloy Coating 应用铜合金涂层改善铸铁换热器的运行性能
Q3 Materials Science Pub Date : 2023-11-06 DOI: 10.24425/afe.2019.127144
M. Mróz, A.W. Orłowicz, M. Tupaj, M. Jacek-Burek, M. Radoń, M. Kawiński
The paper deals with possibility to improve operating performance of cast-iron heat exchangers by providing them with a copper alloy (CuTi2Cr) with the use of the flame spraying method. A test exchanger was cast of a gray cast iron with vermicular graphite in ferritic-pearlitic matrix obtained in production conditions at KAW-MET Iron Foundry with the wire method used to vermicularize the material. The test samples were two plates cast in sand molds, of which one was given a flame-sprayed CuTi2Cr coat on one side. The operating performance of such model cast-iron heat exchangers, with and without CuTi2Cr coating, was tested on a set-up for determining the heat flow rate (thermal power) transferred by the heat exchanger to environment. The obtained results indicate that the value of the heat flow rate characterizing the CuTi2Cr-coated cast-iron heat exchanger was by 10% higher compared to the flow rate of heat conveyed to environment by the heat exchanger without coating.
{"title":"Improvement of Operating Performance of a Cast-Iron Heat Exchanger by Application of a Copper Alloy Coating","authors":"M. Mróz, A.W. Orłowicz, M. Tupaj, M. Jacek-Burek, M. Radoń, M. Kawiński","doi":"10.24425/afe.2019.127144","DOIUrl":"https://doi.org/10.24425/afe.2019.127144","url":null,"abstract":"The paper deals with possibility to improve operating performance of cast-iron heat exchangers by providing them with a copper alloy (CuTi2Cr) with the use of the flame spraying method. A test exchanger was cast of a gray cast iron with vermicular graphite in ferritic-pearlitic matrix obtained in production conditions at KAW-MET Iron Foundry with the wire method used to vermicularize the material. The test samples were two plates cast in sand molds, of which one was given a flame-sprayed CuTi2Cr coat on one side. The operating performance of such model cast-iron heat exchangers, with and without CuTi2Cr coating, was tested on a set-up for determining the heat flow rate (thermal power) transferred by the heat exchanger to environment. The obtained results indicate that the value of the heat flow rate characterizing the CuTi2Cr-coated cast-iron heat exchanger was by 10% higher compared to the flow rate of heat conveyed to environment by the heat exchanger without coating.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135636761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Archives of Foundry Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1