Four new bioactive aryl triester derivatives of glycerol and benzoic acids were synthesized. The synthetic compounds were studied for their antimicrobial and urease inhibition activities. Esterification was carried out by using carbonyldiimidazole to enhance the acyl elimination addition reaction with benzoic acid derivatives. The structure of triglycerides were studied by EI-MS, 1H, 13C-NMR, FT-IR and elemental analysis. All synthetic compounds showed urease inhibition activity with highest value of IC50 value 22.4 ± 0.45 μM which is nearest to standard thiourea IC50 value (21.6 ± 0.12 μM). Except compound (3d), all other compounds exhibited antimicrobial activity against Streptococcus pneumoniae, Staphylococcus epidermidis, Bacillus pumilus, Escherichia coli, Pseudomonas aeruginosa and Candida albican.
Video Clip of Methodology:
7 min 59 sec Full Screen Alternate
In this study, the hyperglycemic potential of Elaeagnus angustifolia fruit polysaccharide in both normal healthy and streptozotocin-induced diabetic mice was investigated. Results showed no significant effect of E. angustifolia fruit polysaccharide on blood glucose level in normal control group, while E. angustifolia significantly suppressed the rise in blood glucose of diabetic mice. In addition, in the first two weeks of administration, the body weight was decreased both in negative control group and E. angustifolia groups, however, E. angustifolia (800 mg/kg) was recovered to the began weight in the fourth week. E. angustifolia (800 mg/kg) could markedly reduce the levels of total cholesterol, triglyceride and improve the level of high density lipoprotein-cholesterol. The results suggest that E. angustifolia could be considered as an ingredient of functional foods for diabetes.
Video Clip of Methodology:
10 min 19 sec Full Screen Alternate
The aim of this study was to evaluate the antibacterial activity of Origanum ramonense essential oil extracted from the air-dried leaves against β-lactamase and extended-spectrum β-lactamase obtained from the patients with urinary tract infection. The essential oil was extracted by hydrodistillation and analyzed by GC–MS. In vitro antibacterial activity was studied using disc diffusion and microdilution methods. Twenty compounds were identified representing 97.8% of the total oil. The major components were carvacrol (84.6%), p-cymene (4.3%) and γ-terpinene (3.3%). The oil showed a broad spectrum of antibacterial activity against all tested isolates. Staphylococcus aureus, S. epidermidis, Klebsiella pneumoniae and Enterobacter aerogenes had the lowest minimum inhibitory concentration values (0.015 µg/mL) followed by Escherichia coli (0.14 µg/mL). The lowest susceptible strains to oil were Pseudomonas aeruginosa, Proteus mirabilis, E. coli 25922 and P. aeruginosa 10145. The bacteriostatic and bactericidal effects at concentrations as low as 0.015 µg/mL indicated the potent antibacterial activity of O. ramonense.
Video Clip of Methodology:
Disc Diffusion method: 2 min 16 sec Full Screen Alternate
In a study designed to determine the antibacterial potential of endophytic fungi inhabiting plants of Cyperaceae family, 72 morphologically distinct endophytic fungi were isolated from six plants and their antibacterial activities against two Gram positive and three Gram negative pathogenic bacterial species were examined. Two antibacterial metabolites from two endophytes were also isolated and their chemical structures and minimum inhibitory concentrations were determined. Sixty six fungal extracts (92%) were active against at least one bacterium tested. Butyrolactone I isolated from the Aspergillus terreus and 9-epi viridol isolated from Trichoderma virens exhibited MIC values in the range 128-256 µg/mL against Gram positive Bacillus subtilits, Staphylococcus aureus, methicillin resistant S. aureus (MRSA) and Escherichia coli. Both compounds were inactive against other micro-organisms tested. This study confirmed that Cyperaceae plants harbor numerous endophytes that produce antibacterial metabolites active against both Gram positive and, to a lesser extent, Gram negative bacteria.
Video Clip of Methodology:
Column Chromatogrpahy: 15 min 34 sec Full Screen Alternate
The effects of sevoflurane postconditioning on myocardial oncosis and autophagy were studied in 32 isolated rat heart of ischemia-reperfusion injury. The hearts were perfused by: a) Sham surgery group, b) simple sevoflurane group, c) simple ischemia-reperfusion group (I/R) group, and d) sevoflurane postconditioning group. The ratios between the gray density values of the target bands to the gray density value of GADPH were used to reflect the Beclin-1, LC3II/I, and porimin expression levels. The LC3II/I level in the sevoflurane postconditioning group was lower than the level in the I/R group. The porimin level in the sevoflurane postconditioning group was lower than the level in the I/R group. The myocardial infarction range in the sevoflurane postconditioning group (33 ± 5%) was significantly diminished compared with the range in the I/R group (53 ± 6%) (p<0.05). Sevoflurane decreased the occurrence of oncosis and alleviated myocardial ischemia-reperfusion injury by inhibiting MPTP opening.
Video Clip of Methodology:
14 min 31 sec Full Screen Alternate