首页 > 最新文献

Physica status solidi (A): Applied research最新文献

英文 中文
Influence of Different Nitrogen Plasmas Exposures of H‐Diamond (100) Surfaces on Ambient Oxygen Adsorption, Nitrogen Bonding and Thermal Stability Studied by X‐Ray Photoelectron Spectroscopy 用X射线光电子能谱研究了H -金刚石(100)表面不同氮等离子体暴露对环境氧吸附、氮键和热稳定性的影响
Pub Date : 2023-07-01 DOI: 10.1002/pssa.202300319
M. K. Kuntumalla, A. Hoffman
{"title":"Influence of Different Nitrogen Plasmas Exposures of H‐Diamond (100) Surfaces on Ambient Oxygen Adsorption, Nitrogen Bonding and Thermal Stability Studied by X‐Ray Photoelectron Spectroscopy","authors":"M. K. Kuntumalla, A. Hoffman","doi":"10.1002/pssa.202300319","DOIUrl":"https://doi.org/10.1002/pssa.202300319","url":null,"abstract":"","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72482297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Group‐IV Semiconductor Materials for Nanoelectronics and Cryogenic Electronics 纳米电子学和低温电子学用半导体材料
Pub Date : 2023-07-01 DOI: 10.1002/pssa.202300429
D. Hiller, R. Duffy, V. Georgiev, W. Weber
This Special Section of physica status solidi (a) covers presentations of Symposium I held at the 2022 Fall-EMRS Meeting in Warsaw, Poland. Group-IV semiconductors, namely Si, Ge, Sn and their compounds, are the most important materials in microand nanoelectronics but they will also play a key role in future quantum devices. This symposium aimed to share the latest research in the field of group-IV nanoelectronic materials and devices. Silicon (Si) is one of the most dominant semiconductor materials with versatile applications ranging from electronics over photovoltaics to sensors and actuators. Due to their intrinsically higher electron and hole mobility germanium (Ge) or silicongermanium (SiGe) are rapidly gaining interest in microand nanoelectronics. The same holds true for tin (Sn) and its alloys with the other group-IV semiconductors (e.g., GeSn). In current nanoelectronics research with device dimensions approaching the single-digit-nanometer scale, nanowires are often the building blocks of transistors. However, many processing methods and device concepts have to be adopted since nanostructures are generically subject to nano-size and quantum effects. These effects involve for instance quantum confinement, dielectric confinement, detrimental surface states, statistical issues of doping ultrasmall volumes, etc. This bears the risk to deteriorate the performance and reliability or even cause complete failure of the transistors. On the other hand, if fully understood, nano-size and quantum effects may open up new vistas for increased performance, reduced power consumption or even routes towards quantum computing. Generally, nanostructures have a high surface-to-volume ratio and their properties are often dominated by the surface. Therefore, an increased understanding of the physical and chemical properties of group-IV semiconductor nanostructure interfaces to metals and dielectrics is mandatory to control and optimize gate control, threshold voltage, ohmic contacts, carrier transport, etc. Finally, simulations and modelling are crucial for nanoelectronics, starting from ab-initio methods to model physical/ quantum-chemical properties of group-IV nanostructures to device simulations modelling transport and performance. There are in total four research articles in this Special Section: Knoch et al. investigate by simulations and experiments the influence of the oxide-channel interfaces on the switching behavior of cryogenic field-effect transistors as well as the possibility to use a different approach than conventional doping for ultrasmall Si-nanostructures (article number 2300069). Ratschinski et al. report about another alternative silicon doping method, similar to modulation doping of III–V semiconductors, that is based on Al-doped SiO2 shells around Si nanowires (article number 2300068). The authors reveal that the electrical resistance of the nanowires is thereby reduced by several orders of magnitude. In article number 2300066, Frentzen
本物理状态专题(a)涵盖了在波兰华沙举行的2022年秋季emrs会议上举行的研讨会I的演讲。第四族半导体,即Si, Ge, Sn及其化合物,是微电子和纳米电子学中最重要的材料,但它们也将在未来的量子器件中发挥关键作用。本次研讨会旨在分享第四族纳米电子材料和器件领域的最新研究成果。硅(Si)是最主要的半导体材料之一,具有广泛的应用,从电子到光伏到传感器和执行器。由于锗(Ge)或硅锗(SiGe)本身具有较高的电子和空穴迁移率,因此在微电子和纳米电子学领域迅速引起了人们的兴趣。这同样适用于锡(Sn)及其与其他iv族半导体(如GeSn)的合金。在目前的纳米电子学研究中,随着器件尺寸接近个位数纳米尺度,纳米线通常是晶体管的基本组成部分。然而,由于纳米结构通常受纳米尺寸和量子效应的影响,因此必须采用许多加工方法和器件概念。这些影响包括量子约束、介电约束、有害表面态、掺杂超小体积的统计问题等。这样做的风险是降低性能和可靠性,甚至导致晶体管完全失效。另一方面,如果完全理解,纳米尺寸和量子效应可能会为提高性能、降低功耗甚至量子计算开辟新的前景。通常,纳米结构具有较高的表面体积比,其性能往往由表面决定。因此,增加对第四族半导体纳米结构与金属和电介质界面的物理和化学性质的理解对于控制和优化栅极控制、阈值电压、欧姆接触、载流子输运等是必不可少的。最后,模拟和建模对纳米电子学至关重要,从从头算方法开始模拟第四族纳米结构的物理/量子化学性质,到模拟传输和性能的器件模拟。本专题共发表了四篇研究文章:Knoch等人通过模拟和实验研究了氧化物通道界面对低温场效应晶体管开关行为的影响,以及在超小型硅纳米结构中使用不同于传统掺杂方法的可能性(文章编号2300069)。Ratschinski等人报道了另一种替代硅掺杂方法,类似于III-V型半导体的调制掺杂,该方法基于硅纳米线周围掺杂al的SiO2壳层(文章号2300068)。作者揭示,纳米线的电阻因此降低了几个数量级。在2300066号文章中,Frentzen等人表明超薄硅量子阱的电子结构可以通过将其嵌入不同的介电介质中而发生位移,即SiO2 (n型)与Si3N4 (p型)的行为。因此,这种所谓的nessias效应完全避免了杂质掺杂。Galderisi等人研究了可重构场效应晶体管(RFET)开关行为的温度依赖性,并演示了这些纳米电子器件如何在80至475 K的极端温度范围内工作(文章编号2300019)。我们感谢本次研讨会的所有参与者,特别是受邀的演讲者、科学委员会成员、专题部分论文的作者和物理状态固体(a)的编辑。此外,我们感谢本次研讨会的赞助商欧洲纳米电子网络(ASCENTþ)的支持。
{"title":"Group‐IV Semiconductor Materials for Nanoelectronics and Cryogenic Electronics","authors":"D. Hiller, R. Duffy, V. Georgiev, W. Weber","doi":"10.1002/pssa.202300429","DOIUrl":"https://doi.org/10.1002/pssa.202300429","url":null,"abstract":"This Special Section of physica status solidi (a) covers presentations of Symposium I held at the 2022 Fall-EMRS Meeting in Warsaw, Poland. Group-IV semiconductors, namely Si, Ge, Sn and their compounds, are the most important materials in microand nanoelectronics but they will also play a key role in future quantum devices. This symposium aimed to share the latest research in the field of group-IV nanoelectronic materials and devices. Silicon (Si) is one of the most dominant semiconductor materials with versatile applications ranging from electronics over photovoltaics to sensors and actuators. Due to their intrinsically higher electron and hole mobility germanium (Ge) or silicongermanium (SiGe) are rapidly gaining interest in microand nanoelectronics. The same holds true for tin (Sn) and its alloys with the other group-IV semiconductors (e.g., GeSn). In current nanoelectronics research with device dimensions approaching the single-digit-nanometer scale, nanowires are often the building blocks of transistors. However, many processing methods and device concepts have to be adopted since nanostructures are generically subject to nano-size and quantum effects. These effects involve for instance quantum confinement, dielectric confinement, detrimental surface states, statistical issues of doping ultrasmall volumes, etc. This bears the risk to deteriorate the performance and reliability or even cause complete failure of the transistors. On the other hand, if fully understood, nano-size and quantum effects may open up new vistas for increased performance, reduced power consumption or even routes towards quantum computing. Generally, nanostructures have a high surface-to-volume ratio and their properties are often dominated by the surface. Therefore, an increased understanding of the physical and chemical properties of group-IV semiconductor nanostructure interfaces to metals and dielectrics is mandatory to control and optimize gate control, threshold voltage, ohmic contacts, carrier transport, etc. Finally, simulations and modelling are crucial for nanoelectronics, starting from ab-initio methods to model physical/ quantum-chemical properties of group-IV nanostructures to device simulations modelling transport and performance. There are in total four research articles in this Special Section: Knoch et al. investigate by simulations and experiments the influence of the oxide-channel interfaces on the switching behavior of cryogenic field-effect transistors as well as the possibility to use a different approach than conventional doping for ultrasmall Si-nanostructures (article number 2300069). Ratschinski et al. report about another alternative silicon doping method, similar to modulation doping of III–V semiconductors, that is based on Al-doped SiO2 shells around Si nanowires (article number 2300068). The authors reveal that the electrical resistance of the nanowires is thereby reduced by several orders of magnitude. In article number 2300066, Frentzen","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81287019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effect of Low Energy Argon Ions Etching on the 4H–SiCOI Composite Substrate Prepared by Crystal‐Ion‐Slicing Technique 低能氩离子蚀刻对晶体离子切片技术制备的4H-SiCOI复合衬底的影响
Pub Date : 2023-06-29 DOI: 10.1002/pssa.202300288
Jintao Xu, W. Luo, Dailei Zhu, Gengyu Wang, Yuedong Wang, Y. Shuai, Chuangui Wu, W. Zhang
4H–SiC single‐crystal film is transferred to SiO2/Si insulating substrate by crystal‐ion‐slicing technology to form silicon carbide‐on‐insulator composite substrate, and the composite substrate is etched by low energy Ar+ ions irradiation. The amorphous oxide layer and defect layer are found on the surface of the exfoliated SiC film by using transmission electron microscopy and energy‐dispersive spectroscopy. Scanning electron microscopy, atomic force microscopy, and Raman spectroscopy are used to characterize the thickness, roughness, and crystal quality of the exfoliated SiC film. The result shows that the thickness of the film decreases from 1.238 to 0.911 μm, and the root mean square roughness decreases from 1.408 to 0.635 nm. Raman spectra show that the crystal quality of the SiC film is improved after etching. Moreover, the oxidation layer and defect layer on the surface of the SiC film can be quickly etched by Ar+ ions irradiation.
通过晶体离子切片技术将4H-SiC单晶薄膜转移到SiO2/Si绝缘衬底上,形成绝缘体上碳化硅复合衬底,并用低能Ar+离子辐照蚀刻复合衬底。通过透射电镜和能谱分析发现,剥离后的SiC薄膜表面存在非晶态氧化层和缺陷层。扫描电子显微镜、原子力显微镜和拉曼光谱用于表征剥离SiC薄膜的厚度、粗糙度和晶体质量。结果表明:薄膜厚度从1.238 μm减小到0.911 μm,均方根粗糙度从1.408 nm减小到0.635 nm;拉曼光谱结果表明,蚀刻后SiC薄膜的晶体质量得到了改善。此外,Ar+离子辐照可以快速蚀刻SiC膜表面的氧化层和缺陷层。
{"title":"Effect of Low Energy Argon Ions Etching on the 4H–SiCOI Composite Substrate Prepared by Crystal‐Ion‐Slicing Technique","authors":"Jintao Xu, W. Luo, Dailei Zhu, Gengyu Wang, Yuedong Wang, Y. Shuai, Chuangui Wu, W. Zhang","doi":"10.1002/pssa.202300288","DOIUrl":"https://doi.org/10.1002/pssa.202300288","url":null,"abstract":"4H–SiC single‐crystal film is transferred to SiO2/Si insulating substrate by crystal‐ion‐slicing technology to form silicon carbide‐on‐insulator composite substrate, and the composite substrate is etched by low energy Ar+ ions irradiation. The amorphous oxide layer and defect layer are found on the surface of the exfoliated SiC film by using transmission electron microscopy and energy‐dispersive spectroscopy. Scanning electron microscopy, atomic force microscopy, and Raman spectroscopy are used to characterize the thickness, roughness, and crystal quality of the exfoliated SiC film. The result shows that the thickness of the film decreases from 1.238 to 0.911 μm, and the root mean square roughness decreases from 1.408 to 0.635 nm. Raman spectra show that the crystal quality of the SiC film is improved after etching. Moreover, the oxidation layer and defect layer on the surface of the SiC film can be quickly etched by Ar+ ions irradiation.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79242668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
P(VDF/TrFE) Thin Film Piezoelectric Actuators Sealed Parylene C for Medical Micropumps 医用微泵用P(VDF/TrFE)薄膜压电驱动器密封聚对二甲苯C
Pub Date : 2023-06-29 DOI: 10.1002/pssa.202300250
Keigo Shikata, Y. Koshiba, S. Horike, K. Ishida
{"title":"P(VDF/TrFE) Thin Film Piezoelectric Actuators Sealed Parylene C for Medical Micropumps","authors":"Keigo Shikata, Y. Koshiba, S. Horike, K. Ishida","doi":"10.1002/pssa.202300250","DOIUrl":"https://doi.org/10.1002/pssa.202300250","url":null,"abstract":"","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87443853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Binary Addressable Optical Multiplexing Waveguides via Electrochromic Switching 基于电致变色开关的二进制可寻址光复用波导
Pub Date : 2023-06-28 DOI: 10.1002/pssa.202300177
Seon-Young Rhim, Max Heyl, Kurt Busch, E. List‐Kratochvil
{"title":"Binary Addressable Optical Multiplexing Waveguides via Electrochromic Switching","authors":"Seon-Young Rhim, Max Heyl, Kurt Busch, E. List‐Kratochvil","doi":"10.1002/pssa.202300177","DOIUrl":"https://doi.org/10.1002/pssa.202300177","url":null,"abstract":"","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87890355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigations on the Effect of Laser Texturing of Kapton Polyimide on the Piezoelectric Response of ZnO based Nanogenerators 激光织构卡普顿聚酰亚胺对ZnO基纳米发电机压电响应影响的研究
Pub Date : 2023-06-28 DOI: 10.1002/pssa.202300255
N. Purabiarao, T.K. Lahane, Jitesh Agarwal, Anshu Sahu, Vipul Singh, I. Palani
{"title":"Investigations on the Effect of Laser Texturing of Kapton Polyimide on the Piezoelectric Response of ZnO based Nanogenerators","authors":"N. Purabiarao, T.K. Lahane, Jitesh Agarwal, Anshu Sahu, Vipul Singh, I. Palani","doi":"10.1002/pssa.202300255","DOIUrl":"https://doi.org/10.1002/pssa.202300255","url":null,"abstract":"","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89583518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Doped Lateral Organic Photovoltaic Cells 掺杂横向有机光伏电池
Pub Date : 2023-06-28 DOI: 10.1002/pssa.202300108
Jaseela Palassery Ithikkal, S. Izawa, M. Hiramoto
{"title":"Doped Lateral Organic Photovoltaic Cells","authors":"Jaseela Palassery Ithikkal, S. Izawa, M. Hiramoto","doi":"10.1002/pssa.202300108","DOIUrl":"https://doi.org/10.1002/pssa.202300108","url":null,"abstract":"","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76881832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of Silver Ions on the Dielectric Dispersion Dipolar Relaxation Dynamics and Dielectric Breakdown Strength of Zinc Selenium Phosphate Glass System 银离子对锌硒磷酸盐玻璃体系介电色散偶极弛豫动力学和介电击穿强度的影响
Pub Date : 2023-06-28 DOI: 10.1002/pssa.202300282
G. V. Reddy, M. Kostrzewa, A. Sekhar, A. Ingram, A. Siva, Sesha Reddy, N. Venkatramaiah, G. N. Raju, V. Kumar, N. Veeraiah
Herein, a study on the dielectric properties of ZnO–P2O5–SeO2 glass ceramics containing varied contents of Ag2O is presented. Structural analysis of the samples by X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, Fourier transform infrared spectra, and optical absorption techniques indicated that the glasses are embedded with Ag3PO4, Ag2SeO3, and Zn3(PO4)2 anisotropic crystal phases along with Ag+ ions and Ag0 particles. Dielectric properties, ac conductivity (σac), and dielectric breakdown strength (DBS) are investigated as functions of Ag2O concentration. The results show the maximal concentration of Ag+ ions and Ag0 metallic particles in the sample containing 0.6 mol% of Ag2O. Dielectric parameters and (σac) increase with increasing Ag2O up to 0.6 mol%, while the DBS and electrical impedance decrease. The observed dipolar effects are quantitatively analyzed and possible dipoles are identified. Ionic contribution is predominant up to 0.6 mol% of Ag2O, beyond which the polaronic tunneling phenomenon prevails. These findings indicate that 0.6 mol% of Ag2O is the optimal concentration for using these glass ceramics as solid electrolytes in ionic batteries. Moreover, glass ceramics containing Ag2O beyond 0.6 mol% have exhibited larger polaronic conductivity, hence such glasses can be considered suitable candidates for electrodes in ionic batteries.
本文研究了不同Ag2O含量的ZnO-P2O5-SeO2玻璃陶瓷的介电性能。通过X射线衍射、透射电子显微镜、差示扫描量热法、傅里叶变换红外光谱和光学吸收技术对样品进行结构分析表明,玻璃中嵌有Ag3PO4、Ag2SeO3和Zn3(PO4)2各向异性晶相以及Ag+离子和Ag0颗粒。研究了Ag2O浓度对材料介电性能、交流电导率(σac)和介电击穿强度(DBS)的影响。结果表明,在Ag2O含量为0.6 mol%的样品中,Ag+离子和Ag0金属颗粒的浓度最大。当Ag2O浓度增加至0.6 mol%时,介电参数和(σac)增加,DBS和电阻抗降低。对观测到的偶极效应进行了定量分析,并确定了可能的偶极子。离子的贡献占主导地位,高达0.6 mol%的Ag2O,超过这一比例就会出现极化隧穿现象。这些发现表明,0.6 mol%的Ag2O是使用这些玻璃陶瓷作为离子电池固体电解质的最佳浓度。此外,含Ag2O超过0.6 mol%的玻璃陶瓷表现出更大的极化导电性,因此这种玻璃可以被认为是离子电池电极的合适候选者。
{"title":"The Influence of Silver Ions on the Dielectric Dispersion Dipolar Relaxation Dynamics and Dielectric Breakdown Strength of Zinc Selenium Phosphate Glass System","authors":"G. V. Reddy, M. Kostrzewa, A. Sekhar, A. Ingram, A. Siva, Sesha Reddy, N. Venkatramaiah, G. N. Raju, V. Kumar, N. Veeraiah","doi":"10.1002/pssa.202300282","DOIUrl":"https://doi.org/10.1002/pssa.202300282","url":null,"abstract":"Herein, a study on the dielectric properties of ZnO–P2O5–SeO2 glass ceramics containing varied contents of Ag2O is presented. Structural analysis of the samples by X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, Fourier transform infrared spectra, and optical absorption techniques indicated that the glasses are embedded with Ag3PO4, Ag2SeO3, and Zn3(PO4)2 anisotropic crystal phases along with Ag+ ions and Ag0 particles. Dielectric properties, ac conductivity (σac), and dielectric breakdown strength (DBS) are investigated as functions of Ag2O concentration. The results show the maximal concentration of Ag+ ions and Ag0 metallic particles in the sample containing 0.6 mol% of Ag2O. Dielectric parameters and (σac) increase with increasing Ag2O up to 0.6 mol%, while the DBS and electrical impedance decrease. The observed dipolar effects are quantitatively analyzed and possible dipoles are identified. Ionic contribution is predominant up to 0.6 mol% of Ag2O, beyond which the polaronic tunneling phenomenon prevails. These findings indicate that 0.6 mol% of Ag2O is the optimal concentration for using these glass ceramics as solid electrolytes in ionic batteries. Moreover, glass ceramics containing Ag2O beyond 0.6 mol% have exhibited larger polaronic conductivity, hence such glasses can be considered suitable candidates for electrodes in ionic batteries.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87052458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Controlling the TiO2‐Dye Nanomolecular Interactions for Improving the Photoconversion in Transparent Dye‐sensitized Solar Cells 控制TiO2 -染料纳米分子相互作用以提高透明染料敏化太阳能电池的光转化
Pub Date : 2023-06-28 DOI: 10.1002/pssa.202300158
Pritha Roy, Y. Kurokawa, S. Pandey
{"title":"Controlling the TiO2‐Dye Nanomolecular Interactions for Improving the Photoconversion in Transparent Dye‐sensitized Solar Cells","authors":"Pritha Roy, Y. Kurokawa, S. Pandey","doi":"10.1002/pssa.202300158","DOIUrl":"https://doi.org/10.1002/pssa.202300158","url":null,"abstract":"","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74500007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Influence of New Glass Phase Structure on the Mechanical Properties of Composite Ceramic SiC/Si3N4 新型玻璃相结构对SiC/Si3N4复合陶瓷力学性能的影响
Pub Date : 2023-06-28 DOI: 10.1002/pssa.202300224
Qiang Wang, Cunlong Zhou, Chaowei Yang
Though the addition of a second phase is an effective method for toughening silicon nitride (Si3N4) ceramics, certain residual thermal stress is generated at the phase interface. In case of a large value of residual thermal stress, a weak interface forms between the second phase and the matrix material, reducing the strength of the material. Herein, a new type of core–shell structure silicon carbide SiC–glass phase is produced inside the material by adding a presintering process into the traditional SiC–Si3N4 sintering process. The radial and tangential thermal stresses around the core–shell structural SiC–glass phase and SiC particle are compared by using the finite element method. The results indicate that the core–shell structural SiC–glass phase inhibits the interfacial debonding. Compared with the introduction of SiC particle alone, the core–shell structural SiC–glass phase optimizes the mechanical properties of SiC/Si3N4 composite ceramic, with the fracture toughness reduced by 9.6%, the bending strength increased by 12.3%, and the friction coefficient reduced by 8.5% for the SiC/Si3N4 ceramics with SiC content of 5%.
虽然第二相的加入是氮化硅(Si3N4)陶瓷增韧的有效方法,但在相界面处会产生一定的残余热应力。当残余热应力较大时,第二相与基体材料之间形成弱界面,降低了材料的强度。本文在传统的SiC-Si3N4烧结工艺基础上,加入预烧结工艺,在材料内部制备了一种新型的核壳结构碳化硅sic -玻璃相。采用有限元法比较了核壳结构SiC -玻璃相和SiC颗粒的径向和切向热应力。结果表明,核壳结构的碳化硅玻璃相抑制了界面脱粘。与单独添加SiC颗粒相比,芯壳结构SiC -玻璃相优化了SiC/Si3N4复合陶瓷的力学性能,SiC含量为5%的SiC/Si3N4陶瓷的断裂韧性降低了9.6%,弯曲强度提高了12.3%,摩擦系数降低了8.5%。
{"title":"Influence of New Glass Phase Structure on the Mechanical Properties of Composite Ceramic SiC/Si3N4","authors":"Qiang Wang, Cunlong Zhou, Chaowei Yang","doi":"10.1002/pssa.202300224","DOIUrl":"https://doi.org/10.1002/pssa.202300224","url":null,"abstract":"Though the addition of a second phase is an effective method for toughening silicon nitride (Si3N4) ceramics, certain residual thermal stress is generated at the phase interface. In case of a large value of residual thermal stress, a weak interface forms between the second phase and the matrix material, reducing the strength of the material. Herein, a new type of core–shell structure silicon carbide SiC–glass phase is produced inside the material by adding a presintering process into the traditional SiC–Si3N4 sintering process. The radial and tangential thermal stresses around the core–shell structural SiC–glass phase and SiC particle are compared by using the finite element method. The results indicate that the core–shell structural SiC–glass phase inhibits the interfacial debonding. Compared with the introduction of SiC particle alone, the core–shell structural SiC–glass phase optimizes the mechanical properties of SiC/Si3N4 composite ceramic, with the fracture toughness reduced by 9.6%, the bending strength increased by 12.3%, and the friction coefficient reduced by 8.5% for the SiC/Si3N4 ceramics with SiC content of 5%.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73086368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physica status solidi (A): Applied research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1