Pub Date : 2024-02-05eCollection Date: 2024-01-01DOI: 10.3762/bjnano.15.15
Elizaveta M Gubanova, Nikolai A Usov
The ferromagnetic resonance (FMR) spectra of oriented and non-oriented assemblies of linear magnetosome chains are calculated by solving the stochastic Landau-Lifshitz equation. The dependence of the shape of the FMR spectrum of a dilute assembly of chains on the particle diameter, the number of particles in a chain, the distance between the centers of neighboring particles, the mutual orientation of the cubic axes of particle anisotropy, and the value of the magnetic damping constant is studied. It is shown that FMR spectra of non-oriented chain assemblies depend on the average particle diameter at a fixed thickness of the lipid magnetosome membrane, as well as on the value of the magnetic damping constant. At the same time, they are practically independent of the number Np of particles in the chain under the condition Np ≥ 10. The FMR spectra of non-oriented assemblies of magnetosome chains are compared with that of random clusters of interacting spherical magnetite nanoparticles. The shape of FMR spectra of both assemblies is shown to differ appreciably even at sufficiently large values of filling density of random clusters.
{"title":"Ferromagnetic resonance spectra of linear magnetosome chains.","authors":"Elizaveta M Gubanova, Nikolai A Usov","doi":"10.3762/bjnano.15.15","DOIUrl":"10.3762/bjnano.15.15","url":null,"abstract":"<p><p>The ferromagnetic resonance (FMR) spectra of oriented and non-oriented assemblies of linear magnetosome chains are calculated by solving the stochastic Landau-Lifshitz equation. The dependence of the shape of the FMR spectrum of a dilute assembly of chains on the particle diameter, the number of particles in a chain, the distance between the centers of neighboring particles, the mutual orientation of the cubic axes of particle anisotropy, and the value of the magnetic damping constant is studied. It is shown that FMR spectra of non-oriented chain assemblies depend on the average particle diameter at a fixed thickness of the lipid magnetosome membrane, as well as on the value of the magnetic damping constant. At the same time, they are practically independent of the number <i>N</i><sub>p</sub> of particles in the chain under the condition <i>N</i><sub>p</sub> ≥ 10. The FMR spectra of non-oriented assemblies of magnetosome chains are compared with that of random clusters of interacting spherical magnetite nanoparticles. The shape of FMR spectra of both assemblies is shown to differ appreciably even at sufficiently large values of filling density of random clusters.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"157-167"},"PeriodicalIF":3.1,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862131/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139728841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-02eCollection Date: 2024-01-01DOI: 10.3762/bjnano.15.14
Gabriela Lewińska, Piotr Jeleń, Zofia Kucia, Maciej Sitarz, Łukasz Walczak, Bartłomiej Szafraniak, Jerzy Sanetra, Konstanty W Marszalek
Organic solar cells are a promising candidate for practical use because of their low material cost and simple production procedures. The challenge is selecting materials with the right properties and how they interrelate in the context of manufacturing the device. This paper presents studies on CdSe/ZnS nanodots as dopants in a polymer-fullerene matrix for application in organic solar cells. An assembly of poly(3-hexylthiophene-2,5-diyl) and 6,6-phenyl-C71-butyric acid methyl ester was used as the active reference layer. Absorption and luminescence spectra as well as the dispersion relations of refractive indices and extinction coefficient were investigated. The morphologies of the thin films were studied with atomic force microscopy. The chemical boundaries of the ternary layers were determined by Raman spectroscopy. Based on UPS studies, the energy diagram of the potential devices was determined. The resistivity of the layers was determined using impedance spectroscopy. Simulations (General-Purpose Photovoltaic Device Model) showed a performance improvement in the cells with quantum dots of 0.36-1.45% compared to those without quantum dots.
{"title":"CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics.","authors":"Gabriela Lewińska, Piotr Jeleń, Zofia Kucia, Maciej Sitarz, Łukasz Walczak, Bartłomiej Szafraniak, Jerzy Sanetra, Konstanty W Marszalek","doi":"10.3762/bjnano.15.14","DOIUrl":"10.3762/bjnano.15.14","url":null,"abstract":"<p><p>Organic solar cells are a promising candidate for practical use because of their low material cost and simple production procedures. The challenge is selecting materials with the right properties and how they interrelate in the context of manufacturing the device. This paper presents studies on CdSe/ZnS nanodots as dopants in a polymer-fullerene matrix for application in organic solar cells. An assembly of poly(3-hexylthiophene-2,5-diyl) and 6,6-phenyl-C71-butyric acid methyl ester was used as the active reference layer. Absorption and luminescence spectra as well as the dispersion relations of refractive indices and extinction coefficient were investigated. The morphologies of the thin films were studied with atomic force microscopy. The chemical boundaries of the ternary layers were determined by Raman spectroscopy. Based on UPS studies, the energy diagram of the potential devices was determined. The resistivity of the layers was determined using impedance spectroscopy. Simulations (General-Purpose Photovoltaic Device Model) showed a performance improvement in the cells with quantum dots of 0.36-1.45% compared to those without quantum dots.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"144-156"},"PeriodicalIF":3.1,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840543/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01eCollection Date: 2024-01-01DOI: 10.3762/bjnano.15.13
Mustafa Kangül, Navid Asmari, Santiago H Andany, Marcos Penedo, Georg E Fantner
Dynamic atomic force microscopy (AFM) modes that operate at frequencies far away from the resonance frequency of the cantilever (off-resonance tapping (ORT) modes) can provide high-resolution imaging of a wide range of sample types, including biological samples, soft polymers, and hard materials. These modes offer precise and stable control of vertical force, as well as reduced lateral force. Simultaneously, they enable mechanical property mapping of the sample. However, ORT modes have an intrinsic drawback: a low scan speed due to the limited ORT rate, generally in the low-kilohertz range. Here, we analyze how the conventional ORT control method limits the topography tracking quality and hence the imaging speed. The closed-loop controller in conventional ORT restricts the sampling rate to the ORT rate and introduces a large closed-loop delay. We present an alternative ORT control method in which the closed-loop controller samples and tracks the vertical force changes during a defined time window of the tip-sample interaction. Through this, we use multiple samples in the proximity of the maximum force for the feedback loop, rather than only one sample at the maximum force instant. This method leads to improved topography tracking at a given ORT rate and therefore enables higher scan rates while refining the mechanical property mapping.
在远离悬臂共振频率的频率下工作的动态原子力显微镜(AFM)模式(非共振攻丝(ORT)模式)可对多种类型的样品(包括生物样品、软聚合物和硬材料)进行高分辨率成像。这些模式可精确、稳定地控制垂直力,并减少横向力。同时,它们还能绘制样品的机械属性图。然而,ORT 模式有一个固有的缺点:由于 ORT 速率有限,扫描速度较低,一般在低千赫兹范围内。在此,我们分析了传统 ORT 控制方法如何限制形貌跟踪质量,进而限制成像速度。传统 ORT 的闭环控制器将采样率限制在 ORT 速率范围内,并引入了较大的闭环延迟。我们提出了另一种 ORT 控制方法,即闭环控制器采样并跟踪针尖与样本相互作用的规定时间窗口内的垂直力变化。通过这种方法,我们将最大力附近的多个样本用于反馈回路,而不是仅在最大力瞬间采集一个样本。这种方法可以在给定的 ORT 速率下改进形貌跟踪,因此可以提高扫描速率,同时完善机械性能图谱。
{"title":"Enhanced feedback performance in off-resonance AFM modes through pulse train sampling.","authors":"Mustafa Kangül, Navid Asmari, Santiago H Andany, Marcos Penedo, Georg E Fantner","doi":"10.3762/bjnano.15.13","DOIUrl":"10.3762/bjnano.15.13","url":null,"abstract":"<p><p>Dynamic atomic force microscopy (AFM) modes that operate at frequencies far away from the resonance frequency of the cantilever (off-resonance tapping (ORT) modes) can provide high-resolution imaging of a wide range of sample types, including biological samples, soft polymers, and hard materials. These modes offer precise and stable control of vertical force, as well as reduced lateral force. Simultaneously, they enable mechanical property mapping of the sample. However, ORT modes have an intrinsic drawback: a low scan speed due to the limited ORT rate, generally in the low-kilohertz range. Here, we analyze how the conventional ORT control method limits the topography tracking quality and hence the imaging speed. The closed-loop controller in conventional ORT restricts the sampling rate to the ORT rate and introduces a large closed-loop delay. We present an alternative ORT control method in which the closed-loop controller samples and tracks the vertical force changes during a defined time window of the tip-sample interaction. Through this, we use multiple samples in the proximity of the maximum force for the feedback loop, rather than only one sample at the maximum force instant. This method leads to improved topography tracking at a given ORT rate and therefore enables higher scan rates while refining the mechanical property mapping.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"134-143"},"PeriodicalIF":3.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840551/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31eCollection Date: 2024-01-01DOI: 10.3762/bjnano.15.12
Aleksandrs Dutovs, Raimonds Popļausks, Oskars Putāns, Vladislavs Perkanuks, Aušrinė Jurkevičiūtė, Tomas Tamulevičius, Uldis Malinovskis, Iryna Olyshevets, Donats Erts, Juris Prikulis
Porous anodic aluminum oxide (PAAO), sometimes referred to as nanoporous anodic alumina, serves as a cost-effective template for nanofabrication in many fields of science and engineering. However, production of ultrathin PAAO membranes with precise thickness in the optical sub-wavelength range remains challenging because of difficulties regarding process control at the initial stage of anodic oxidation. In this study, we demonstrate a technique for consistently manufacturing PAAO with the targeted thickness. An electrochemical cell with an optical window was designed for reflectance spectroscopy of PAAO during anodization. Real-time fitting of spectra to a transfer-matrix model enabled continuous monitoring of the thickness growth of the PAAO layer. Automation software was designed to terminate the anodization process at preset PAAO thickness values. While the concept was illustrated using the widely used method of anodization in a 0.3 M oxalic acid electrolyte with a 40 V potential, it can be readily customized for other protocols. PAAO layers with effective thickness below 300 nm could be produced with a few nanometers accuracy using single-crystal aluminum substrates. The results were confirmed using spectroscopic ellipsometry. The method for controlling the thickness during anodization eliminates the necessity of sample sectioning for electron microscopy and is particularly valuable for the small-scale production of PAAO-based functional optical coatings.
{"title":"In situ optical sub-wavelength thickness control of porous anodic aluminum oxide.","authors":"Aleksandrs Dutovs, Raimonds Popļausks, Oskars Putāns, Vladislavs Perkanuks, Aušrinė Jurkevičiūtė, Tomas Tamulevičius, Uldis Malinovskis, Iryna Olyshevets, Donats Erts, Juris Prikulis","doi":"10.3762/bjnano.15.12","DOIUrl":"10.3762/bjnano.15.12","url":null,"abstract":"<p><p>Porous anodic aluminum oxide (PAAO), sometimes referred to as nanoporous anodic alumina, serves as a cost-effective template for nanofabrication in many fields of science and engineering. However, production of ultrathin PAAO membranes with precise thickness in the optical sub-wavelength range remains challenging because of difficulties regarding process control at the initial stage of anodic oxidation. In this study, we demonstrate a technique for consistently manufacturing PAAO with the targeted thickness. An electrochemical cell with an optical window was designed for reflectance spectroscopy of PAAO during anodization. Real-time fitting of spectra to a transfer-matrix model enabled continuous monitoring of the thickness growth of the PAAO layer. Automation software was designed to terminate the anodization process at preset PAAO thickness values. While the concept was illustrated using the widely used method of anodization in a 0.3 M oxalic acid electrolyte with a 40 V potential, it can be readily customized for other protocols. PAAO layers with effective thickness below 300 nm could be produced with a few nanometers accuracy using single-crystal aluminum substrates. The results were confirmed using spectroscopic ellipsometry. The method for controlling the thickness during anodization eliminates the necessity of sample sectioning for electron microscopy and is particularly valuable for the small-scale production of PAAO-based functional optical coatings.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"126-133"},"PeriodicalIF":3.1,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840541/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-18eCollection Date: 2024-01-01DOI: 10.3762/bjnano.15.10
Jonatas L Duarte, Leonardo Delello Di Filippo, Anna Eliza Maciel de Faria Mota Oliveira, Rafael Miguel Sábio, Gabriel Davi Marena, Tais Maria Bauab, Cristiane Duque, Vincent Corbel, Marlus Chorilli
Plant-based insecticides offer advantages such as negligible residual effects, reduced risks to both humans and the environment, and immunity to resistance issues that plague conventional chemicals. However, the practical use of monoterpenes in insect control has been hampered by challenges including their poor solubility and stability in aqueous environments. In recent years, the application of nanotechnology-based formulations, specifically nanoemulsions, has emerged as a prospective strategy to surmount these obstacles. In this study, we developed and characterized nanoemulsions based on cymene and myrcene and assessed their toxicity both in vitro using human keratinocytes (HaCAT) cells and in an in vivo model involving Galleria mellonella larvae. Additionally, we investigated the insecticidal efficacy of monoterpenes against the mosquito Aedes aegypti, the primary dengue vector, via larval bioassay. Employing a low-energy approach, we successfully generated nanoemulsions. The cymene-based nanoemulsion exhibited a hydrodynamic diameter of approximately 98 nm and a zeta potential of -25 mV. The myrcene-based nanoemulsion displayed a hydrodynamic diameter of 118 nm and a zeta potential of -20 mV. Notably, both nanoemulsions demonstrated stability over 60 days, accompanied by controlled release properties and low toxicity towards HaCAT cells and Galleria mellonella larvae. Moreover, the nanoemulsions exhibited significant lethality against third-instar Aedes aegypti larvae at a concentration of 50 mg/L. In conclusion, the utilization of nanoemulsions encapsulating cymene and myrcene presents a promising avenue for overcoming the limitations associated with poor solubility and stability of monoterpenes. This study sheds light on the potential of the nanoemulsions as effective and environmentally friendly insecticides in the ongoing battle against mosquito-borne diseases.
{"title":"Development and characterization of potential larvicidal nanoemulsions against <i>Aedes aegypti</i>.","authors":"Jonatas L Duarte, Leonardo Delello Di Filippo, Anna Eliza Maciel de Faria Mota Oliveira, Rafael Miguel Sábio, Gabriel Davi Marena, Tais Maria Bauab, Cristiane Duque, Vincent Corbel, Marlus Chorilli","doi":"10.3762/bjnano.15.10","DOIUrl":"10.3762/bjnano.15.10","url":null,"abstract":"<p><p>Plant-based insecticides offer advantages such as negligible residual effects, reduced risks to both humans and the environment, and immunity to resistance issues that plague conventional chemicals. However, the practical use of monoterpenes in insect control has been hampered by challenges including their poor solubility and stability in aqueous environments. In recent years, the application of nanotechnology-based formulations, specifically nanoemulsions, has emerged as a prospective strategy to surmount these obstacles. In this study, we developed and characterized nanoemulsions based on cymene and myrcene and assessed their toxicity both in vitro using human keratinocytes (HaCAT) cells and in an in vivo model involving <i>Galleria mellonella</i> larvae. Additionally, we investigated the insecticidal efficacy of monoterpenes against the mosquito <i>Aedes aegypti</i>, the primary dengue vector, via larval bioassay. Employing a low-energy approach, we successfully generated nanoemulsions. The cymene-based nanoemulsion exhibited a hydrodynamic diameter of approximately 98 nm and a zeta potential of -25 mV. The myrcene-based nanoemulsion displayed a hydrodynamic diameter of 118 nm and a zeta potential of -20 mV. Notably, both nanoemulsions demonstrated stability over 60 days, accompanied by controlled release properties and low toxicity towards HaCAT cells and <i>Galleria mellonella</i> larvae. Moreover, the nanoemulsions exhibited significant lethality against third-instar <i>Aedes aegypti</i> larvae at a concentration of 50 mg/L. In conclusion, the utilization of nanoemulsions encapsulating cymene and myrcene presents a promising avenue for overcoming the limitations associated with poor solubility and stability of monoterpenes. This study sheds light on the potential of the nanoemulsions as effective and environmentally friendly insecticides in the ongoing battle against mosquito-borne diseases.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"104-114"},"PeriodicalIF":2.6,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139541520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-17eCollection Date: 2024-01-01DOI: 10.3762/bjnano.15.9
Azam Bagheri Pebdeni, Mohammad N Al-Baiati, Morteza Hosseini
A fast and sensitive aptasensor was developed using nanoplates with peroxidase activity as a novel approach. E. coli detection is described using a silver/platinum nanoplate (Ag/Pt NPL) that interacts with an oligonucleotide aptamer as a bioreceptor. The size of the Ag/Pt NPLs was about 42 nm according to the FE-SEM images. The EDS result indicates that a thin layer of Pt ions was coated on the surface of the Ag NPLs. This nanobiosensor has the ability to specifically bind to E. coli, increasing the peroxidase activity of the apt-Ag/Pt NPL. Finally, the blue color of the solution in the contaminated water samples was increased in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate and H2O2. The assay can be completed in 30 min and the presence of E. coli levels can be distinguished with the naked eye. The absorbance at 652 nm is proportional to pathogen concentration from 10 to 108 CFU·mL-1, with a detection limit of 10 CFU·mL-1. The percent recovery for the water samples spiked with E. coli is 95%. The developed assay should serve as a general platform for detecting other pathogenic bacteria which affect water and food quality. The proposed E. coli detection strategy has appealing characteristics such as high sensitivity, simple operation, short testing time, and low cost.
{"title":"New application of bimetallic Ag/Pt nanoplates in a colorimetric biosensor for specific detection of <i>E. coli</i> in water.","authors":"Azam Bagheri Pebdeni, Mohammad N Al-Baiati, Morteza Hosseini","doi":"10.3762/bjnano.15.9","DOIUrl":"10.3762/bjnano.15.9","url":null,"abstract":"<p><p>A fast and sensitive aptasensor was developed using nanoplates with peroxidase activity as a novel approach<i>. E. coli</i> detection is described using a silver/platinum nanoplate (Ag/Pt NPL) that interacts with an oligonucleotide aptamer as a bioreceptor. The size of the Ag/Pt NPLs was about 42 nm according to the FE-SEM images. The EDS result indicates that a thin layer of Pt ions was coated on the surface of the Ag NPLs. This nanobiosensor has the ability to specifically bind to <i>E. coli</i>, increasing the peroxidase activity of the apt-Ag/Pt NPL. Finally, the blue color of the solution in the contaminated water samples was increased in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate and H<sub>2</sub>O<sub>2</sub>. The assay can be completed in 30 min and the presence of <i>E. coli</i> levels can be distinguished with the naked eye. The absorbance at 652 nm is proportional to pathogen concentration from 10 to 10<sup>8</sup> CFU·mL<sup>-1</sup>, with a detection limit of 10 CFU·mL<sup>-1</sup>. The percent recovery for the water samples spiked with <i>E. coli</i> is 95%. The developed assay should serve as a general platform for detecting other pathogenic bacteria which affect water and food quality. The proposed <i>E. coli</i> detection strategy has appealing characteristics such as high sensitivity, simple operation, short testing time, and low cost.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"95-103"},"PeriodicalIF":2.6,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139541523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-15eCollection Date: 2024-01-01DOI: 10.3762/bjnano.15.8
Inés Peraile, Matilde Gil-García, Laura González-López, Nushin A Dabbagh-Escalante, Juan C Cabria-Ramos, Paloma Lorenzo-Lozano
In the case of a biological threat, early, rapid, and specific detection is critical. In addition, ease of handling, use in the field, and low-cost production are important considerations. Immunological devices are able to respond to these needs. In the design of these immunological devices, surface antibody immobilisation is crucial. Nylon nanofibres have been described as a very good option because they allow for an increase in the surface-to-volume ratio, leading to an increase in immunocapture efficiency. In this paper, we want to deepen the study of other key points, such as the reuse and stability of these nanofibres, in order to assess their profitability. On the one hand, the reusability of nanofibres has been studied using different stripping treatments at different pH values on the nylon nanofibres with well-oriented antibodies anchored by protein A/G. Our study shows that stripping with glycine buffer pH 2.5 allows the nanofibres to be reused as long as protein A/G has been previously anchored, leaving both nanofibre and protein A/G unchanged. On the other hand, we investigated the stability of the nylon nanofibres. To achieve this, we analysed any loss of immunocapture ability of well-oriented antibodies anchored both to the nylon nanofibres and to a specialised surface with high protein binding capacity. The nanofibre immunocapture system maintained an unchanged immunocapture ability for a longer time than the specialised planar surface. In conclusion, nylon nanofibres seem to be a very good choice as an antibody immobilisation surface, offering not only higher immunocapture efficiency, but also more cost efficiency as they are reusable and stable.
{"title":"Study of the reusability and stability of nylon nanofibres as an antibody immobilisation surface.","authors":"Inés Peraile, Matilde Gil-García, Laura González-López, Nushin A Dabbagh-Escalante, Juan C Cabria-Ramos, Paloma Lorenzo-Lozano","doi":"10.3762/bjnano.15.8","DOIUrl":"10.3762/bjnano.15.8","url":null,"abstract":"<p><p>In the case of a biological threat, early, rapid, and specific detection is critical. In addition, ease of handling, use in the field, and low-cost production are important considerations. Immunological devices are able to respond to these needs. In the design of these immunological devices, surface antibody immobilisation is crucial. Nylon nanofibres have been described as a very good option because they allow for an increase in the surface-to-volume ratio, leading to an increase in immunocapture efficiency. In this paper, we want to deepen the study of other key points, such as the reuse and stability of these nanofibres, in order to assess their profitability. On the one hand, the reusability of nanofibres has been studied using different stripping treatments at different pH values on the nylon nanofibres with well-oriented antibodies anchored by protein A/G. Our study shows that stripping with glycine buffer pH 2.5 allows the nanofibres to be reused as long as protein A/G has been previously anchored, leaving both nanofibre and protein A/G unchanged. On the other hand, we investigated the stability of the nylon nanofibres. To achieve this, we analysed any loss of immunocapture ability of well-oriented antibodies anchored both to the nylon nanofibres and to a specialised surface with high protein binding capacity. The nanofibre immunocapture system maintained an unchanged immunocapture ability for a longer time than the specialised planar surface. In conclusion, nylon nanofibres seem to be a very good choice as an antibody immobilisation surface, offering not only higher immunocapture efficiency, but also more cost efficiency as they are reusable and stable.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"83-94"},"PeriodicalIF":2.6,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804540/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139541545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-12eCollection Date: 2024-01-01DOI: 10.3762/bjnano.15.7
Le Thi Le, Hue Thi Nguyen, Liem Thanh Nguyen, Huy Quang Tran, Thuy Thi Thu Nguyen
Hydrophobic berberine powder (BBR) and hydrophilic BBR nanoparticles (BBR NPs) were loaded into an electrospun polylactic acid (PLA) nanofiber scaffold for modulating the release behavior of BBR in an aqueous medium. The BBR release from the BBR/PLA and BBR NPs/PLA nanofiber scaffolds was investigated in relation to their chemical characteristics, BBR dispersion into nanofibers, and wettability. The BBR release profiles strongly influenced the antibacterial efficiency of the scaffolds over time. When the BBR was loaded, the BBR/PLA nanofiber scaffold exhibited an extremely hydrophobic feature, causing a triphasic release profile in which only 9.8 wt % of the loaded BBR was released in the first 24 h. This resulted in a negligible inhibitory effect against methicillin-resistant Staphylococcus aureus bacteria. Meanwhile, the BBR NPs/PLA nanofiber scaffold had more wettability and higher concentration of BBR NPs dispersed on the surface of PLA nanofibers. This led to a sustained release of 75 wt % of the loaded BBR during the first 24 h, and consequently boosted the antibacterial effectiveness. Moreover, the cytotoxicity test revealed that the BBR NPs/PLA nanofiber scaffold did not induce any changes in morphology and proliferation of MA-104 cell monolayers. It suggests that the BBR/PLA and BBR NPs/PLA nanofiber scaffolds can be used in different biomedical applications, such as wound dressing, drug delivery systems, and tissue engineering, according to the requirement of BBR concentration for the desired therapeutic effects.
{"title":"Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency.","authors":"Le Thi Le, Hue Thi Nguyen, Liem Thanh Nguyen, Huy Quang Tran, Thuy Thi Thu Nguyen","doi":"10.3762/bjnano.15.7","DOIUrl":"10.3762/bjnano.15.7","url":null,"abstract":"<p><p>Hydrophobic berberine powder (BBR) and hydrophilic BBR nanoparticles (BBR NPs) were loaded into an electrospun polylactic acid (PLA) nanofiber scaffold for modulating the release behavior of BBR in an aqueous medium. The BBR release from the BBR/PLA and BBR NPs/PLA nanofiber scaffolds was investigated in relation to their chemical characteristics, BBR dispersion into nanofibers, and wettability. The BBR release profiles strongly influenced the antibacterial efficiency of the scaffolds over time. When the BBR was loaded, the BBR/PLA nanofiber scaffold exhibited an extremely hydrophobic feature, causing a triphasic release profile in which only 9.8 wt % of the loaded BBR was released in the first 24 h. This resulted in a negligible inhibitory effect against methicillin-resistant <i>Staphylococcus aureus</i> bacteria. Meanwhile, the BBR NPs/PLA nanofiber scaffold had more wettability and higher concentration of BBR NPs dispersed on the surface of PLA nanofibers. This led to a sustained release of 75 wt % of the loaded BBR during the first 24 h, and consequently boosted the antibacterial effectiveness. Moreover, the cytotoxicity test revealed that the BBR NPs/PLA nanofiber scaffold did not induce any changes in morphology and proliferation of MA-104 cell monolayers. It suggests that the BBR/PLA and BBR NPs/PLA nanofiber scaffolds can be used in different biomedical applications, such as wound dressing, drug delivery systems, and tissue engineering, according to the requirement of BBR concentration for the desired therapeutic effects.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"71-82"},"PeriodicalIF":3.1,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139477824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-11eCollection Date: 2024-01-01DOI: 10.3762/bjnano.15.6
Sylwia Pawłowska, Karolina Cysewska, Yasamin Ziai, Jakub Karczewski, Piotr Jasiński, Sebastian Molin
In this work, a strategy for one-stage synthesis of polymer composites based on PNIPAAm hydrogel was presented. Both conductive particles in the form of conductive carbon black (cCB) and MnCo2O4 (MCO) spinel particles were suspended in the three-dimensional structure of the hydrogel. The MCO particles in the resulting hydrogel composite acted as an electrocatalyst in the oxygen evolution reaction. Morphological studies confirmed that the added particles were incorporated and, in the case of a higher concentration of cCB particles, also bound to the surface of the structure of the hydrogel matrix. The produced composite materials were tested in terms of their electrical properties, showing that an increase in the concentration of conductive particles in the hydrogel structure translates into a lowering of the impedance modulus and an increase in the double-layer capacitance of the electrode. This, in turn, resulted in a higher catalytic activity of the electrode in the oxygen evolution reaction. The use of a hydrogel as a matrix to suspend the catalyst particles, and thus increase their availability through the electrolyte, seems to be an interesting and promising application approach.
{"title":"Influence of conductive carbon and MnCo<sub>2</sub>O<sub>4</sub> on morphological and electrical properties of hydrogels for electrochemical energy conversion.","authors":"Sylwia Pawłowska, Karolina Cysewska, Yasamin Ziai, Jakub Karczewski, Piotr Jasiński, Sebastian Molin","doi":"10.3762/bjnano.15.6","DOIUrl":"10.3762/bjnano.15.6","url":null,"abstract":"<p><p>In this work, a strategy for one-stage synthesis of polymer composites based on PNIPAAm hydrogel was presented. Both conductive particles in the form of conductive carbon black (cCB) and MnCo<sub>2</sub>O<sub>4</sub> (MCO) spinel particles were suspended in the three-dimensional structure of the hydrogel. The MCO particles in the resulting hydrogel composite acted as an electrocatalyst in the oxygen evolution reaction. Morphological studies confirmed that the added particles were incorporated and, in the case of a higher concentration of cCB particles, also bound to the surface of the structure of the hydrogel matrix. The produced composite materials were tested in terms of their electrical properties, showing that an increase in the concentration of conductive particles in the hydrogel structure translates into a lowering of the impedance modulus and an increase in the double-layer capacitance of the electrode. This, in turn, resulted in a higher catalytic activity of the electrode in the oxygen evolution reaction. The use of a hydrogel as a matrix to suspend the catalyst particles, and thus increase their availability through the electrolyte, seems to be an interesting and promising application approach.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"57-70"},"PeriodicalIF":3.1,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139479745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-11eCollection Date: 2024-01-01DOI: 10.3762/bjnano.15.5
Artem V Galaktionov, Andrei D Zaikin
We investigate Josephson dynamics of highly transparent superconducting nanojunctions at subgap voltages and temperatures. In this limit, intrinsic dissipation in such junctions turns out to be sub-Ohmic, which yields a linear dependence of the average voltage on the bias current I slightly exceeding the critical one Ic. We demonstrate a strong impact of intrinsic sub-Ohmic dissipation on integer Shapiro steps appearing on the I-V curve in the presence of external microwave radiation.
我们研究了高度透明超导纳米结在亚隙电压和温度下的约瑟夫森动力学。在此极限下,此类结的本征耗散为亚欧姆耗散,从而产生了平均电压对偏置电流 I 的线性依赖性,略微超过临界值 Ic。我们证明了在外部微波辐射存在的情况下,亚欧姆本征耗散对 I-V 曲线上出现的整数夏皮罗阶跃有很大影响。
{"title":"Josephson dynamics and Shapiro steps at high transmissions: current bias regime.","authors":"Artem V Galaktionov, Andrei D Zaikin","doi":"10.3762/bjnano.15.5","DOIUrl":"10.3762/bjnano.15.5","url":null,"abstract":"<p><p>We investigate Josephson dynamics of highly transparent superconducting nanojunctions at subgap voltages and temperatures. In this limit, intrinsic dissipation in such junctions turns out to be sub-Ohmic, which yields a linear dependence of the average voltage on the bias current <i>I</i> slightly exceeding the critical one <i>I</i><sub>c</sub>. We demonstrate a strong impact of intrinsic sub-Ohmic dissipation on integer Shapiro steps appearing on the <i>I</i>-<i>V</i> curve in the presence of external microwave radiation.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"51-56"},"PeriodicalIF":3.1,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790642/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139477844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}