Pub Date : 2025-08-14eCollection Date: 2025-01-01DOI: 10.3762/bjnano.16.97
Alireza Ghasempour, Mohammad Amin Tokallou, Mohammad Reza Naderi Allaf, Mohsen Moradi, Hamideh Dehghan, Mahsa Sedighi, Mohammad-Ali Shahbazi, Fahimeh Lavi Arab
Ferroptosis has shown potential therapeutic effects in tumor therapy as an iron-dependent programmed cell death. The induction of ferroptosis is based on lipid peroxidation, the accumulation of iron and reactive oxygen species, and the depletion of glutathione. Nowadays, various nanoparticles are reported for ferroptosis-based therapy. Among them, engineered liposomes have received more attention due to their biocompatibility, low immunogenicity, and flexibility in chemical and structural modifications. The present review focuses on the mechanisms of ferroptosis and its induction by engineered liposomes to improve tumor therapy. It also highlights the fascinating outcome of liposome-mediated ferroptosis in overcoming the obstacles to cancer therapy, along with the limitations and possible future directions.
{"title":"Ferroptosis induction by engineered liposomes for enhanced tumor therapy.","authors":"Alireza Ghasempour, Mohammad Amin Tokallou, Mohammad Reza Naderi Allaf, Mohsen Moradi, Hamideh Dehghan, Mahsa Sedighi, Mohammad-Ali Shahbazi, Fahimeh Lavi Arab","doi":"10.3762/bjnano.16.97","DOIUrl":"10.3762/bjnano.16.97","url":null,"abstract":"<p><p>Ferroptosis has shown potential therapeutic effects in tumor therapy as an iron-dependent programmed cell death. The induction of ferroptosis is based on lipid peroxidation, the accumulation of iron and reactive oxygen species, and the depletion of glutathione. Nowadays, various nanoparticles are reported for ferroptosis-based therapy. Among them, engineered liposomes have received more attention due to their biocompatibility, low immunogenicity, and flexibility in chemical and structural modifications. The present review focuses on the mechanisms of ferroptosis and its induction by engineered liposomes to improve tumor therapy. It also highlights the fascinating outcome of liposome-mediated ferroptosis in overcoming the obstacles to cancer therapy, along with the limitations and possible future directions.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"1325-1349"},"PeriodicalIF":2.7,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362308/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144940707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-13eCollection Date: 2025-01-01DOI: 10.3762/bjnano.16.96
Vladimir Pimonov, Said Tahir, Vincent Jourdain
This study addresses the challenge of analyzing the growth kinetics of carbon nanotubes using in situ homodyne polarization microscopy (HPM) by developing an automated deep learning (DL) approach. A Mask-RCNN architecture, enhanced with a ResNet-FPN backbone, was employed to recognize and track individual nanotubes in microscopy videos, significantly improving the efficiency and reproducibility of kinetic data extraction. The method involves a series of video processing steps to enhance contrast and used differential treatment techniques to manage low signal and fast kinetics. The DL model demonstrates consistency with manual measurements and increased throughput, laying the foundation for statistical studies of nanotube growth. The approach can be adapted for other types of in situ microscopy studies, emphasizing the importance of automation in high-throughput data acquisition for research on individual nano-objects.
{"title":"Deep-learning recognition and tracking of individual nanotubes in low-contrast microscopy videos.","authors":"Vladimir Pimonov, Said Tahir, Vincent Jourdain","doi":"10.3762/bjnano.16.96","DOIUrl":"10.3762/bjnano.16.96","url":null,"abstract":"<p><p>This study addresses the challenge of analyzing the growth kinetics of carbon nanotubes using in situ homodyne polarization microscopy (HPM) by developing an automated deep learning (DL) approach. A Mask-RCNN architecture, enhanced with a ResNet-FPN backbone, was employed to recognize and track individual nanotubes in microscopy videos, significantly improving the efficiency and reproducibility of kinetic data extraction. The method involves a series of video processing steps to enhance contrast and used differential treatment techniques to manage low signal and fast kinetics. The DL model demonstrates consistency with manual measurements and increased throughput, laying the foundation for statistical studies of nanotube growth. The approach can be adapted for other types of in situ microscopy studies, emphasizing the importance of automation in high-throughput data acquisition for research on individual nano-objects.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"1316-1324"},"PeriodicalIF":2.7,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362302/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144940774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-11eCollection Date: 2025-01-01DOI: 10.3762/bjnano.16.95
Nitin Chaudhary, Chavan Akash Naik, Shilpa Mangalassery, Jai Prakash Gautam, Sri Ram Gopal Naraharisetty
This research paper delves into the exploration of laser-induced periodic surface structures (LIPSS) on a 100 µm thin stainless steel (SS) sheet. Through the application of laser irradiation with wavelengths spanning from 400 to 2400 nm, we systematically generate ladder-like LIPSS across a substantial area, incorporating LIPSS with both low spatial frequency (LSFL) and high spatial frequency (HSFL) simultaneously. Notably, the embedded LIPSS exhibit a linear relationship in the observed spatial periodicity of LSFL and HSFL with wavelengths up to 2000 nm, after which a decrease in periodicity is observed. By employing cross-sectional electron microscopy, we scrutinize the penetration depth of laser radiation or laser-affected zone, in the LIPSS-formed SS sheets, revealing a parallel trend with LSFL and HSFL spatial periodicity. Specifically, the penetration depth increases with wavelength up to 2000 nm, reaching a peak at approximately 13 µm, and subsequently decreases. This distinctive correlation underscores the role of plasma material reorganizational effects in LIPSS formation at higher wavelengths, presenting a new experimental observation to the existing literature. The findings enhance our comprehension of laser-material interactions and hold potential implications for surface engineering and material science applications.
{"title":"Wavelength-dependent correlation of LIPSS periodicity and laser penetration depth in stainless steel.","authors":"Nitin Chaudhary, Chavan Akash Naik, Shilpa Mangalassery, Jai Prakash Gautam, Sri Ram Gopal Naraharisetty","doi":"10.3762/bjnano.16.95","DOIUrl":"10.3762/bjnano.16.95","url":null,"abstract":"<p><p>This research paper delves into the exploration of laser-induced periodic surface structures (LIPSS) on a 100 µm thin stainless steel (SS) sheet. Through the application of laser irradiation with wavelengths spanning from 400 to 2400 nm, we systematically generate ladder-like LIPSS across a substantial area, incorporating LIPSS with both low spatial frequency (LSFL) and high spatial frequency (HSFL) simultaneously. Notably, the embedded LIPSS exhibit a linear relationship in the observed spatial periodicity of LSFL and HSFL with wavelengths up to 2000 nm, after which a decrease in periodicity is observed. By employing cross-sectional electron microscopy, we scrutinize the penetration depth of laser radiation or laser-affected zone, in the LIPSS-formed SS sheets, revealing a parallel trend with LSFL and HSFL spatial periodicity. Specifically, the penetration depth increases with wavelength up to 2000 nm, reaching a peak at approximately 13 µm, and subsequently decreases. This distinctive correlation underscores the role of plasma material reorganizational effects in LIPSS formation at higher wavelengths, presenting a new experimental observation to the existing literature. The findings enhance our comprehension of laser-material interactions and hold potential implications for surface engineering and material science applications.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"1302-1315"},"PeriodicalIF":2.7,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144940696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-07eCollection Date: 2025-01-01DOI: 10.3762/bjnano.16.94
Huu Phuc Dang, Khanh Quang Nguyen, Nguyen Thi Mai Tho, Tran Le
This study investigates the fabrication of BiVO4 photoanodes using a controlled-intensity current electrodeposition method to improve their photoelectrochemical (PEC) performance. The impact of varying the deposition current density and VO(acac)2 concentration was systematically analyzed to optimize the crystallinity, surface morphology, and electronic properties of the films. Subsequently, an electrochemical deposition method was developed to facilitate the uniform distribution of V2O5 among Bi-O-I flakes to homogeneously enhance the conversion reaction. The XRD pattern confirms the monoclinic scheelite BiVO4 structure with dominant (121) and (004) peaks. FESEM imaging revealed that the different deposition conditions influenced the surface morphologies of the BiOI and BiVO4 films. Photocurrent density measurements showed that BiVO4(326) achieved 1.2 mA·cm-2 at 1.23 V vs RHE, representing a significant enhancement compared to the other samples. The surface hole injection efficiency was measured to be 47%, whereas the incident photon-to-current efficiency reached a peak of 18.1% at 420 nm. The applied bias photon-to-current efficiency of BiVO4(326) was also superior to that of the samples fabricated with lower current density, highlighting the benefits of the optimized electrodeposition conditions for the former.
本研究采用可控强度电流电沉积法制备BiVO4光阳极,以提高其光电化学性能。系统分析了不同沉积电流密度和VO(acac)2浓度对薄膜结晶度、表面形貌和电子性能的影响。随后,采用电化学沉积的方法使V2O5均匀分布在Bi-O-I薄片中,以促进转化反应的均匀性。XRD谱图证实白钨矿BiVO4为单斜晶型结构,主要峰为(121)和(004)。FESEM成像结果表明,不同的沉积条件影响了BiVO4和bii薄膜的表面形貌。光电流密度测量表明,BiVO4(326)在1.23 V vs RHE下达到1.2 mA·cm-2,与其他样品相比有显著增强。表面空穴注入效率为47%,而入射光子电流效率在420 nm处达到18.1%的峰值。BiVO4(326)的应用偏置光子电流效率也优于低电流密度制备的样品,突出了优化电沉积条件对前者的好处。
{"title":"Enhancing the photoelectrochemical performance of BiOI-derived BiVO<sub>4</sub> films by controlled-intensity current electrodeposition.","authors":"Huu Phuc Dang, Khanh Quang Nguyen, Nguyen Thi Mai Tho, Tran Le","doi":"10.3762/bjnano.16.94","DOIUrl":"10.3762/bjnano.16.94","url":null,"abstract":"<p><p>This study investigates the fabrication of BiVO<sub>4</sub> photoanodes using a controlled-intensity current electrodeposition method to improve their photoelectrochemical (PEC) performance. The impact of varying the deposition current density and VO(acac)<sub>2</sub> concentration was systematically analyzed to optimize the crystallinity, surface morphology, and electronic properties of the films. Subsequently, an electrochemical deposition method was developed to facilitate the uniform distribution of V<sub>2</sub>O<sub>5</sub> among Bi-O-I flakes to homogeneously enhance the conversion reaction. The XRD pattern confirms the monoclinic scheelite BiVO<sub>4</sub> structure with dominant (121) and (004) peaks. FESEM imaging revealed that the different deposition conditions influenced the surface morphologies of the BiOI and BiVO<sub>4</sub> films. Photocurrent density measurements showed that BiVO<sub>4</sub>(326) achieved 1.2 mA·cm<sup>-2</sup> at 1.23 V vs RHE, representing a significant enhancement compared to the other samples. The surface hole injection efficiency was measured to be 47%, whereas the incident photon-to-current efficiency reached a peak of 18.1% at 420 nm. The applied bias photon-to-current efficiency of BiVO<sub>4</sub>(326) was also superior to that of the samples fabricated with lower current density, highlighting the benefits of the optimized electrodeposition conditions for the former.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"1289-1301"},"PeriodicalIF":2.7,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337977/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144820469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-06eCollection Date: 2025-01-01DOI: 10.3762/bjnano.16.93
Verónica Bautista-Robles, Hady Keita, Edgar Julián Paredes Gamero, Layna Tayná Brito Leite, Jessica de Araújo Isaías Muller, Mônica Cristina Toffoli Kadri, Ariadna Lafourcade Prada, Jesús Rafael Rodríguez Amado
The oil from the pulp of the bocaiúva fruit may have several medical applications. However, little is known about its pharmacological activity. Therefore, this study aimed to develop and evaluate the anti-inflammatory activity of a nanoemulsion loaded with the oil extracted from the pulp of the fruit of Acrocomia aculeata. Griffin's method determined the hydrophilic-lipophilic equilibrium ratio of the nanoemulsion. It was shown to have an adequate droplet size (173.60 nm) with excellent homogeneity (polydispersity index 0.200). The anti-inflammatory activity of the nanoemulsion was evaluated by the carrageenan-induced paw edema method. Finally, the non-hemolytic and cytotoxic activity of the nanoformulation was determined to assess its safety. The nanoemulsion loaded with Acrocomia aculeata fruit pulp oil was shown to have parameters suitable for its characterization, impressive anti-inflammatory activity, and a safe profile.
{"title":"<i>Acrocomia aculeata</i> oil-loaded nanoemulsion: development, anti-inflammatory properties, and cytotoxicity evaluation.","authors":"Verónica Bautista-Robles, Hady Keita, Edgar Julián Paredes Gamero, Layna Tayná Brito Leite, Jessica de Araújo Isaías Muller, Mônica Cristina Toffoli Kadri, Ariadna Lafourcade Prada, Jesús Rafael Rodríguez Amado","doi":"10.3762/bjnano.16.93","DOIUrl":"10.3762/bjnano.16.93","url":null,"abstract":"<p><p>The oil from the pulp of the bocaiúva fruit may have several medical applications. However, little is known about its pharmacological activity. Therefore, this study aimed to develop and evaluate the anti-inflammatory activity of a nanoemulsion loaded with the oil extracted from the pulp of the fruit of <i>Acrocomia aculeata</i>. Griffin's method determined the hydrophilic-lipophilic equilibrium ratio of the nanoemulsion. It was shown to have an adequate droplet size (173.60 nm) with excellent homogeneity (polydispersity index 0.200). The anti-inflammatory activity of the nanoemulsion was evaluated by the carrageenan-induced paw edema method. Finally, the non-hemolytic and cytotoxic activity of the nanoformulation was determined to assess its safety. The nanoemulsion loaded with <i>Acrocomia aculeata</i> fruit pulp oil was shown to have parameters suitable for its characterization, impressive anti-inflammatory activity, and a safe profile.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"1277-1288"},"PeriodicalIF":2.7,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337996/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144820467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The emergence of nanotechnology offers a promising avenue for enhancing cancer treatment outcomes. In this context, biomimetic nanoparticles have emerged as an exciting frontier in the field of biomedicine. These nanoparticles can emulate essential biological functions, drawing from an abundant reservoir of cellular capabilities. This includes engaging in biological binding, precise homing to tumor sites, and interaction with immune cells. These inherent traits endow biomimetic nanoparticles with a suite of intelligent features, including biocompatibility, low immunogenicity, reduced toxicity, immune evasion, prolonged circulation, homotypic binding, enhanced tumor targeting, and the capability of precise delivery. By integrating biologically inspired coatings derived from cell membranes with nanoparticle cores, these carriers become highly versatile vessels for encapsulating a wide array of therapeutic agents. As a result, they are being extensively harnessed for the precise delivery of drugs and genes, underpinning numerous biomedical applications. This discussion delves into the challenges and opportunities presented by biomimetic nanoparticles and offers a comprehensive exploration of their fundamentals and recent breakthroughs, with an eye towards clinical translation. By bridging the gap between scientific innovation and clinical utility, biomimetic nanoparticles hold great promise for advancing the field of cancer treatment.
{"title":"Better together: biomimetic nanomedicines for high performance tumor therapy.","authors":"Imran Shair Mohammad, Gizem Kursunluoglu, Anup Kumar Patel, Hafiz Muhammad Ishaq, Cansu Umran Tunc, Dilek Kanarya, Mubashar Rehman, Omer Aydin, Yin Lifang","doi":"10.3762/bjnano.16.92","DOIUrl":"10.3762/bjnano.16.92","url":null,"abstract":"<p><p>The emergence of nanotechnology offers a promising avenue for enhancing cancer treatment outcomes. In this context, biomimetic nanoparticles have emerged as an exciting frontier in the field of biomedicine. These nanoparticles can emulate essential biological functions, drawing from an abundant reservoir of cellular capabilities. This includes engaging in biological binding, precise homing to tumor sites, and interaction with immune cells. These inherent traits endow biomimetic nanoparticles with a suite of intelligent features, including biocompatibility, low immunogenicity, reduced toxicity, immune evasion, prolonged circulation, homotypic binding, enhanced tumor targeting, and the capability of precise delivery. By integrating biologically inspired coatings derived from cell membranes with nanoparticle cores, these carriers become highly versatile vessels for encapsulating a wide array of therapeutic agents. As a result, they are being extensively harnessed for the precise delivery of drugs and genes, underpinning numerous biomedical applications. This discussion delves into the challenges and opportunities presented by biomimetic nanoparticles and offers a comprehensive exploration of their fundamentals and recent breakthroughs, with an eye towards clinical translation. By bridging the gap between scientific innovation and clinical utility, biomimetic nanoparticles hold great promise for advancing the field of cancer treatment.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"1246-1276"},"PeriodicalIF":2.7,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337993/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144820468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-04eCollection Date: 2025-01-01DOI: 10.3762/bjnano.16.91
Tuyen B Ly, Duong D T Nguyen, Hieu D Nguyen, Yen T H Nguyen, Bup T A Bui, Kien A Le, Phung K Le
Biopackaging materials are gaining significant attention compared to traditional synthetic polymers thanks to their biodegradable and biocompatible nature to be used in food, pharmaceutical, and cosmetic industries. The current major gaps in research regarding these biopackaging materials are their low mechanical strength and the introduction of functional additives to enhance their range of applications. In this paper, a biopackaging material is formulated using polyvinyl alcohol with glycerol as a plasticizer, rice straw-derived nanocellulose as a mechanical property enhancer and cinnamon essential oil Pickering emulsion as the main functional ingredient for strawberry preservation. With the combination of nanocellulose and Pickering emulsion, this study finds that the packaging material exhibits good heat-resistance, mechanical, and water-barrier properties. At an emulsion concentration as low as 10% (v/w) in the casting solution, high UV absorbance capacity (up to 100% UVC), high antibacterial activity (92.4% Escherichia coli inhibition), and good antioxidative properties (up to 43% DPPH radical scavenging) were observed. These bioactive properties and the inherent moisture barrier property of the packaging material are utilized for strawberry preservation with a significant preservation time of 21 days compared to control samples that start to grow a white fungus on day 11. This combination of biopackaging with a naturally derived functional additive is proven to be effective in preserving fruits, especially easily spoiled ones like strawberries.
{"title":"Functional bio-packaging enhanced with nanocellulose from rice straw and cinnamon essential oil Pickering emulsion for fruit preservation.","authors":"Tuyen B Ly, Duong D T Nguyen, Hieu D Nguyen, Yen T H Nguyen, Bup T A Bui, Kien A Le, Phung K Le","doi":"10.3762/bjnano.16.91","DOIUrl":"10.3762/bjnano.16.91","url":null,"abstract":"<p><p>Biopackaging materials are gaining significant attention compared to traditional synthetic polymers thanks to their biodegradable and biocompatible nature to be used in food, pharmaceutical, and cosmetic industries. The current major gaps in research regarding these biopackaging materials are their low mechanical strength and the introduction of functional additives to enhance their range of applications. In this paper, a biopackaging material is formulated using polyvinyl alcohol with glycerol as a plasticizer, rice straw-derived nanocellulose as a mechanical property enhancer and cinnamon essential oil Pickering emulsion as the main functional ingredient for strawberry preservation. With the combination of nanocellulose and Pickering emulsion, this study finds that the packaging material exhibits good heat-resistance, mechanical, and water-barrier properties. At an emulsion concentration as low as 10% (v/w) in the casting solution, high UV absorbance capacity (up to 100% UVC), high antibacterial activity (92.4% <i>Escherichia coli</i> inhibition), and good antioxidative properties (up to 43% DPPH radical scavenging) were observed. These bioactive properties and the inherent moisture barrier property of the packaging material are utilized for strawberry preservation with a significant preservation time of 21 days compared to control samples that start to grow a white fungus on day 11. This combination of biopackaging with a naturally derived functional additive is proven to be effective in preserving fruits, especially easily spoiled ones like strawberries.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"1234-1245"},"PeriodicalIF":2.7,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337990/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144820470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-01eCollection Date: 2025-01-01DOI: 10.3762/bjnano.16.90
Jéssica da Cruz Ludwig, Diana Fortkamp Grigoletto, Daniele Fernanda Renzi, Wolf-Rainer Abraham, Daniel de Paula, Najeh Maissar Khalil
Drug delivery systems (DDSs) are an important tool for obtaining medicines with improved physicochemical properties, especially for drugs with stability, absorption, and biodistribution impairments. Among the DDSs, we can highlight hydrogels and nanogels, which are easy to obtain, show good biocompatibility, and have several applications in the design of drug carriers for dermal and ocular administration. In this review, we introduce a brief concept on hydrogels, underlining compounds such as chitosan and alginate, and methods used for their preparation. Nanogels, with their attractive features, such as high drug encapsulation and penetration enhancer embedding, are also addressed. Finally, the application of these systems in dermal pathophysiological processes through the incorporation of drugs for enhancing skin permeation brings out promising prospects for innovation which may arise in the drug delivery field.
{"title":"Hydrogels and nanogels: effectiveness in dermal applications.","authors":"Jéssica da Cruz Ludwig, Diana Fortkamp Grigoletto, Daniele Fernanda Renzi, Wolf-Rainer Abraham, Daniel de Paula, Najeh Maissar Khalil","doi":"10.3762/bjnano.16.90","DOIUrl":"10.3762/bjnano.16.90","url":null,"abstract":"<p><p>Drug delivery systems (DDSs) are an important tool for obtaining medicines with improved physicochemical properties, especially for drugs with stability, absorption, and biodistribution impairments. Among the DDSs, we can highlight hydrogels and nanogels, which are easy to obtain, show good biocompatibility, and have several applications in the design of drug carriers for dermal and ocular administration. In this review, we introduce a brief concept on hydrogels, underlining compounds such as chitosan and alginate, and methods used for their preparation. Nanogels, with their attractive features, such as high drug encapsulation and penetration enhancer embedding, are also addressed. Finally, the application of these systems in dermal pathophysiological processes through the incorporation of drugs for enhancing skin permeation brings out promising prospects for innovation which may arise in the drug delivery field.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"1216-1233"},"PeriodicalIF":2.7,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320743/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144783390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-29eCollection Date: 2025-01-01DOI: 10.3762/bjnano.16.89
Michelly de Sá Matsuoka, Giovanna Carla Cadini Ruiz, Marcos Luciano Bruschi, Jéssica Bassi da Silva
Photodynamic therapy (PDT) is a non-invasive treatment involving a photosensitizer (PS), light source, and tissue oxygen. Protoporphyrin IX (PpIX) is commonly used as a PS due to its tumor-targeting properties and phototoxicity. However, the physicochemical properties of PpIX foster self-aggregation, which is a challenge for its incorporation into pharmaceutical formulations. This study aimed to evaluate the solubility of PpIX in distinct solvent systems to support the development of novel pharmaceutical formulations. The shake-flask method was employed, using purified water, 50% ethanol (EtOH50), 77% ethanol (EtOH77), absolute ethanol (EtOHabs), and polymeric systems containing 10% (w/w) poloxamer 407 (P407) in water, in EtOH50 or in EtOH77. Approximately 10 to 25 mg of PpIX was added to 25 mL of the solvent, and the solutions were stirred at 100 rpm, at 37 °C, for up to 96 h. The PpIX concentration was measured by using a validated method (R = 0.9973), with equilibrium reached within 30 min. The dissolution profiles of the micellar systems were also evaluated using the Korsmeyer-Peppas model with lag time (tlag), which indicated a Fickian diffusion mechanism, preceded by a thermodynamically driven accommodation stage of PpIX into the micelles. The solubility of PpIX ranged from 0.138 mg/mL in water to 0.593 mg/mL in water containing 10% (w/w) P407. The solubility of PpIX in EtOH50 and EtOH77 with 10% (w/w) P407 was 0.503 and 0.507 mg/mL, respectively, while EtOHabs yielded the lowest solubility among ethanolic solvents (0.179 mg/mL). These results indicate that water and EtOHabs are unsuitable solvents for PpIX, whereas the nanostructured systems containing P407 showed the greatest potential for future pharmaceutical applications, mainly the aqueous one because of its low toxicity considering topical preparations.
{"title":"Investigation of the solubility of protoporphyrin IX in aqueous and hydroalcoholic solvent systems.","authors":"Michelly de Sá Matsuoka, Giovanna Carla Cadini Ruiz, Marcos Luciano Bruschi, Jéssica Bassi da Silva","doi":"10.3762/bjnano.16.89","DOIUrl":"10.3762/bjnano.16.89","url":null,"abstract":"<p><p>Photodynamic therapy (PDT) is a non-invasive treatment involving a photosensitizer (PS), light source, and tissue oxygen. Protoporphyrin IX (PpIX) is commonly used as a PS due to its tumor-targeting properties and phototoxicity. However, the physicochemical properties of PpIX foster self-aggregation, which is a challenge for its incorporation into pharmaceutical formulations. This study aimed to evaluate the solubility of PpIX in distinct solvent systems to support the development of novel pharmaceutical formulations. The shake-flask method was employed, using purified water, 50% ethanol (EtOH50), 77% ethanol (EtOH77), absolute ethanol (EtOHabs), and polymeric systems containing 10% (w/w) poloxamer 407 (P407) in water, in EtOH50 or in EtOH77. Approximately 10 to 25 mg of PpIX was added to 25 mL of the solvent, and the solutions were stirred at 100 rpm, at 37 °C, for up to 96 h. The PpIX concentration was measured by using a validated method (<i>R</i> = 0.9973), with equilibrium reached within 30 min. The dissolution profiles of the micellar systems were also evaluated using the Korsmeyer-Peppas model with lag time (<i>t</i> <sub>lag</sub>), which indicated a Fickian diffusion mechanism, preceded by a thermodynamically driven accommodation stage of PpIX into the micelles. The solubility of PpIX ranged from 0.138 mg/mL in water to 0.593 mg/mL in water containing 10% (w/w) P407. The solubility of PpIX in EtOH50 and EtOH77 with 10% (w/w) P407 was 0.503 and 0.507 mg/mL, respectively, while EtOHabs yielded the lowest solubility among ethanolic solvents (0.179 mg/mL). These results indicate that water and EtOHabs are unsuitable solvents for PpIX, whereas the nanostructured systems containing P407 showed the greatest potential for future pharmaceutical applications, mainly the aqueous one because of its low toxicity considering topical preparations.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"1209-1215"},"PeriodicalIF":2.7,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320745/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144783391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-28eCollection Date: 2025-01-01DOI: 10.3762/bjnano.16.88
Maria A A Bertonceli, Vitor D C Cristo, Ivo J Vieira, Francisco J A Lemos, Arnoldo R Façanha, Raimundo Braz-Filho, Gustavo V T Batista, Luis G M Basso, Sérgio H Seabra, Thalya S R Nogueira, Felipe F Moreira, Arícia L E M Assis, Antônia E A Oliveira, Kátia V S Fernandes
Climate change has intensified the proliferation of disease vectors, such as Aedes aegypti, the primary transmitter of dengue, chikungunya, and zika viruses. Although the two recently licensed dengue vaccines represent a significant advancement, vector management remains the primary strategy for preventing these urban arboviruses. In this context, the development of pesticides that offer safer alternatives for the environment and human health has become urgent. In this study, a chitosan-based nanocomposite was developed as a delivery system for rotenoids isolated from Clitoria fairchildiana seeds, leveraging their larvicidal activity against third-instar larvae of Ae. aegypti. The nanocomposite was synthesized using a controlled ionic gelation method incorporating the TPP-β-CD inclusion complex, which resulted in nanoparticles with smaller size, improved polydispersity index, and enhanced stability, evidenced by a higher zeta potential. FTIR analysis confirmed rotenoid incorporation into the nanocomposite and suggested hydrogen bonding or potential covalent interaction with chitosan functional groups. Bioassays demonstrated that the nanocomposite achieved an LC50 of 91.7 ppm, representing a 23.6% increase in larvicidal efficacy compared to the rotenoids in their natural form. The nanocomposite also induced dose-dependent morphological and physiological alterations in the larvae, including damage to the peritrophic matrix, evidenced by abnormal anal excretion, and tissue melanization and formation of melanotic pseudotumors. These responses may be associated with increased production of reactive oxygen species in the larval midgut, consistent with previous findings for the nonencapsulated rotenoids. Importantly, empty nanoparticles exhibited no adverse effects on larval survival, which is attributed to the biocompatibility and nontoxic nature of chitosan, a biodegradable polysaccharide structurally related to the insect exoskeleton and widely recognized for its environmental safety. Additionally, neither rotenoids nor the CS/TPP-β-CD-rot nanocomposite exerted cytotoxic effects, confirming their favorable safety profile. These findings highlight the potential of nanotechnology to enhance the efficacy of bioactive compounds while minimizing environmental and human health risks, offering a sustainable and innovative strategy for vector control.
{"title":"Chitosan nanocomposite containing rotenoids: an alternative bioinsecticidal approach for the management of <i>Aedes aegypti</i>.","authors":"Maria A A Bertonceli, Vitor D C Cristo, Ivo J Vieira, Francisco J A Lemos, Arnoldo R Façanha, Raimundo Braz-Filho, Gustavo V T Batista, Luis G M Basso, Sérgio H Seabra, Thalya S R Nogueira, Felipe F Moreira, Arícia L E M Assis, Antônia E A Oliveira, Kátia V S Fernandes","doi":"10.3762/bjnano.16.88","DOIUrl":"10.3762/bjnano.16.88","url":null,"abstract":"<p><p>Climate change has intensified the proliferation of disease vectors, such as <i>Aedes aegypti</i>, the primary transmitter of dengue, chikungunya, and zika viruses. Although the two recently licensed dengue vaccines represent a significant advancement, vector management remains the primary strategy for preventing these urban arboviruses. In this context, the development of pesticides that offer safer alternatives for the environment and human health has become urgent. In this study, a chitosan-based nanocomposite was developed as a delivery system for rotenoids isolated from <i>Clitoria fairchildiana</i> seeds, leveraging their larvicidal activity against third-instar larvae of <i>Ae. aegypti</i>. The nanocomposite was synthesized using a controlled ionic gelation method incorporating the TPP-β-CD inclusion complex, which resulted in nanoparticles with smaller size, improved polydispersity index, and enhanced stability, evidenced by a higher zeta potential. FTIR analysis confirmed rotenoid incorporation into the nanocomposite and suggested hydrogen bonding or potential covalent interaction with chitosan functional groups. Bioassays demonstrated that the nanocomposite achieved an LC<sub>50</sub> of 91.7 ppm, representing a 23.6% increase in larvicidal efficacy compared to the rotenoids in their natural form. The nanocomposite also induced dose-dependent morphological and physiological alterations in the larvae, including damage to the peritrophic matrix, evidenced by abnormal anal excretion, and tissue melanization and formation of melanotic pseudotumors. These responses may be associated with increased production of reactive oxygen species in the larval midgut, consistent with previous findings for the nonencapsulated rotenoids. Importantly, empty nanoparticles exhibited no adverse effects on larval survival, which is attributed to the biocompatibility and nontoxic nature of chitosan, a biodegradable polysaccharide structurally related to the insect exoskeleton and widely recognized for its environmental safety. Additionally, neither rotenoids nor the CS/TPP-β-CD-rot nanocomposite exerted cytotoxic effects, confirming their favorable safety profile. These findings highlight the potential of nanotechnology to enhance the efficacy of bioactive compounds while minimizing environmental and human health risks, offering a sustainable and innovative strategy for vector control.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"1197-1208"},"PeriodicalIF":2.7,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320742/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144783389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}