Xinhao Yang, Francisco Muñoz, Pamela Vargas, Teresa Palomar, Nataly C. Rosero-Navarro
Fluorides are commonly regarded as interfacial additives that enhance the electrochemical stability of solid-state battery electrolytes. In this study, we synthesized lithium borate glassy solid electrolytes and investigated the effect of adding aluminum fluoride (AlF3) on its stability against lithium metal electrodes. Samples maintained their amorphous nature, with up to 9.20 wt.% of fluorine in the glass. Lithium borate glasses, with and without AlF3, demonstrated an excellent electrochemical performance, sustaining a stable lithium voltage profile at current densities from 0.01 to 1 mA cm⁻² at 160°C. Notably, the lithium borate glass with the highest lithium ion content achieved the highest relative ionic conductivity and cycled stably for up to 500 h at current densities of 1 mA cm⁻² at 160°C in symmetric LiǀglassǀLi cells. However, the addition of AlF3 to lithium borate glass significantly compromises its electrochemical stability. In long-term symmetrical cell tests, the AlF3-containing lithium borate glass exhibited short-circuiting under 0.3 mA cm⁻², revealing unexpectedly poor stability. These findings offer valuable insights for evaluating the impact of fluorine incorporation on the performance of solid-state battery electrolytes.
氟化物通常被认为是增强固态电池电解质电化学稳定性的界面添加剂。在本研究中,我们合成了硼酸锂玻璃状固体电解质,并研究了氟化铝(AlF3)的加入对其对锂金属电极稳定性的影响。样品保持其无定形性质,重达9.20 wt。玻璃中氟的百分比。硼酸锂玻璃,有或没有AlF3,表现出优异的电化学性能,在电流密度为0.01至1 mA cm(⁻²)时,在160°C下保持稳定的锂电压谱。值得注意的是,具有最高锂离子含量的硼酸锂玻璃具有最高的相对离子电导率,并且在对称LiǀglassǀLi电池中,在160°C下电流密度为1 mA cm⁻²时稳定循环长达500小时。然而,在硼酸锂玻璃中加入AlF3会显著影响其电化学稳定性。在长期的对称电池测试中,含有alf3的硼酸锂玻璃在0.3 mA cm(⁻²)下发生了短路,显示出意想不到的低稳定性。这些发现为评估氟掺入对固态电池电解质性能的影响提供了有价值的见解。
{"title":"Electrochemical Stability and Ionic Conductivity of AlF3 Containing Lithium Borate Glasses: Fluorine Effect, Strength or Weakness?","authors":"Xinhao Yang, Francisco Muñoz, Pamela Vargas, Teresa Palomar, Nataly C. Rosero-Navarro","doi":"10.1002/bte2.70007","DOIUrl":"https://doi.org/10.1002/bte2.70007","url":null,"abstract":"<p>Fluorides are commonly regarded as interfacial additives that enhance the electrochemical stability of solid-state battery electrolytes. In this study, we synthesized lithium borate glassy solid electrolytes and investigated the effect of adding aluminum fluoride (AlF<sub>3</sub>) on its stability against lithium metal electrodes. Samples maintained their amorphous nature, with up to 9.20 wt.% of fluorine in the glass. Lithium borate glasses, with and without AlF<sub>3</sub>, demonstrated an excellent electrochemical performance, sustaining a stable lithium voltage profile at current densities from 0.01 to 1 mA cm⁻² at 160°C. Notably, the lithium borate glass with the highest lithium ion content achieved the highest relative ionic conductivity and cycled stably for up to 500 h at current densities of 1 mA cm⁻² at 160°C in symmetric LiǀglassǀLi cells. However, the addition of AlF<sub>3</sub> to lithium borate glass significantly compromises its electrochemical stability. In long-term symmetrical cell tests, the AlF<sub>3</sub>-containing lithium borate glass exhibited short-circuiting under 0.3 mA cm⁻², revealing unexpectedly poor stability. These findings offer valuable insights for evaluating the impact of fluorine incorporation on the performance of solid-state battery electrolytes.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.70007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144582405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohsen Alizadeh Afroozi, Mohammad Gramifar, Babak Hazratifar, Mohammad Mahdi Keshvari, Seyed Behnam Razavian
Lithium batteries constitute a pivotal component in electric vehicles (EVs) owing to their rechargeability and high-power output capabilities. Despite their advantageous features, these batteries encounter longevity challenges, posing disposal complications and an insufficient sustainable supply chain ecosystem to address the growing demand for lithium batteries. One potential solution to address this issue is the implementation of a circular economy model. This study aims to identify and assess the key barriers to optimizing a sustainable supply chain in the lithium-ion battery circular economy using an integrated Gray Multi-Criteria Decision Making approach within the automotive sector. The novelty of this research lies in its application of Gray Possibility Comparison and Gray Possibility of degree to address these uncertainties. By integrating Gray DEMATEL (Decision Making Trial and Evaluation Laboratory) and Gray ANP (Analytic Network Process) methods, this study offers a more flexible and adaptive framework for identifying and analyzing the interrelationships among barriers. The research process involves validating the identified barriers through the Gray Delphi method, followed by the application of Gray DEMATEL to establish the cause-effect relationships among the barriers. Finally, Gray ANP is used to assign weights and prioritize the barriers into primary and secondary categories. The results indicate that the barrier “Lack of supportive policies and standards” holds the highest importance and influence, with a weight of 0.101225.
{"title":"Optimization of Lithium-Ion Battery Circular Economy in Electric Vehicles in Sustainable Supply Chain","authors":"Mohsen Alizadeh Afroozi, Mohammad Gramifar, Babak Hazratifar, Mohammad Mahdi Keshvari, Seyed Behnam Razavian","doi":"10.1002/bte2.20240057","DOIUrl":"https://doi.org/10.1002/bte2.20240057","url":null,"abstract":"<p>Lithium batteries constitute a pivotal component in electric vehicles (EVs) owing to their rechargeability and high-power output capabilities. Despite their advantageous features, these batteries encounter longevity challenges, posing disposal complications and an insufficient sustainable supply chain ecosystem to address the growing demand for lithium batteries. One potential solution to address this issue is the implementation of a circular economy model. This study aims to identify and assess the key barriers to optimizing a sustainable supply chain in the lithium-ion battery circular economy using an integrated Gray Multi-Criteria Decision Making approach within the automotive sector. The novelty of this research lies in its application of Gray Possibility Comparison and Gray Possibility of degree to address these uncertainties. By integrating Gray DEMATEL (Decision Making Trial and Evaluation Laboratory) and Gray ANP (Analytic Network Process) methods, this study offers a more flexible and adaptive framework for identifying and analyzing the interrelationships among barriers. The research process involves validating the identified barriers through the Gray Delphi method, followed by the application of Gray DEMATEL to establish the cause-effect relationships among the barriers. Finally, Gray ANP is used to assign weights and prioritize the barriers into primary and secondary categories. The results indicate that the barrier “Lack of supportive policies and standards” holds the highest importance and influence, with a weight of 0.101225.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143633102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silicon-based anodes are among the most appealing possibilities for high-capacity anode materials, considering that they possess a high theoretical capacity. However, the significant volumetric changes during cycling lead to rapid capacity degradation, hindering their commercial application in high-energy density lithium-ion batteries (LIBs). This research introduces a novel organic-inorganic cross-linked binder system: sodium alginate-lithium borate-boric acid (Alg-LBO-BA). This three-dimensional network structure effectively buffers the volumetric changes of Si particles, maintaining overall electrode stability. LBO serves as prelithiation agent, compensating for irreversible lithium consumption during SEI formation, and the Si−O−B structure offers a plethora of Lewis acid sites, enhancing lithium-ion transport and interfacial stability. At a current activation of 0.2 A g−1, the optimized silicon anode shows an initial coulombic efficiency (ICE) of 91%. After 200 cycles at 1 A g−1, it retains a reversible capacity of 1631.8 mAh g−1 and achieves 1768.0 mAh g−1 at a high current density of 5 A g−1. This study presents a novel approach to designing organic-inorganic binders for silicon anodes, significantly advancing the development of high-performance silicon anodes.
硅基阳极是高容量阳极材料中最有吸引力的可能性之一,因为它们具有很高的理论容量。然而,循环过程中显著的体积变化导致容量快速退化,阻碍了它们在高能量密度锂离子电池(lib)中的商业应用。介绍了一种新型的有机-无机交联粘结剂体系:海藻酸钠-硼酸锂(Alg-LBO-BA)。这种三维网络结构有效地缓冲了Si颗粒的体积变化,保持了电极的整体稳定性。LBO作为预锂化剂,补偿了SEI形成过程中不可逆的锂消耗,并且Si - O - B结构提供了大量的Lewis酸位点,增强了锂离子的传输和界面稳定性。在0.2 a g−1的激活电流下,优化后的硅阳极的初始库仑效率(ICE)为91%。在1 A g−1电流下,经过200次循环后,它保持了1631.8 mAh g−1的可逆容量,在5 A g−1的高电流密度下达到了1768.0 mAh g−1。本研究提出了一种设计硅阳极有机-无机结合剂的新方法,对高性能硅阳极的发展具有重要的推动作用。
{"title":"Lithium Borate/Boric Acid Optimized Multifunctional Binder Facilitates Silicon Anodes With Enhanced Initial Coulombic Efficiency, Structural Strength, and Cycling Stability","authors":"Xiang Wang, Tingting Li, Naiwen Liang, Xiaofan Liu, Fan Zhang, Yangfan Li, Yating Yang, Yujie Yang, Wenqing Ma, Zhongchang Wang, Jiang Yin, Yahui Yang, Lishan Yang","doi":"10.1002/bte2.70003","DOIUrl":"https://doi.org/10.1002/bte2.70003","url":null,"abstract":"<p>Silicon-based anodes are among the most appealing possibilities for high-capacity anode materials, considering that they possess a high theoretical capacity. However, the significant volumetric changes during cycling lead to rapid capacity degradation, hindering their commercial application in high-energy density lithium-ion batteries (LIBs). This research introduces a novel organic-inorganic cross-linked binder system: sodium alginate-lithium borate-boric acid (Alg-LBO-BA). This three-dimensional network structure effectively buffers the volumetric changes of Si particles, maintaining overall electrode stability. LBO serves as prelithiation agent, compensating for irreversible lithium consumption during SEI formation, and the Si−O−B structure offers a plethora of Lewis acid sites, enhancing lithium-ion transport and interfacial stability. At a current activation of 0.2 A g<sup>−1</sup>, the optimized silicon anode shows an initial coulombic efficiency (ICE) of 91%. After 200 cycles at 1 A g<sup>−1</sup>, it retains a reversible capacity of 1631.8 mAh g<sup>−1</sup> and achieves 1768.0 mAh g<sup>−1</sup> at a high current density of 5 A g<sup>−1</sup>. This study presents a novel approach to designing organic-inorganic binders for silicon anodes, significantly advancing the development of high-performance silicon anodes.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.70003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Two-dimensional (2D) lead halide perovskites (LHPs) have captured a range of interest for the advancement of state-of-the-art optoelectronic devices, highly efficient solar cells, next-generation energy harvesting technologies owing to their hydrophobic nature, layered configuration, and remarkable chemical/environmental stabilities. These 2D LHPs have been categorized into the Dion-Jacobson (DJ) and Ruddlesden-Popper (RP) systems based on their layered configuration respectively. To efficiently classify the RP and DJ phases synthetically and reduce reliance on trial/error method, machine learning (ML) techniques needs to develop. Herein, this work effectively identifies RP and DJ phases of 2D LHPs by implementing various ML models. ML models were trained on 264 experimental data set using 10-fold stratified cross-validation, hyperparameter optimization with Optuna, and Shapley Additive Explanations (SHAP) were employed. The stacking classifier efficiently classified RP and DJ phases, demonstrating a minimal variation between the sensitivity and specificity and achieved a high Balance Accuracy (BA) of (0.83) on independent test data set. Our best model tested on 17 hybrid 2D LHPs and three experimental synthesized 2D LHPs aligns well experimental outcomes, a significant advance in cutting edge ML models. Thus, this proposed study has unlocked a new route toward the rational classification of RP and DJ phases of 2D LHPs.
{"title":"Analysis of Ruddlesden-Popper and Dion-Jacobson 2D Lead Halide Perovskites Through Integrated Experimental and Computational Analysis","authors":"Basir Akbar, Kil To Chong, Hilal Tayara","doi":"10.1002/bte2.20240040","DOIUrl":"https://doi.org/10.1002/bte2.20240040","url":null,"abstract":"<p>Two-dimensional (2D) lead halide perovskites (LHPs) have captured a range of interest for the advancement of state-of-the-art optoelectronic devices, highly efficient solar cells, next-generation energy harvesting technologies owing to their hydrophobic nature, layered configuration, and remarkable chemical/environmental stabilities. These 2D LHPs have been categorized into the Dion-Jacobson (DJ) and Ruddlesden-Popper (RP) systems based on their layered configuration respectively. To efficiently classify the RP and DJ phases synthetically and reduce reliance on trial/error method, machine learning (ML) techniques needs to develop. Herein, this work effectively identifies RP and DJ phases of 2D LHPs by implementing various ML models. ML models were trained on 264 experimental data set using 10-fold stratified cross-validation, hyperparameter optimization with Optuna, and Shapley Additive Explanations (SHAP) were employed. The stacking classifier efficiently classified RP and DJ phases, demonstrating a minimal variation between the sensitivity and specificity and achieved a high Balance Accuracy (BA) of (0.83) on independent test data set. Our best model tested on 17 hybrid 2D LHPs and three experimental synthesized 2D LHPs aligns well experimental outcomes, a significant advance in cutting edge ML models. Thus, this proposed study has unlocked a new route toward the rational classification of RP and DJ phases of 2D LHPs.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lithium carbonate, a solid discharge product, is closely associated with the discharge performance of oxygen-involved lithium-carbon dioxide batteries that exacerbates concentration polarization and electrode passivation. Although numerous strategies to enhance battery performance have progressed, the mechanistic understanding of lithium carbonate on oxygen-involved lithium-carbon dioxide batteries is still confusing. Herein, the effects of lithium carbonate over past decades are traced, including the lithium carbonate product morphology, reaction pathway, formation intermediate, and growth mechanism. The lithium carbonate nucleation and growth are crucial factors that influence battery performance. This perspective proposes a brand-new growth mechanism coupling of solution and surface mechanisms based on experimental results and theories, which extends the growth space of the product and enhances the discharge capacity. Developing advanced technologies are expected to reveal complex lithium carbonate formation pathways and spearhead advanced oxygen-involved lithium-carbon dioxide batteries.
{"title":"Mechanistic Understanding of the Solid Product in O2-Involved Li-CO2 Batteries","authors":"Aijing Yan, Xu Xiao, Zhuojun Zhang, Zehui Zhao, Yasen Hao, Tenghui Qiu, Peng Tan","doi":"10.1002/bte2.70001","DOIUrl":"https://doi.org/10.1002/bte2.70001","url":null,"abstract":"<p>Lithium carbonate, a solid discharge product, is closely associated with the discharge performance of oxygen-involved lithium-carbon dioxide batteries that exacerbates concentration polarization and electrode passivation. Although numerous strategies to enhance battery performance have progressed, the mechanistic understanding of lithium carbonate on oxygen-involved lithium-carbon dioxide batteries is still confusing. Herein, the effects of lithium carbonate over past decades are traced, including the lithium carbonate product morphology, reaction pathway, formation intermediate, and growth mechanism. The lithium carbonate nucleation and growth are crucial factors that influence battery performance. This perspective proposes a brand-new growth mechanism coupling of solution and surface mechanisms based on experimental results and theories, which extends the growth space of the product and enhances the discharge capacity. Developing advanced technologies are expected to reveal complex lithium carbonate formation pathways and spearhead advanced oxygen-involved lithium-carbon dioxide batteries.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.70001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giuseppe Pascuzzi, Sabrina Trano, Carlotta Francia, Stefano Turri, Federico Bella, Gianmarco Griffini
Potassium batteries are very appealing for stationary applications and domestic use, offering a promising alternative to lithium-ion systems. To improve their safety and environmental impact, gel polymer electrolytes (GPEs) based on bioderived materials can be employed. In this work, a series of biobased membranes are developed by crosslinking pre-oxidized Kraft lignin as bio-based component and poly(ethylene glycol) diglycidyl ether (PEGDGE) as functional linker with 200, 500, and 1000 g mol−1 molecular weight. The influence of PEGDGE chain length on the physicochemical properties and electrochemical performance of GPEs for potassium batteries is investigated. These membranes exhibit thermal stability above 240°C and tunable glass transition temperatures depending on the PEGDGE molecular weight. Their mechanical properties are determined by rheology measurements in dry and swollen states, evidencing a slight decrease of elastic modulus (G′) by increasing PEGDGE chain length. An approximately one-order-of-magnitude lower G′ value is observed in swollen membranes versus their dry counterpart. Upon successful activation of the lignin-based membranes by swelling in the liquid electrolyte embedding potassium salts, these GPEs are tested in potassium metal cell prototypes. These systems exhibit ionic conductivity of ~10−3 S cm−1 at ambient temperature. Interestingly, battery devices equipped with the GPE based on PEGDGE 1000 g mol−1 withstand current densities as high as 1.5 mA cm−2 during operation. Moreover, the same devices reach specific capacities of 130 mAh g‒1 at 0.05 A g−1 in the first 100 cycles and long-term operation for over 2500 cycles, representing outstanding achievements as bio-sourced systems for potassium batteries.
钾电池在固定应用和家庭使用中非常有吸引力,为锂离子系统提供了一个有前途的替代品。为了提高其安全性和环境影响,可以采用基于生物衍生材料的凝胶聚合物电解质(gpe)。在这项工作中,通过交联预氧化硫酸盐木质素作为生物基组分,聚乙二醇二甘油酯醚(PEGDGE)作为功能连接剂,开发了一系列生物基膜,分子量分别为200、500和1000 g mol−1。研究了PEGDGE链长对钾电池用gpe材料理化性能和电化学性能的影响。这些膜在240°C以上表现出热稳定性,并且根据PEGDGE分子量可调节玻璃化转变温度。它们的力学性能是通过在干燥和膨胀状态下的流变学测量来确定的,表明弹性模量(G ')随着PEGDGE链长度的增加而略有下降。与干燥膜相比,肿胀膜的G值大约低一个数量级。在木质素基膜通过溶胀在液体电解质中嵌入钾盐成功激活后,这些gpe在钾金属电池原型中进行了测试。这些体系在环境温度下的离子电导率为~10−3 S cm−1。有趣的是,配备基于PEGDGE 1000 g mol - 1的GPE的电池设备在工作期间可承受高达1.5 mA cm - 2的电流密度。此外,相同的装置在前100次循环中达到130 mAh g- 1的比容量,在0.05 A g- 1下长期运行超过2500次循环,代表了钾电池生物源系统的杰出成就。
{"title":"Elucidating the Interplay Between Structure and Electrochemical Behavior in Lignin-Based Polymer Electrolytes for Potassium Batteries","authors":"Giuseppe Pascuzzi, Sabrina Trano, Carlotta Francia, Stefano Turri, Federico Bella, Gianmarco Griffini","doi":"10.1002/bte2.70002","DOIUrl":"https://doi.org/10.1002/bte2.70002","url":null,"abstract":"<p>Potassium batteries are very appealing for stationary applications and domestic use, offering a promising alternative to lithium-ion systems. To improve their safety and environmental impact, gel polymer electrolytes (GPEs) based on bioderived materials can be employed. In this work, a series of biobased membranes are developed by crosslinking pre-oxidized Kraft lignin as bio-based component and poly(ethylene glycol) diglycidyl ether (PEGDGE) as functional linker with 200, 500, and 1000 g mol<sup>−1</sup> molecular weight. The influence of PEGDGE chain length on the physicochemical properties and electrochemical performance of GPEs for potassium batteries is investigated. These membranes exhibit thermal stability above 240°C and tunable glass transition temperatures depending on the PEGDGE molecular weight. Their mechanical properties are determined by rheology measurements in dry and swollen states, evidencing a slight decrease of elastic modulus (G′) by increasing PEGDGE chain length. An approximately one-order-of-magnitude lower G′ value is observed in swollen membranes versus their dry counterpart. Upon successful activation of the lignin-based membranes by swelling in the liquid electrolyte embedding potassium salts, these GPEs are tested in potassium metal cell prototypes. These systems exhibit ionic conductivity of ~10<sup>−3</sup> S cm<sup>−1</sup> at ambient temperature. Interestingly, battery devices equipped with the GPE based on PEGDGE 1000 g mol<sup>−1</sup> withstand current densities as high as 1.5 mA cm<sup>−2</sup> during operation. Moreover, the same devices reach specific capacities of 130 mAh g<sup>‒1</sup> at 0.05 A g<sup>−1</sup> in the first 100 cycles and long-term operation for over 2500 cycles, representing outstanding achievements as bio-sourced systems for potassium batteries.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.70002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sodium-layered oxides are a promising category of cathodes for sodium-ion batteries with high energy densities. The solid-state method is the typical approach to synthesizing these oxides because of its simple procedure and low cost. Although the reaction conditions have usually been understated, the effect of reagents has often been overlooked. Thus, fundamental insight into the chemical reagents is required to perform well. Here we report in situ structural and electrochemical methods of studying the effect of using different reagents. The materials have a composite structure containing layered NaMnO2 and Li2MnO3 components, where oxygen anionic redox can be triggered at high voltage by forming Na–O–Li configurations. The samples synthesized via MnCO3-based precursors form the Li2MnO3 phase at evaluated temperature and perform better than those through MnO2-based precursors. This work demonstrates that the reagents also impact the structure and performance of sodium-layered oxides, which provides new insight into developing high-energy cathode material.
{"title":"The Synthesis Effects on the Performance of P2-Na0.6Li0.27Mn0.73O2 Cathode Material for Sodium-Ion Batteries","authors":"Cuihong Zeng, Ziqin Zhang, Jiming Peng, Jia Qiao, Qichang Pan, Fenghua Zheng, Youguo Huang, Hongqiang Wang, Qingyu Li, Sijiang Hu","doi":"10.1002/bte2.70000","DOIUrl":"https://doi.org/10.1002/bte2.70000","url":null,"abstract":"<p>Sodium-layered oxides are a promising category of cathodes for sodium-ion batteries with high energy densities. The solid-state method is the typical approach to synthesizing these oxides because of its simple procedure and low cost. Although the reaction conditions have usually been understated, the effect of reagents has often been overlooked. Thus, fundamental insight into the chemical reagents is required to perform well. Here we report in situ structural and electrochemical methods of studying the effect of using different reagents. The materials have a composite structure containing layered NaMnO<sub>2</sub> and Li<sub>2</sub>MnO<sub>3</sub> components, where oxygen anionic redox can be triggered at high voltage by forming Na–O–Li configurations. The samples synthesized via MnCO<sub>3</sub>-based precursors form the Li<sub>2</sub>MnO<sub>3</sub> phase at evaluated temperature and perform better than those through MnO<sub>2</sub>-based precursors. This work demonstrates that the reagents also impact the structure and performance of sodium-layered oxides, which provides new insight into developing high-energy cathode material.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.70000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Murugavel Kathiresan, Abishek Kumar Lakshmi, Natarajan Angulakshmi, Sara Garcia-Ballesteros, Federico Bella, A. Manuel Stephan
Although lithium-ion batteries (LIBs) have found an unprecedented place among portable electronic devices owing to their attractive properties such as high energy density, single cell voltage, long shelf-life, etc., their application in electric vehicles still requires further improvements in terms of power density, better safety, and fast-charging ability (i.e., 15 min charging) for long driving range. The challenges of fast charging of LIBs have limitations such as low lithium-ion transport in the bulk and solid electrode/electrolyte interfaces, which are mainly influenced by the ionic conductivity of the electrolyte. Therefore, electrolyte engineering plays a key role in enhancing the fast-charging capability of LIBs. Here, we synthesize a novel propionic acid-based viologen that contains a 4,4′-bipyridinium unit and a terminal carboxylic acid group with positive charges that confine PF6‒ anions and accelerate the migration of lithium ions due to electrostatic repulsion, thus increasing the overall rate capability. The LiFePO4/Li cells with 0.25% of viologen added to the electrolyte show a discharge capacity of 110 mAh g‒1 at 6C with 95% of capacity retention even after 500 cycles. The added viologen not only enhances the electrochemical properties, but also significantly reduces the self-extinguishing time.
尽管锂离子电池(LIBs)凭借其高能量密度、单节电压、长保质期等吸引人的特性在便携式电子设备中占据了前所未有的地位,但其在电动汽车中的应用仍需要在功率密度、更好的安全性和长行驶里程的快速充电能力(即充电15分钟)方面进一步改进。锂离子电池快速充电的挑战在于锂离子在体积和固体电极/电解质界面中的低输运,这主要受电解质离子电导率的影响。因此,电解质工程对提高锂离子电池的快速充电能力起着至关重要的作用。在这里,我们合成了一种新的丙酸基紫胶,它含有一个4,4 ' -联吡啶单元和一个带正电荷的末端羧基,它限制了PF6 -阴离子,并由于静电排斥加速了锂离子的迁移,从而提高了整体的速率能力。在电解液中添加0.25%紫素的LiFePO4/Li电池在6C下的放电容量为110 mAh g-1,即使在500次循环后仍保持95%的容量。添加紫外光不仅提高了电化学性能,而且显著缩短了自熄时间。
{"title":"Viologen as an Electrolyte Additive for Extreme Fast Charging of Lithium-Ion Batteries","authors":"Murugavel Kathiresan, Abishek Kumar Lakshmi, Natarajan Angulakshmi, Sara Garcia-Ballesteros, Federico Bella, A. Manuel Stephan","doi":"10.1002/bte2.20240039","DOIUrl":"https://doi.org/10.1002/bte2.20240039","url":null,"abstract":"<p>Although lithium-ion batteries (LIBs) have found an unprecedented place among portable electronic devices owing to their attractive properties such as high energy density, single cell voltage, long shelf-life, etc., their application in electric vehicles still requires further improvements in terms of power density, better safety, and fast-charging ability (i.e., 15 min charging) for long driving range. The challenges of fast charging of LIBs have limitations such as low lithium-ion transport in the bulk and solid electrode/electrolyte interfaces, which are mainly influenced by the ionic conductivity of the electrolyte. Therefore, electrolyte engineering plays a key role in enhancing the fast-charging capability of LIBs. Here, we synthesize a novel propionic acid-based viologen that contains a 4,4′-bipyridinium unit and a terminal carboxylic acid group with positive charges that confine PF<sub>6</sub><sup>‒</sup> anions and accelerate the migration of lithium ions due to electrostatic repulsion, thus increasing the overall rate capability. The LiFePO<sub>4</sub>/Li cells with 0.25% of viologen added to the electrolyte show a discharge capacity of 110 mAh g<sup>‒1</sup> at 6C with 95% of capacity retention even after 500 cycles. The added viologen not only enhances the electrochemical properties, but also significantly reduces the self-extinguishing time.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145012937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The increasing amounts of end-of-life lithium-ion batteries (EOL LIBs) require novel and safe solutions allowing for the minimisation of health and environmental hazards. Arguably, the best approach to the problem of EOL LIBs is recycling and recovery of the metals contained within the cells. This allows the diversion of the EOL battery cells from the environment and the recovery of precious metals that can be reused in the manufacturing of new products, allowing the reduction of the requirements of virgin materials from the mining industry. The most significant hindrance to the recycling process of EOL LIBs is their unstable chemical nature and significant safety hazards related to opening the air-tight casings. To minimise these issues, the end-of-life cells must be stabilised in one of the few available ways. This review aims at a comprehensive presentation of the studied chemical methods of EOL LIB cell discharge and stabilisation. The advantages and disadvantages of the method and its variations are discussed based on the literature published to date. The literature review found that a significant number of authors make use of chemical stabilisation techniques without proper comprehension of the associated risks. Many authors focus solely on the cheapest and fastest way to stop a cell from producing an electrical charge without extra thought given to the downstream recycling processes of safety hazards related to the proposed stabilisation method. Only a few studies highlighted the risks and problems associated with chemical stabilisation techniques.
{"title":"A Review of the Use of Chemical Stabilisation Methods for Lithium-Ion Batteries","authors":"Mark D. Williams-Wynn, Marcin H. Durski","doi":"10.1002/bte2.20240086","DOIUrl":"https://doi.org/10.1002/bte2.20240086","url":null,"abstract":"<p>The increasing amounts of end-of-life lithium-ion batteries (EOL LIBs) require novel and safe solutions allowing for the minimisation of health and environmental hazards. Arguably, the best approach to the problem of EOL LIBs is recycling and recovery of the metals contained within the cells. This allows the diversion of the EOL battery cells from the environment and the recovery of precious metals that can be reused in the manufacturing of new products, allowing the reduction of the requirements of virgin materials from the mining industry. The most significant hindrance to the recycling process of EOL LIBs is their unstable chemical nature and significant safety hazards related to opening the air-tight casings. To minimise these issues, the end-of-life cells must be stabilised in one of the few available ways. This review aims at a comprehensive presentation of the studied chemical methods of EOL LIB cell discharge and stabilisation. The advantages and disadvantages of the method and its variations are discussed based on the literature published to date. The literature review found that a significant number of authors make use of chemical stabilisation techniques without proper comprehension of the associated risks. Many authors focus solely on the cheapest and fastest way to stop a cell from producing an electrical charge without extra thought given to the downstream recycling processes of safety hazards related to the proposed stabilisation method. Only a few studies highlighted the risks and problems associated with chemical stabilisation techniques.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240086","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145012695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Employing functional additives can facilitate the formation of stable solid electrolyte interphase (SEI), which has emerged as a promising strategy to improve the electrochemical properties of lithium metal batteries (LMBs). Typical SEI containing inorganic components, such as lithium fluoride (LiF) and lithium nitride (LiNxOy and Li3N), have been confirmed to construct an ideal SEI for LMBs. Here, we designed and synthesized a novel molecule named BTFN to act as an SEI-forming additive containing fluorine and nitro groups. The strong electron-withdrawing effect greatly reduces the lowest unoccupied molecular orbital (LUMO) energy, facilitating its preferential decomposition during the SEI-forming process. An SEI with rich LiF, LiNxOy, and Li3N forms after its preferential and complete decomposition, greatly enhancing stabilization and uniformity. The lifespan of symmetric LMBs with BTFN significantly increases more than 12 times under the same conditions; the Li/SPE/LFP full batteries cycle more than four times the contrast batteries with a capacity retention of 99.7%. This work provides some experiences and opinions for exploring complex SEI-forming additives.
{"title":"Ultrastable Gel Polymer Lithium Metal Batteries With Novel Nitro-Substituted Hexafluoride SEI-Forming Additive","authors":"Shuoning Zhang, Zichen Wang, Yinuo Yu, Shengyu Qin, Yunxiao Ren, Jiajun Chen, Jiale Liu, Lanying Zhang, Wei Hu, Huai Yang","doi":"10.1002/bte2.20240081","DOIUrl":"https://doi.org/10.1002/bte2.20240081","url":null,"abstract":"<p>Employing functional additives can facilitate the formation of stable solid electrolyte interphase (SEI), which has emerged as a promising strategy to improve the electrochemical properties of lithium metal batteries (LMBs). Typical SEI containing inorganic components, such as lithium fluoride (LiF) and lithium nitride (LiN<sub><i>x</i></sub>O<sub><i>y</i></sub> and Li<sub>3</sub>N), have been confirmed to construct an ideal SEI for LMBs. Here, we designed and synthesized a novel molecule named BTFN to act as an SEI-forming additive containing fluorine and nitro groups. The strong electron-withdrawing effect greatly reduces the lowest unoccupied molecular orbital (LUMO) energy, facilitating its preferential decomposition during the SEI-forming process. An SEI with rich LiF, LiN<sub><i>x</i></sub>O<sub><i>y</i></sub>, and Li<sub>3</sub>N forms after its preferential and complete decomposition, greatly enhancing stabilization and uniformity. The lifespan of symmetric LMBs with BTFN significantly increases more than 12 times under the same conditions; the Li/SPE/LFP full batteries cycle more than four times the contrast batteries with a capacity retention of 99.7%. This work provides some experiences and opinions for exploring complex SEI-forming additives.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240081","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145012068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}