Manman Wang, Zhibo Song, Jinxin Bi, Huanxin Li, Ming Xu, Yi Gong, Yundong Zhou, Yunlong Zhao, Kai Yang
Lithium-ion batteries (LIBs) have been widely used in electric vehicles and energy storage industries. An understanding of the reaction processes and degradation mechanism in LIBs is crucial for optimizing their performance. In situ atomic force microscopy (AFM) as a surface-sensitive tool has been applied in the real-time monitoring of the interfacial processes within lithium batteries. Here, we reviewed the recent progress of the application of in situ AFM for battery characterizations, including LIBs, lithium–sulfur batteries, and lithium–oxygen batteries. We summarized advances in the in situ AFM for recording electrode/electrolyte interface, mechanical properties, morphological changes, and surface evolution. Future directions of in situ AFM for the development of lithium batteries were also discussed in this review.
{"title":"Probing interfacial electrochemistry by in situ atomic force microscope for battery characterization","authors":"Manman Wang, Zhibo Song, Jinxin Bi, Huanxin Li, Ming Xu, Yi Gong, Yundong Zhou, Yunlong Zhao, Kai Yang","doi":"10.1002/bte2.2023006","DOIUrl":"10.1002/bte2.2023006","url":null,"abstract":"<p>Lithium-ion batteries (LIBs) have been widely used in electric vehicles and energy storage industries. An understanding of the reaction processes and degradation mechanism in LIBs is crucial for optimizing their performance. In situ atomic force microscopy (AFM) as a surface-sensitive tool has been applied in the real-time monitoring of the interfacial processes within lithium batteries. Here, we reviewed the recent progress of the application of in situ AFM for battery characterizations, including LIBs, lithium–sulfur batteries, and lithium–oxygen batteries. We summarized advances in the in situ AFM for recording electrode/electrolyte interface, mechanical properties, morphological changes, and surface evolution. Future directions of in situ AFM for the development of lithium batteries were also discussed in this review.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"2 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.2023006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135853663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Developing novel solid electrolytes with high performance is of great significance for the practical application of lithium metal batteries. Among all the developed solid electrolytes, composite polymer electrolytes (CPEs) have been deemed one of the most viable candidates because of their comprehensive performance. Nevertheless, the random distribution of inorganic filler nanoparticles may cause discontinuities in ion transport and low mechanical strength. Therefore, the introduction of a filler network with fast ion conduction is an effective strategy to provide continuous ion transport and mechanical support. The mechanically reinforced filler network enhances the mechanical strength of the CPE, providing opportunities to reduce the thickness of CPE. In this review, the progress of mechanically reinforced filler structures in CPE is summarized, along with the introduction of mechanically reinforced filler networks with random and ordered structures and electrode‐integrated CPE with mechanically reinforced filler networks. Finally, challenges and possible future research directions for mechanically reinforced filler network CPE are presented.
{"title":"Designing mechanically reinforced filler network for thin and robust composite polymer electrolyte","authors":"Guangzeng Cheng, Huanlei Wang, Jingyi Wu","doi":"10.1002/bte2.20230037","DOIUrl":"10.1002/bte2.20230037","url":null,"abstract":"Developing novel solid electrolytes with high performance is of great significance for the practical application of lithium metal batteries. Among all the developed solid electrolytes, composite polymer electrolytes (CPEs) have been deemed one of the most viable candidates because of their comprehensive performance. Nevertheless, the random distribution of inorganic filler nanoparticles may cause discontinuities in ion transport and low mechanical strength. Therefore, the introduction of a filler network with fast ion conduction is an effective strategy to provide continuous ion transport and mechanical support. The mechanically reinforced filler network enhances the mechanical strength of the CPE, providing opportunities to reduce the thickness of CPE. In this review, the progress of mechanically reinforced filler structures in CPE is summarized, along with the introduction of mechanically reinforced filler networks with random and ordered structures and electrode‐integrated CPE with mechanically reinforced filler networks. Finally, challenges and possible future research directions for mechanically reinforced filler network CPE are presented.","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"2 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135853805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weixiao Ji, Dawei Du, Jiachen Liang, Gang Li, Guanzheng Feng, Zilong Yin, Jiyao Zhou, Jiapeng Zhao, Yisan Shen, He Huang, Siping Pang
Organic electroactive materials are increasingly recognized as promising cathode materials for aqueous zinc–ion batteries (AZIBs), owing to their structural diversity and renewable nature. Despite this, the electrochemistry of these organic cathodes in AZIBs is still less than optimal, particularly in aspects such as output voltage, cyclability, and rate performance. In this review, we provide an overview of the evolutionary history of organic cathodes in AZIBs and elucidate their charge-storage mechanisms. We then delve into the strategies to overcome the prevailing challenges faced by aqueous Zn−organic batteries, including low achievable capacity and output voltage, poor cycling stability, and rate performance. Design strategies to enhance cell performance include tailoring molecular structure, engineering electrode microstructure, and modulation of electrolyte composition. Finally, we highlight that future research directions should cover performance evaluation under practical conditions and the recycling and reuse of organic electrode materials.
{"title":"Aqueous Zn−organic batteries: Electrochemistry and design strategies","authors":"Weixiao Ji, Dawei Du, Jiachen Liang, Gang Li, Guanzheng Feng, Zilong Yin, Jiyao Zhou, Jiapeng Zhao, Yisan Shen, He Huang, Siping Pang","doi":"10.1002/bte2.20230020","DOIUrl":"10.1002/bte2.20230020","url":null,"abstract":"<p>Organic electroactive materials are increasingly recognized as promising cathode materials for aqueous zinc–ion batteries (AZIBs), owing to their structural diversity and renewable nature. Despite this, the electrochemistry of these organic cathodes in AZIBs is still less than optimal, particularly in aspects such as output voltage, cyclability, and rate performance. In this review, we provide an overview of the evolutionary history of organic cathodes in AZIBs and elucidate their charge-storage mechanisms. We then delve into the strategies to overcome the prevailing challenges faced by aqueous Zn−organic batteries, including low achievable capacity and output voltage, poor cycling stability, and rate performance. Design strategies to enhance cell performance include tailoring molecular structure, engineering electrode microstructure, and modulation of electrolyte composition. Finally, we highlight that future research directions should cover performance evaluation under practical conditions and the recycling and reuse of organic electrode materials.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"2 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135853334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
VO2(B) is considered as a promising anode material for the next-generation sodium-ion batteries (SIBs) due to its accessible raw materials and considerable theoretical capacity. However, the VO2(B) electrode has inherent defects such as low conductivity and serious volume expansion, which hinder their practical application. Herein, a flower-like VO2(B)/V2CTx (VO@VC) heterojunction was prepared by a simple hydrothermal synthesis method with in situ growth. The flower-like structure composed of thin nanosheets alleviates the volume expansion, as well as the rapid Na+ transport pathways are built by the heterojunction structure, resulting in long-term cycling stability and superior rate performance. At a current density of 100 mA g−1, VO@VC anode can maintain a specific capacity of 276 mAh g−1 with an average coulombic efficiency of 98.7% after 100 cycles. Additionally, even at a current density of 2 A g−1, the VO@VC anode still exhibited a capacity of 132.9 mAh g−1 for 1000 cycles. The enhanced reaction kinetics can be attributed to the fast Na+ adsorption and storage at interfaces, which has been confirmed by the experimental and theoretical methods. These results demonstrate that the tailored nanoarchitecture design and additional surface engineering are effective strategies for optimizing vanadium-based anode.
摘要VO 2 (B)由于其易于获取的原料和可观的理论容量,被认为是下一代钠离子电池(sib)极有前途的负极材料。然而,VO 2 (B)电极存在电导率低、体积膨胀严重等固有缺陷,阻碍了其实际应用。本文采用原位生长的简单水热合成方法制备了花状的vo2 (B)/ v2ct x (VO@VC)异质结。由纳米薄片组成的花状结构减轻了体积膨胀,并且异质结结构建立了快速的Na +运输途径,从而实现了长期循环稳定性和优越的速率性能。当电流密度为100 mA g−1时,VO@VC阳极在100次循环后可保持276 mAh g−1的比容量,平均库仑效率为98.7%。此外,即使在2 a g−1的电流密度下,VO@VC阳极在1000次循环中仍然显示出132.9 mAh g−1的容量。反应动力学的增强可归因于Na +在界面上的快速吸附和储存,这已被实验和理论方法所证实。这些结果表明,定制纳米结构设计和额外的表面工程是优化钒基阳极的有效策略。
{"title":"A flower-like VO2(B)/V2CTx heterojunction as high kinetic rechargeable anode for sodium-ion batteries","authors":"Xiaoyu Jin, Yongxin Huang, Mengmeng Zhang, Ziheng Wang, Qianqian Meng, Zhihang Song, Li Li, Feng Wu, Renjie Chen","doi":"10.1002/bte2.20230029","DOIUrl":"10.1002/bte2.20230029","url":null,"abstract":"<p>VO<sub>2</sub>(B) is considered as a promising anode material for the next-generation sodium-ion batteries (SIBs) due to its accessible raw materials and considerable theoretical capacity. However, the VO<sub>2</sub>(B) electrode has inherent defects such as low conductivity and serious volume expansion, which hinder their practical application. Herein, a flower-like VO<sub>2</sub>(B)/V<sub>2</sub>CT<sub>x</sub> (VO@VC) heterojunction was prepared by a simple hydrothermal synthesis method with in situ growth. The flower-like structure composed of thin nanosheets alleviates the volume expansion, as well as the rapid Na<sup>+</sup> transport pathways are built by the heterojunction structure, resulting in long-term cycling stability and superior rate performance. At a current density of 100 mA g<sup>−1</sup>, VO@VC anode can maintain a specific capacity of 276 mAh g<sup>−1</sup> with an average coulombic efficiency of 98.7% after 100 cycles. Additionally, even at a current density of 2 A g<sup>−1</sup>, the VO@VC anode still exhibited a capacity of 132.9 mAh g<sup>−1</sup> for 1000 cycles. The enhanced reaction kinetics can be attributed to the fast Na<sup>+</sup> adsorption and storage at interfaces, which has been confirmed by the experimental and theoretical methods. These results demonstrate that the tailored nanoarchitecture design and additional surface engineering are effective strategies for optimizing vanadium-based anode.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"2 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135254998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Triana Wulandari, Derek Fawcett, Subhasish B. Majumder, Gerrard E. J. Poinern
Currently, the main drivers for developing Li-ion batteries for efficient energy applications include energy density, cost, calendar life, and safety. The high energy/capacity anodes and cathodes needed for these applications are hindered by challenges like: (1) aging and degradation; (2) improved safety; (3) material costs, and (4) recyclability. The present review begins by summarising the progress made from early Li-metal anode-based batteries to current commercial Li-ion batteries. Then discusses the recent progress made in studying and developing various types of novel materials for both anode and cathode electrodes, as well the various types of electrolytes and separator materials developed specifically for Li-ion battery operation. Battery management, handling, and safety are also discussed at length. Also, as a consequence of the exponential growth in the production of Li-ion batteries over the last 10 years, the review identifies the challenge of dealing with the ever-increasing quantities of spent batteries. The review further identifies the economic value of metals like Co and Ni contained within the batteries and the extremely large numbers of batteries produced to date and the extremely large volumes that are expected to be manufactured in the next 10 years. Thus, highlighting the need to develop effective recycling strategies to reduce the levels of mining for raw materials and prevention of harmful products from entering the environment through landfill disposal.
{"title":"Lithium-based batteries, history, current status, challenges, and future perspectives","authors":"Triana Wulandari, Derek Fawcett, Subhasish B. Majumder, Gerrard E. J. Poinern","doi":"10.1002/bte2.20230030","DOIUrl":"10.1002/bte2.20230030","url":null,"abstract":"<p>Currently, the main drivers for developing Li-ion batteries for efficient energy applications include energy density, cost, calendar life, and safety. The high energy/capacity anodes and cathodes needed for these applications are hindered by challenges like: (1) aging and degradation; (2) improved safety; (3) material costs, and (4) recyclability. The present review begins by summarising the progress made from early Li-metal anode-based batteries to current commercial Li-ion batteries. Then discusses the recent progress made in studying and developing various types of novel materials for both anode and cathode electrodes, as well the various types of electrolytes and separator materials developed specifically for Li-ion battery operation. Battery management, handling, and safety are also discussed at length. Also, as a consequence of the exponential growth in the production of Li-ion batteries over the last 10 years, the review identifies the challenge of dealing with the ever-increasing quantities of spent batteries. The review further identifies the economic value of metals like Co and Ni contained within the batteries and the extremely large numbers of batteries produced to date and the extremely large volumes that are expected to be manufactured in the next 10 years. Thus, highlighting the need to develop effective recycling strategies to reduce the levels of mining for raw materials and prevention of harmful products from entering the environment through landfill disposal.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"2 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230030","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135254988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Owing to the specific merits of low cost, abundant sources, and high physicochemical stability, carbonaceous materials are promising anode candidates for K+/Na+ storage, whereas their limited specific capacity and unfavorable rate capability remain challenging for future applications. Herein, the sulfur implantation in N-coordinated hard carbon hollow spheres (SN-CHS) has been realized for evoking a surface-driven capacitive process, which greatly improves K+/Na+ storage performance. Specifically, the SN-CHS electrodes deliver a high specific capacity of 480.5/460.9 mAh g−1 at 0.1 A g−1, preferred rate performance of 316.8/237.4 mAh g−1 at 5 A g−1, and high-rate cycling stability of 87.9%/87.2% capacity retention after 2500/1500 cycles at 2 A g−1 for K+/Na+ storage, respectively. The underlying ion storage mechanisms are studied by systematical experimental data combined with theoretical simulation results, where the multiple active sites, improved electronic conductivity, and fast ion absorption/diffusion kinetics are major contributors. More importantly, the potassium ion hybrid capacitor consisting of SN-CHS anode and activated carbon cathode deliver an outstanding energy/power density (189.8 Wh kg−1 at 213.5 W kg−1 and 9495 W kg−1 with 53.9 Wh kg−1 retained) and remarkable cycling stability. This contribution not only flourishes the prospective synthesis strategies for advanced hard carbons but also facilitates the upgrading of next-generation stationary power applications.
摘要碳质材料具有成本低、来源丰富、物理化学稳定性高等特点,是K + /Na +阳极的理想材料,但其有限的比容量和速率性能仍是未来应用的挑战。本文将硫注入到N -配位硬碳空心球(SN - CHS)中,实现了表面驱动的电容化过程,大大提高了K + /Na +的存储性能。具体来说,SN‐CHS电极在0.1 ag−1时的比容量为480.5/460.9 mAh g−1,在5 ag−1时的优选倍率性能为316.8/237.4 mAh g−1,在2 ag−1下的2500/1500次循环后,K + /Na +存储的高倍率循环稳定性分别为87.9%/87.2%。通过系统的实验数据结合理论模拟结果研究了潜在的离子储存机制,其中多个活性位点、提高的电子导电性和快速的离子吸收/扩散动力学是主要的贡献因素。更重要的是,由SN‐CHS阳极和活性炭阴极组成的钾离子混合电容器具有出色的能量/功率密度(213.5 W kg - 1时为189.8 Wh kg - 1,保留53.9 Wh kg - 1时为9495 W kg - 1)和出色的循环稳定性。这一贡献不仅繁荣了先进硬碳的前瞻性合成策略,而且促进了下一代固定电源应用的升级。
{"title":"Evoking surface-driven capacitive process through sulfur implantation into nitrogen-coordinated hard carbon hollow spheres achieves superior alkali metal ion storage beyond lithium","authors":"Gongrui Wang, Jingyu Gao, Wentao Wang, Zongzhi Tao, Xiaoyue He, Liang Shi, Genqiang Zhang","doi":"10.1002/bte2.20230031","DOIUrl":"10.1002/bte2.20230031","url":null,"abstract":"<p>Owing to the specific merits of low cost, abundant sources, and high physicochemical stability, carbonaceous materials are promising anode candidates for K<sup>+</sup>/Na<sup>+</sup> storage, whereas their limited specific capacity and unfavorable rate capability remain challenging for future applications. Herein, the sulfur implantation in N-coordinated hard carbon hollow spheres (SN-CHS) has been realized for evoking a surface-driven capacitive process, which greatly improves K<sup>+</sup>/Na<sup>+</sup> storage performance. Specifically, the SN-CHS electrodes deliver a high specific capacity of 480.5/460.9 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup>, preferred rate performance of 316.8/237.4 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup>, and high-rate cycling stability of 87.9%/87.2% capacity retention after 2500/1500 cycles at 2 A g<sup>−1</sup> for K<sup>+</sup>/Na<sup>+</sup> storage, respectively. The underlying ion storage mechanisms are studied by systematical experimental data combined with theoretical simulation results, where the multiple active sites, improved electronic conductivity, and fast ion absorption/diffusion kinetics are major contributors. More importantly, the potassium ion hybrid capacitor consisting of SN-CHS anode and activated carbon cathode deliver an outstanding energy/power density (189.8 Wh kg<sup>−1</sup> at 213.5 W kg<sup>−1</sup> and 9495 W kg<sup>−1</sup> with 53.9 Wh kg<sup>−1</sup> retained) and remarkable cycling stability. This contribution not only flourishes the prospective synthesis strategies for advanced hard carbons but also facilitates the upgrading of next-generation stationary power applications.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"2 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230031","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135828298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Back Cover: In article number BTE2.20230017, Dong-Wan Kim and co-workers provided cover image implicitly represents the three essential elements (high activity, excellent stability, and low cost) to be pursued in the development of acidic OER catalysts. For the commercialization of water electrolysis, not only balanced development of activity and stability but also, researching cost-effective catalytic materials is crucial.