Covalent organic frameworks (COFs) have emerged as promising electrode materials for lithium-ion batteries (LIBs) due to their tunable redox-active properties and environmental benefits. However, the influence of electrolytes on COF-based battery performance remains poorly understood at the molecular level. In this study, we employ molecular dynamics simulations to investigate the interaction between terephthalaldehyde and 1,3,5-tris(4-aminophenyl)benzene COF (DAAQ-TFP-COF) and two organic electrolytes: lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in tetraethylene glycol dimethyl ether (TEGDME) and LiPF6 in a mixture of ethylene carbonate and diethyl carbonate (EC/DEC). Our simulations reveal different lithium coordination environments: while LiTFSI in TEGDME shows better salt dissociation, LiPF6 in EC/DEC exhibits higher lithium self-diffusion coefficients, despite greater coordination to the COF structure. We identify that lithium transport is primarily mediated by the organic solvent, with COF coordination sites hindering mobility. These findings highlight the importance of electrolyte selection in optimizing COF-based electrodes for LIBs and provide novel insights into the interplay between structural properties and ionic dynamics in porous frameworks.
{"title":"The Influence of the Electrolyte on Lithium Transport Through the DAAQ-TFP-COF Structure: A Molecular Dynamics Study","authors":"Jon Otegi, Javier Carrasco, Hegoi Manzano","doi":"10.1002/bte2.20250060","DOIUrl":"https://doi.org/10.1002/bte2.20250060","url":null,"abstract":"<p>Covalent organic frameworks (COFs) have emerged as promising electrode materials for lithium-ion batteries (LIBs) due to their tunable redox-active properties and environmental benefits. However, the influence of electrolytes on COF-based battery performance remains poorly understood at the molecular level. In this study, we employ molecular dynamics simulations to investigate the interaction between terephthalaldehyde and 1,3,5-tris(4-aminophenyl)benzene COF (DAAQ-TFP-COF) and two organic electrolytes: lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in tetraethylene glycol dimethyl ether (TEGDME) and LiPF<sub>6</sub> in a mixture of ethylene carbonate and diethyl carbonate (EC/DEC). Our simulations reveal different lithium coordination environments: while LiTFSI in TEGDME shows better salt dissociation, LiPF<sub>6</sub> in EC/DEC exhibits higher lithium self-diffusion coefficients, despite greater coordination to the COF structure. We identify that lithium transport is primarily mediated by the organic solvent, with COF coordination sites hindering mobility. These findings highlight the importance of electrolyte selection in optimizing COF-based electrodes for LIBs and provide novel insights into the interplay between structural properties and ionic dynamics in porous frameworks.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20250060","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145695358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Rajabzadeh, Pezhman Ghadimi, Vincent Hargaden, Nikolaos Papakostas
Lithium-ion batteries are essential in modern energy systems, supplying electricity to many consumer products that require dependable operation. This study introduces a novel method for predicting the remaining useful life (RUL) and end-of-life (EoL) of lithium-ion batteries (LIBs) using the long short-term memory (LSTM) model. The process includes getting the data ready, using exponential smoothing (ES), making a sequence, using the double lightning search algorithm (DLSA) to find the best hyperparameters, and doing iterative LSTM modeling. ES is utilized to preprocess data, reduce noise, and improve input quality for the subsequent model phases, while the iterative integration of LSTM modeling and DLSA hyperparameter optimization enhances capacity estimates across the entire battery lifecycle. The model performance is assessed using basic statistical measures, indicating consistent accuracy in predicting the state of health (SOH) and RUL. The way the time series is set up lets the LSTM accurately find important time-based relationships, even when there is much noise. Adaptive hyperparameter selection through DLSA safeguards against fluctuating degradation rates, yielding an average error of under ±0.002 ampere-hours in capacity prediction. Systematic sampling and normalization make calculations faster without changing the quality of the data. Data from the NASA Prognostics Center of Excellence on LIB performance and degradation are used to validate the model. This predictive modeling approach shows how data smoothing, deep learning, and intelligent search algorithms can improve RUL and EoL forecasts for real-time battery health monitoring and operational safety.
{"title":"A Hybrid Exponential Smoothing and LSTM Approach With Double Lightning Search for Enhanced Prediction of Lithium-Ion Battery Remaining Useful Life","authors":"Mohammad Rajabzadeh, Pezhman Ghadimi, Vincent Hargaden, Nikolaos Papakostas","doi":"10.1002/bte2.20250052","DOIUrl":"https://doi.org/10.1002/bte2.20250052","url":null,"abstract":"<p>Lithium-ion batteries are essential in modern energy systems, supplying electricity to many consumer products that require dependable operation. This study introduces a novel method for predicting the remaining useful life (RUL) and end-of-life (EoL) of lithium-ion batteries (LIBs) using the long short-term memory (LSTM) model. The process includes getting the data ready, using exponential smoothing (ES), making a sequence, using the double lightning search algorithm (DLSA) to find the best hyperparameters, and doing iterative LSTM modeling. ES is utilized to preprocess data, reduce noise, and improve input quality for the subsequent model phases, while the iterative integration of LSTM modeling and DLSA hyperparameter optimization enhances capacity estimates across the entire battery lifecycle. The model performance is assessed using basic statistical measures, indicating consistent accuracy in predicting the state of health (SOH) and RUL. The way the time series is set up lets the LSTM accurately find important time-based relationships, even when there is much noise. Adaptive hyperparameter selection through DLSA safeguards against fluctuating degradation rates, yielding an average error of under ±0.002 ampere-hours in capacity prediction. Systematic sampling and normalization make calculations faster without changing the quality of the data. Data from the NASA Prognostics Center of Excellence on LIB performance and degradation are used to validate the model. This predictive modeling approach shows how data smoothing, deep learning, and intelligent search algorithms can improve RUL and EoL forecasts for real-time battery health monitoring and operational safety.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20250052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145686075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matteo Milanesi, Alessandro Piovano, Hamideh Darjazi, Xu Liu, Claudio Gerbaldi, Giuseppe A. Elia
Aqueous zinc-based batteries (ZIBs) are considered promising energy storage solutions, particularly targeting low-cost applications needed for levelling electricity production from renewable energy sources. However, numerous challenges need to be overcome to bring the technology to the market, chiefly including cathode dissolution, dendrite formation, hydrogen evolution reaction, and zinc corrosion. The optimisation of the electrolyte, particularly the use of gel-polymer electrolytes (GPEs), is demonstrated as a viable approach to solve or mitigate such issues. In this respect, a comparative study of two GPEs based on biopolymers, agarose and sodium alginate, is presented here. Despite the fast and facile preparation procedure, the GPEs demonstrate to be strongly effective in suppressing dendrite and byproduct formation on zinc metal anodes, due to the abundant ─OH groups along the chains in polymeric matrices. The electrochemical behaviour of GPEs is evaluated in terms of galvanostatic cycling in laboratory-scale zinc metal cells with a CaV6O16·3H2O cathode at low and high active material loadings of 2.5 and 5 mg cm−2, respectively. Resulting cycling performances in terms of specific capacity and rate capability are comparable (low loading electrodes) and even outperform (high loading electrodes) those obtained with a standard liquid electrolyte (2M ZnSO4) laboratory-scale cell, thus accounting for the promising prospects of the bio-polymer GPEs as an alternative green, sustainable electrolyte for next-generation Zn-based batteries.
{"title":"A Comparative Study of Agarose and Sodium Alginate-Based Gel Polymer Electrolytes for Zn-Based Batteries With CaV6O16·3H2O Cathode","authors":"Matteo Milanesi, Alessandro Piovano, Hamideh Darjazi, Xu Liu, Claudio Gerbaldi, Giuseppe A. Elia","doi":"10.1002/bte2.20250055","DOIUrl":"https://doi.org/10.1002/bte2.20250055","url":null,"abstract":"<p>Aqueous zinc-based batteries (ZIBs) are considered promising energy storage solutions, particularly targeting low-cost applications needed for levelling electricity production from renewable energy sources. However, numerous challenges need to be overcome to bring the technology to the market, chiefly including cathode dissolution, dendrite formation, hydrogen evolution reaction, and zinc corrosion. The optimisation of the electrolyte, particularly the use of gel-polymer electrolytes (GPEs), is demonstrated as a viable approach to solve or mitigate such issues. In this respect, a comparative study of two GPEs based on biopolymers, agarose and sodium alginate, is presented here. Despite the fast and facile preparation procedure, the GPEs demonstrate to be strongly effective in suppressing dendrite and byproduct formation on zinc metal anodes, due to the abundant ─OH groups along the chains in polymeric matrices. The electrochemical behaviour of GPEs is evaluated in terms of galvanostatic cycling in laboratory-scale zinc metal cells with a CaV<sub>6</sub>O<sub>16</sub>·3H<sub>2</sub>O cathode at low and high active material loadings of 2.5 and 5 mg cm<sup>−</sup><sup>2</sup>, respectively. Resulting cycling performances in terms of specific capacity and rate capability are comparable (low loading electrodes) and even outperform (high loading electrodes) those obtained with a standard liquid electrolyte (2M ZnSO<sub>4</sub>) laboratory-scale cell, thus accounting for the promising prospects of the bio-polymer GPEs as an alternative green, sustainable electrolyte for next-generation Zn-based batteries.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20250055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145686074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Berta Pérez-Román, M. Alejandra Mazo, Laura Pascual, József Sándor Pap, Csaba Balázsi, Sara Ruiz-Martínez-Alcocer, Alejandra García-Gómez, Jesús López-Sánchez, Fernando Rubio-Marcos
Nitrogen-doped carbide-derived carbons (N-CDCs) are promising materials for energy storage due to their tunable structure and chemistry. Here, we design a molecular architecture strategy to promote nitrogen incorporation and microstructural control during the synthesis of N-CDCs. By varying polymerization and pyrolysis conditions, we obtain materials with hierarchical porosity and high specific surface area (SBET > 2000 m2 g−1) and nitrogen content between 1.8 and 6.4 wt.%. Electrochemical evaluation in aqueous 6 M KOH using both three- and two-electrode configurations, identifies nitrogen doping, defect density, and hierarchical porosity as key contributors to performance. The optimized N-CDC delivers a specific capacitance of 210 F g−1 at 1 A g−1, with high retention at elevated current densities. A proof-of-concept pouch cell shows 100 F g−1 at 0.5 A g−1 and stable cycling over 5000 cycles, resulting in superior coulombic efficiency. The practical applicability is demonstrated with two pouch cells connected in series to power an electronic watch (1.5 V). These findings demonstrate the effectiveness of molecular-level control in the design of high-performance carbon-based supercapacitor electrodes.
氮掺杂碳化物衍生碳(N-CDCs)由于其可调谐的结构和化学性质,是一种很有前途的储能材料。在这里,我们设计了一种分子结构策略来促进氮的结合和在n - cdc合成过程中的微观结构控制。通过不同的聚合和热解条件,我们得到了具有分层孔隙率和高比表面积(SBET > 2000 m2 g−1)和氮含量在1.8 - 6.4 wt.%之间的材料。在6 M KOH水溶液中使用三电极和两电极配置进行电化学评价,确定氮掺杂、缺陷密度和分层孔隙度是影响性能的关键因素。优化后的N-CDC在1ag−1时的比电容为210 F g−1,在高电流密度下具有高保持率。概念验证袋电池在0.5 A g−1下显示100 F g−1,稳定循环超过5000次,从而产生卓越的库仑效率。通过串联两个袋状电池为电子表供电(1.5 V),证明了其实用性。这些发现证明了分子水平控制在高性能碳基超级电容器电极设计中的有效性。
{"title":"Electrochemical Performance of Nitrogen-Doped Carbons: From Fundamental Studies to Practical Pouch Device","authors":"Berta Pérez-Román, M. Alejandra Mazo, Laura Pascual, József Sándor Pap, Csaba Balázsi, Sara Ruiz-Martínez-Alcocer, Alejandra García-Gómez, Jesús López-Sánchez, Fernando Rubio-Marcos","doi":"10.1002/bte2.20250057","DOIUrl":"https://doi.org/10.1002/bte2.20250057","url":null,"abstract":"<p>Nitrogen-doped carbide-derived carbons (N-CDCs) are promising materials for energy storage due to their tunable structure and chemistry. Here, we design a molecular architecture strategy to promote nitrogen incorporation and microstructural control during the synthesis of N-CDCs. By varying polymerization and pyrolysis conditions, we obtain materials with hierarchical porosity and high specific surface area (<i>S</i><sub>BET</sub> > 2000 m<sup>2</sup> g<sup>−1</sup>) and nitrogen content between 1.8 and 6.4 wt.%. Electrochemical evaluation in aqueous 6 M KOH using both three- and two-electrode configurations, identifies nitrogen doping, defect density, and hierarchical porosity as key contributors to performance. The optimized N-CDC delivers a specific capacitance of 210 F g<sup>−1</sup> at 1 A g<sup>−1</sup>, with high retention at elevated current densities. A proof-of-concept pouch cell shows 100 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup> and stable cycling over 5000 cycles, resulting in superior coulombic efficiency. The practical applicability is demonstrated with two pouch cells connected in series to power an electronic watch (1.5 V). These findings demonstrate the effectiveness of molecular-level control in the design of high-performance carbon-based supercapacitor electrodes.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20250057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145695260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Helena Braga, Nishchith B. S., Radha Shivaramaiah, T. Ravi Kumar
Half-cells have been employed to investigate the intrinsic electrochemical behavior of the cathode material, as the chemical potential of the alkali metal reference electrode remains relatively constant during discharge. However, in full cells, the discharge mechanism is anode-dependent. Herein, a rechargeable nonaqueous sodium ion battery (SIB) is fabricated using tungsten trioxide (WO3) nanopowder on a graphite substrate as the anode and a nickel-hexacyanoferrate Prussian blue (PB) cathode to understand the dominant discharge mechanism. The battery cells are evaluated for reversibility and durability and exhibit reversible charge–discharge plateaus, confirming sodium-ion intercalation/deintercalation in both electrodes. The sodium-ion diffusion coefficient of 5.3 × 10−13 cm2.s−1 calculated using electrochemical impedance spectroscopy (EIS) is consistent with a planar finite space diffusion mechanism. Cyclic voltammetry (CV) shows a broad reversible redox peak on the WO3 anode, owing to its multiple valence states, also observed in potential versus differential capacitance (dQ/dV) and simulated density of states (DOS). The full cell demonstrates an open-circuit voltage (OCV) of 2.2 V (charged), a discharge capacity of 79 mAh.g−1 at 0.1C rate, and retains 69% of its capacity after 500 cycles, indicating promising durability and reversibility for sodium-ion storage. The charge carrier concentration (ccc), DOS, electrical and thermal conductivities, and chemical potential simulations for the charged and discharged phases, in both electrodes, reveal that the anode determines the shape of the discharge curve and the cathode the capacity of the cell. This study paves the way to predicting the behavior of a full cell, including cycling curve shape, process, dependencies, and thermal runaway.
{"title":"Uncovering Full-Cell Cycling Morphology Through a Rechargeable Sodium Ion Battery Based on Tungsten Oxide and Sodium Prussian Blue Intercalation Chemistry","authors":"Maria Helena Braga, Nishchith B. S., Radha Shivaramaiah, T. Ravi Kumar","doi":"10.1002/bte2.20250056","DOIUrl":"https://doi.org/10.1002/bte2.20250056","url":null,"abstract":"<p>Half-cells have been employed to investigate the intrinsic electrochemical behavior of the cathode material, as the chemical potential of the alkali metal reference electrode remains relatively constant during discharge. However, in full cells, the discharge mechanism is anode-dependent. Herein, a rechargeable nonaqueous sodium ion battery (SIB) is fabricated using tungsten trioxide (WO<sub>3</sub>) nanopowder on a graphite substrate as the anode and a nickel-hexacyanoferrate Prussian blue (PB) cathode to understand the dominant discharge mechanism. The battery cells are evaluated for reversibility and durability and exhibit reversible charge–discharge plateaus, confirming sodium-ion intercalation/deintercalation in both electrodes. The sodium-ion diffusion coefficient of 5.3 × 10<sup>−13 </sup>cm<sup>2</sup>.s<sup>−1</sup> calculated using electrochemical impedance spectroscopy (EIS) is consistent with a planar finite space diffusion mechanism. Cyclic voltammetry (CV) shows a broad reversible redox peak on the WO<sub>3</sub> anode, owing to its multiple valence states, also observed in potential versus differential capacitance (dQ/dV) and simulated density of states (DOS). The full cell demonstrates an open-circuit voltage (OCV) of 2.2 V (charged), a discharge capacity of 79 mAh.g<sup>−1</sup> at 0.1C rate, and retains 69% of its capacity after 500 cycles, indicating promising durability and reversibility for sodium-ion storage. The charge carrier concentration (ccc), DOS, electrical and thermal conductivities, and chemical potential simulations for the charged and discharged phases, in both electrodes, reveal that the anode determines the shape of the discharge curve and the cathode the capacity of the cell. This study paves the way to predicting the behavior of a full cell, including cycling curve shape, process, dependencies, and thermal runaway.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20250056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145751288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katarzyna Hofmann, Anna Smith, Norbert Willenbacher
Sodium carboxymethyl cellulose (CMC) and polyacrylic acid (PAA) are state-of-the-art binders in aqueous-processed anodes for lithium-ion batteries. Binders act as dispersing agents and rheology modifiers in aqueous slurries, while also providing mechanical integrity of dry electrodes during battery fabrication and operation. However, despite their low concentration, they may have detrimental effects on the conductivity and electrochemical performance of batteries, for example, due to their adsorption on active material particles, which is supposed to limit Li+ insertion and extraction, but also affect electrode microstructure and adhesion to the current collector. Here, a commercially available, cross-linked acrylate binder (Carbopol® Ultrez10, x-PAA) with high thickening efficiency is applied for graphite anodes. At lower polymer content, anode slurries based on x-PAA exhibit high-shear viscosities similar to those of the CMC reference and provide a yield stress, which is advantageous for slurry stability. Furthermore, SBR content could be reduced without loss of adhesion strength compared to the CMC reference, since x-PAA does not adsorb onto graphite. Thus, the total binder content could be lowered by about 40% in comparison to reference anodes comprising CMC. The substantial reduction in total binder amount resulted in slightly lower long-term stability compared to the reference cell including CMC. Cells incorporating x-PAA, however, outperformed references under fast-charging conditions (up to 5C) presumably since x-PAA does not adsorb on graphite, thus enabling more effective Li+ insertion and extraction. Further refinement of crosslinking microstructure may enable fabrication of electrodes with higher energy density and higher capacity retention during cycling, irrespective of cycling rate.
{"title":"Cross-Linked Acrylate Binder for High-Rate Graphite Anodes","authors":"Katarzyna Hofmann, Anna Smith, Norbert Willenbacher","doi":"10.1002/bte2.20250059","DOIUrl":"https://doi.org/10.1002/bte2.20250059","url":null,"abstract":"<p>Sodium carboxymethyl cellulose (CMC) and polyacrylic acid (PAA) are state-of-the-art binders in aqueous-processed anodes for lithium-ion batteries. Binders act as dispersing agents and rheology modifiers in aqueous slurries, while also providing mechanical integrity of dry electrodes during battery fabrication and operation. However, despite their low concentration, they may have detrimental effects on the conductivity and electrochemical performance of batteries, for example, due to their adsorption on active material particles, which is supposed to limit Li<sup>+</sup> insertion and extraction, but also affect electrode microstructure and adhesion to the current collector. Here, a commercially available, cross-linked acrylate binder (Carbopol® Ultrez10, x-PAA) with high thickening efficiency is applied for graphite anodes. At lower polymer content, anode slurries based on x-PAA exhibit high-shear viscosities similar to those of the CMC reference and provide a yield stress, which is advantageous for slurry stability. Furthermore, SBR content could be reduced without loss of adhesion strength compared to the CMC reference, since x-PAA does not adsorb onto graphite. Thus, the total binder content could be lowered by about 40% in comparison to reference anodes comprising CMC. The substantial reduction in total binder amount resulted in slightly lower long-term stability compared to the reference cell including CMC. Cells incorporating x-PAA, however, outperformed references under fast-charging conditions (up to 5C) presumably since x-PAA does not adsorb on graphite, thus enabling more effective Li<sup>+</sup> insertion and extraction. Further refinement of crosslinking microstructure may enable fabrication of electrodes with higher energy density and higher capacity retention during cycling, irrespective of cycling rate.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20250059","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145695432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ameneh Taghavi-Kahagh, Hossein Roghani-Mamaqani, Mehdi Salami-Kalajahi
This study explores the development of calcium-ion batteries (CIBs) by focusing on the design of a novel electrolyte to overcome key challenges, such as poor calcium plating/stripping. Hydrated vanadium pentoxide (H-V₂O₅) served as the cathode, and graphite acted as the anode. Tricalcium dicitrate tetrahydrate (Ca-citrate) salt was used for the first time in an ethylene carbonate/propylene carbonate (EC/PC) solvent system. Ca-citrate showed marked improvement in ionic conductivity (up to 2.6 × 10−1 S/cm) and electrochemical stability (~6 V) relative to traditional Ca-nitrate (2.5 V) and also displayed better capacity retention. To solve the solubility limitations of Ca-citrate in EC/PC, highly diluted (0.001 M) solution of EC/PC and modified electrolytes with cosolvents like poly(ethylene glycol) 200 (PEG 200) and trifluoroacetic anhydride (TFA) were studied. PEG 200 increased solubility and stability through hydrogen bonding, while TFA increased ionic mobility but decreased electrochemical stability. The PEG-modified electrolyte achieved a stability window of ~4 V with a charge/discharge capacity of ~198 mAh/g. Additionally, using ethylene glycol (EG) as an alternative solvent increased the electrochemically reversible, soluble, and capacitive Ca-citrate (up to 708 mAh/g, 85 mA/g). EG-based electrolyte showed high columbic efficiency (~99%–100%) and stable interfacial behavior.
{"title":"Room Temperature Calcium-Ion Battery Enabled by Calcium Citrate as a Calcium Salt","authors":"Ameneh Taghavi-Kahagh, Hossein Roghani-Mamaqani, Mehdi Salami-Kalajahi","doi":"10.1002/bte2.20250071","DOIUrl":"https://doi.org/10.1002/bte2.20250071","url":null,"abstract":"<p>This study explores the development of calcium-ion batteries (CIBs) by focusing on the design of a novel electrolyte to overcome key challenges, such as poor calcium plating/stripping. Hydrated vanadium pentoxide (H-V₂O₅) served as the cathode, and graphite acted as the anode. Tricalcium dicitrate tetrahydrate (Ca-citrate) salt was used for the first time in an ethylene carbonate/propylene carbonate (EC/PC) solvent system. Ca-citrate showed marked improvement in ionic conductivity (up to 2.6 × 10<sup>−1</sup> S/cm) and electrochemical stability (~6 V) relative to traditional Ca-nitrate (2.5 V) and also displayed better capacity retention. To solve the solubility limitations of Ca-citrate in EC/PC, highly diluted (0.001 M) solution of EC/PC and modified electrolytes with cosolvents like poly(ethylene glycol) 200 (PEG 200) and trifluoroacetic anhydride (TFA) were studied. PEG 200 increased solubility and stability through hydrogen bonding, while TFA increased ionic mobility but decreased electrochemical stability. The PEG-modified electrolyte achieved a stability window of ~4 V with a charge/discharge capacity of ~198 mAh/g. Additionally, using ethylene glycol (EG) as an alternative solvent increased the electrochemically reversible, soluble, and capacitive Ca-citrate (up to 708 mAh/g, 85 mA/g). EG-based electrolyte showed high columbic efficiency (~99%–100%) and stable interfacial behavior.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20250071","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145751122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amirreza Namvar-Amghani, Marzieh Golshan, Hossein Roghani-Mamaqani, Mehdi Salami-Kalajahi
In this study, a series of polydopamine (PDA)/MXene nanocomposites with varying weight ratios (90:10, 70:30, and 50:50) are synthesized via in situ polymerization and evaluated as cathode materials for both lithium-ion (LIBs) and potassium-ion batteries (KIBs). Electrochemical evaluations revealed superior performance of these composites in LIB systems, attributed to smaller ionic radius and faster diffusion kinetics of Li⁺ compared to K⁺. PDA exhibits low capacities of 98.6 and 96.1 mAh g-1 for LIB and KIB, respectively. The incorporation of conductive MXene into PDA resulted in significantly improved performance. The PDA90MXene10, PDA70MXene30, and PDA50MXene50 nanocomposites delivered high specific capacities of 198.5, 297.8, and 246.6 mAh g−1 for LIBs, and 165.3, 249.3, and 171.8 mAh g−1 for KIBs, respectively, at 100 mA g−1. These materials also exhibited excellent rate capabilities, with capacities of 133.1, 171.4, and 163.4 mAh g−1 for LIBs, and 131.1, 151.5, and 125.2 mAh g−1 for KIBs at a high current density of 5 A g−1. Among all compositions, PDA70MXene30 demonstrated the most outstanding electrochemical performance, underscoring synergistic effect between redox-active PDA and highly conductive MXene nanosheets. This synergy facilitates improved electron transport and ion diffusion, making PDA70MXene30 a promising candidate for high-performance cathodes in both LIBs and KIBs.
本研究通过原位聚合合成了不同重量比(90:10,70:30和50:50)的聚多巴胺(PDA)/MXene纳米复合材料,并对其作为锂离子电池(LIBs)和钾离子电池(KIBs)的正极材料进行了评价。电化学评价表明,这些复合材料在LIB系统中的性能优越,这归因于Li +比K +的离子半径更小,扩散动力学更快。PDA对LIB和KIB的容量分别为98.6 mAh g-1和96.1 mAh g-1。将导电MXene掺入PDA后,性能显著提高。PDA90MXene10、PDA70MXene30和PDA50MXene50纳米复合材料在100 mA g - 1下,LIBs的比容量分别为198.5、297.8和246.6 mAh g - 1, kib的比容量分别为165.3、249.3和171.8 mAh g - 1。这些材料还表现出优异的倍率能力,在高电流密度为5a g - 1时,lib的容量为133.1,171.4和163.4 mAh g - 1, kib的容量为131.1,151.5和125.2 mAh g - 1。其中,PDA70MXene30的电化学性能最为突出,体现了氧化还原活性PDA与高导电性MXene纳米片之间的协同作用。这种协同作用有助于改善电子传递和离子扩散,使PDA70MXene30成为lib和kib中高性能阴极的有希望的候选者。
{"title":"Electrochemical Evaluation of Polydopamine/MXene Nanocomposite Cathodes for Lithium- and Potassium-Ion Batteries","authors":"Amirreza Namvar-Amghani, Marzieh Golshan, Hossein Roghani-Mamaqani, Mehdi Salami-Kalajahi","doi":"10.1002/bte2.20250032","DOIUrl":"https://doi.org/10.1002/bte2.20250032","url":null,"abstract":"<p>In this study, a series of polydopamine (PDA)/MXene nanocomposites with varying weight ratios (90:10, 70:30, and 50:50) are synthesized <i>via in situ</i> polymerization and evaluated as cathode materials for both lithium-ion (LIBs) and potassium-ion batteries (KIBs). Electrochemical evaluations revealed superior performance of these composites in LIB systems, attributed to smaller ionic radius and faster diffusion kinetics of Li<sup>⁺</sup> compared to K<sup>⁺</sup>. PDA exhibits low capacities of 98.6 and 96.1 mAh g<sup>-1</sup> for LIB and KIB, respectively. The incorporation of conductive MXene into PDA resulted in significantly improved performance. The PDA90MXene10, PDA70MXene30, and PDA50MXene50 nanocomposites delivered high specific capacities of 198.5, 297.8, and 246.6 mAh g<sup>−1</sup> for LIBs, and 165.3, 249.3, and 171.8 mAh g<sup>−1</sup> for KIBs, respectively, at 100 mA g<sup>−1</sup>. These materials also exhibited excellent rate capabilities, with capacities of 133.1, 171.4, and 163.4 mAh g<sup>−1</sup> for LIBs, and 131.1, 151.5, and 125.2 mAh g<sup>−1</sup> for KIBs at a high current density of 5 A g<sup>−1</sup>. Among all compositions, PDA70MXene30 demonstrated the most outstanding electrochemical performance, underscoring synergistic effect between redox-active PDA and highly conductive MXene nanosheets. This synergy facilitates improved electron transport and ion diffusion, making PDA70MXene30 a promising candidate for high-performance cathodes in both LIBs and KIBs.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20250032","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145739760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Back Cover: Accurate state of health estimation is critical for battery management systems in electric vehicles. In article number BTE.20240126, Zhiqiang Lyu, Xinyuan Wei, Longxing Wu and Chunhui Liu leverages the open source battery cell data set to address the aging model SOH estimation. To handle nonlinearity and feature coupling, a flexible data-driven aging model is proposed, employing dual Gaussian process regressions and transfer learning to enhance model efficiency and accuracy. Adaptive filtering via the Particle filter further refines the model by integrating aging features and output capacity, resulting in a close loop data fusion approach for precise SOH.