Pub Date : 2024-09-11DOI: 10.1088/2057-1976/ad7597
Signe Winther Hasler, Uffe Bernchou, Claus Preibisch Behrens, Ivan Richter Vogelius, Anne L H Bisgaard, Minea Jokivuolle, Anders Smedegaard Bertelsen, Tine Schytte, Carsten Brink, Faisal Mahmood
Objective. The apparent diffusion coefficient (ADC) extracted from diffusion-weighted magnetic resonance imaging (DWI) is a potential biomarker in radiotherapy (RT). DWI is often implemented with an echo-planar imaging (EPI) read-out due to speed, but unfortunately low geometric accuracy follows. This study aimed to investigate the influence of geometric distortions on the ADCs extracted from the gross tumor volume (GTV) and on the shape of the GTV in abdominal EPI-DWI.Approach. Twenty-one patients had EPI-DWI scans on a 1.5 T MRI sim before treatment and on a 1.5 T MRI-Linac at one of the first treatment fractions. Off-resonance correction with and without eddy current correction were applied to ADC maps. The clinical GTVs were deformed based on the same (but inverted) corrections to assess the local-regional geometric influence of distortions. Mean surface distance (MSD), Hausdorff distance (HD), and Dice similarity coefficient (DSC) were calculated to compare the original and distorted GTVs, and ADC values were calculated based on a mono-exponential model. Phantom measurements were performed to validate the applied correction method.Main results. The median (range) ADC change within the GTV after full distortion correction was 1.3% (0.02%-6.9%) for MRI-Sim and 1.5% (0.1%-6.4%) for MRI-Linac. The additional effect of the eddy current correction was small in both systems. The median (range) MSD, HD, and DSC comparing the original and off-resonance distorted GTVs for all patients were 0.43 mm (0.11-0.94 mm), 4.00 mm (1.00-7.81 mm) and 0.93 (0.82-0.99), respectively.Significance. Overall effect of distortion correction was small in terms of derived ADC values, indicating that distortion correction is unimportant for prediction of outcomes based on ADC. However, large local geometric changes occurred after off-resonance distortion correction for some patients, suggesting that if the spatial information from ADC maps is to be used for dose painting strategies, corrections should be applied.
{"title":"Impact of geometric correction on echo-planar imaging-based apparent diffusion coefficient maps for abdominal radiotherapy.","authors":"Signe Winther Hasler, Uffe Bernchou, Claus Preibisch Behrens, Ivan Richter Vogelius, Anne L H Bisgaard, Minea Jokivuolle, Anders Smedegaard Bertelsen, Tine Schytte, Carsten Brink, Faisal Mahmood","doi":"10.1088/2057-1976/ad7597","DOIUrl":"10.1088/2057-1976/ad7597","url":null,"abstract":"<p><p><i>Objective</i>. The apparent diffusion coefficient (ADC) extracted from diffusion-weighted magnetic resonance imaging (DWI) is a potential biomarker in radiotherapy (RT). DWI is often implemented with an echo-planar imaging (EPI) read-out due to speed, but unfortunately low geometric accuracy follows. This study aimed to investigate the influence of geometric distortions on the ADCs extracted from the gross tumor volume (GTV) and on the shape of the GTV in abdominal EPI-DWI.<i>Approach</i>. Twenty-one patients had EPI-DWI scans on a 1.5 T MRI sim before treatment and on a 1.5 T MRI-Linac at one of the first treatment fractions. Off-resonance correction with and without eddy current correction were applied to ADC maps. The clinical GTVs were deformed based on the same (but inverted) corrections to assess the local-regional geometric influence of distortions. Mean surface distance (MSD), Hausdorff distance (HD), and Dice similarity coefficient (DSC) were calculated to compare the original and distorted GTVs, and ADC values were calculated based on a mono-exponential model. Phantom measurements were performed to validate the applied correction method.<i>Main results</i>. The median (range) ADC change within the GTV after full distortion correction was 1.3% (0.02%-6.9%) for MRI-Sim and 1.5% (0.1%-6.4%) for MRI-Linac. The additional effect of the eddy current correction was small in both systems. The median (range) MSD, HD, and DSC comparing the original and off-resonance distorted GTVs for all patients were 0.43 mm (0.11-0.94 mm), 4.00 mm (1.00-7.81 mm) and 0.93 (0.82-0.99), respectively.<i>Significance</i>. Overall effect of distortion correction was small in terms of derived ADC values, indicating that distortion correction is unimportant for prediction of outcomes based on ADC. However, large local geometric changes occurred after off-resonance distortion correction for some patients, suggesting that if the spatial information from ADC maps is to be used for dose painting strategies, corrections should be applied.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1088/2057-1976/ad7595
Yuan Zhu, Shan Cong, Qiyang Zhang, Zhenxing Huang, Xiaohui Yao, You Cheng, Dong Liang, Zhanli Hu, Dan Shao
Objective. Approximately 57% of non-small cell lung cancer (NSCLC) patients face a 20% risk of brain metastases (BMs). The delivery of drugs to the central nervous system is challenging because of the blood-brain barrier, leading to a relatively poor prognosis for patients with BMs. Therefore, early detection and treatment of BMs are highly important for improving patient prognosis. This study aimed to investigate the feasibility of a multimodal radiomics-based method using 3D neural networks trained on18F-FDG PET/CT images to predict BMs in NSCLC patients.Approach. We included 226 NSCLC patients who underwent18F-FDG PET/CT scans of areas, including the lung and brain, prior to EGFR-TKI therapy. Moreover, clinical data (age, sex, stage, etc) were collected and analyzed. Shallow lung features and deep lung-brain features were extracted using PyRadiomics and 3D neural networks, respectively. A support vector machine (SVM) was used to predict BMs. The receiver operating characteristic (ROC) curve and F1 score were used to assess BM prediction performance.Main result. The combination of shallow lung and shallow-deep lung-brain features demonstrated superior predictive performance (AUC = 0.96 ± 0.01). Shallow-deep lung-brain features exhibited strong significance (P < 0.001) and potential predictive performance (coefficient > 0.8). Moreover, BM prediction by age was significant (P < 0.05).Significance. Our approach enables the quantitative assessment of medical images and a deeper understanding of both superficial and deep tumor characteristics. This noninvasive method has the potential to identify BM-related features with statistical significance, thereby aiding in the development of targeted treatment plans for NSCLC patients.
{"title":"Multimodal radiomics-based methods using deep learning for prediction of brain metastasis in non-small cell lung cancer with<sup>18</sup>F-FDG PET/CT images.","authors":"Yuan Zhu, Shan Cong, Qiyang Zhang, Zhenxing Huang, Xiaohui Yao, You Cheng, Dong Liang, Zhanli Hu, Dan Shao","doi":"10.1088/2057-1976/ad7595","DOIUrl":"10.1088/2057-1976/ad7595","url":null,"abstract":"<p><p><i>Objective</i>. Approximately 57% of non-small cell lung cancer (NSCLC) patients face a 20% risk of brain metastases (BMs). The delivery of drugs to the central nervous system is challenging because of the blood-brain barrier, leading to a relatively poor prognosis for patients with BMs. Therefore, early detection and treatment of BMs are highly important for improving patient prognosis. This study aimed to investigate the feasibility of a multimodal radiomics-based method using 3D neural networks trained on<sup>18</sup>F-FDG PET/CT images to predict BMs in NSCLC patients.<i>Approach</i>. We included 226 NSCLC patients who underwent<sup>18</sup>F-FDG PET/CT scans of areas, including the lung and brain, prior to EGFR-TKI therapy. Moreover, clinical data (age, sex, stage, etc) were collected and analyzed. Shallow lung features and deep lung-brain features were extracted using PyRadiomics and 3D neural networks, respectively. A support vector machine (SVM) was used to predict BMs. The receiver operating characteristic (ROC) curve and F1 score were used to assess BM prediction performance.<i>Main result</i>. The combination of shallow lung and shallow-deep lung-brain features demonstrated superior predictive performance (AUC = 0.96 ± 0.01). Shallow-deep lung-brain features exhibited strong significance (P < 0.001) and potential predictive performance (coefficient > 0.8). Moreover, BM prediction by age was significant (P < 0.05).<i>Significance</i>. Our approach enables the quantitative assessment of medical images and a deeper understanding of both superficial and deep tumor characteristics. This noninvasive method has the potential to identify BM-related features with statistical significance, thereby aiding in the development of targeted treatment plans for NSCLC patients.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1088/2057-1976/ad7607
Qianhong Lu, Feng Luo, Juntian Shi and Kunyuan Xu
Objective. Cone beam CT (CBCT) typically has severe image artifacts and inaccurate HU values, which limits its application in radiation medicines. Scholars have proposed the use of cycle consistent generative adversarial network (Cycle-GAN) to address these issues. However, the generation quality of Cycle-GAN needs to be improved. This issue is exacerbated by the inherent size discrepancies between pelvic CT scans from different patients, as well as varying slice positions within the same patient, which introduce a scaling problem during training. Approach. We introduced the Enhanced Edge and Mask (EEM) approach in our structural constraint Cycle-EEM-GAN. This approach is designed to not only solve the scaling problem but also significantly improve the generation quality of the synthetic CT images. Then data from sixty pelvic patients were used to investigate the generation of synthetic CT (sCT) from CBCT. Main results. The mean absolute error (MAE), the root mean square error (RMSE), the peak signal to noise ratio (PSNR), the structural similarity index (SSIM), and spatial nonuniformity (SNU) are used to assess the quality of the sCT generated from CBCT. Compared with CBCT images, the MAE improved from 53.09 to 37.74, RMSE from 185.22 to 146.63, SNU from 0.38 to 0.35, PSNR from 24.68 to 32.33, SSIM from 0.624 to 0.981. Also, the Cycle-EEM-GAN outperformed Cycle-GAN in terms of visual evaluation and loss. Significance. Cycle-EEM-GAN has improved the quality of CBCT images, making the structural details clear while prevents image scaling during the generation process, so that further promotes the application of CBCT in radiotherapy.
{"title":"Synthetic CT generation from CBCT based on structural constraint cycle-EEM-GAN","authors":"Qianhong Lu, Feng Luo, Juntian Shi and Kunyuan Xu","doi":"10.1088/2057-1976/ad7607","DOIUrl":"https://doi.org/10.1088/2057-1976/ad7607","url":null,"abstract":"Objective. Cone beam CT (CBCT) typically has severe image artifacts and inaccurate HU values, which limits its application in radiation medicines. Scholars have proposed the use of cycle consistent generative adversarial network (Cycle-GAN) to address these issues. However, the generation quality of Cycle-GAN needs to be improved. This issue is exacerbated by the inherent size discrepancies between pelvic CT scans from different patients, as well as varying slice positions within the same patient, which introduce a scaling problem during training. Approach. We introduced the Enhanced Edge and Mask (EEM) approach in our structural constraint Cycle-EEM-GAN. This approach is designed to not only solve the scaling problem but also significantly improve the generation quality of the synthetic CT images. Then data from sixty pelvic patients were used to investigate the generation of synthetic CT (sCT) from CBCT. Main results. The mean absolute error (MAE), the root mean square error (RMSE), the peak signal to noise ratio (PSNR), the structural similarity index (SSIM), and spatial nonuniformity (SNU) are used to assess the quality of the sCT generated from CBCT. Compared with CBCT images, the MAE improved from 53.09 to 37.74, RMSE from 185.22 to 146.63, SNU from 0.38 to 0.35, PSNR from 24.68 to 32.33, SSIM from 0.624 to 0.981. Also, the Cycle-EEM-GAN outperformed Cycle-GAN in terms of visual evaluation and loss. Significance. Cycle-EEM-GAN has improved the quality of CBCT images, making the structural details clear while prevents image scaling during the generation process, so that further promotes the application of CBCT in radiotherapy.","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":"12 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1088/2057-1976/ad73dd
Mahmoud H Abdelgawad, Ahmed A Eldib, Tamer M Elsayed, Cm Charlie Ma
Purpose. Pulsed volumetric modulated arc therapy (VMAT) was proposed as an advanced treatment that combines the biological benefits of pulsed low dose rate (PLDR) and the dosimetric benefits of the intensity-modulated beams. In our conventional pulsed VMAT technique, a daily fractional dose of 200 cGy is delivered in 10 arcs with 3 min intervals between the arcs. In this study, we are testing the feasibility of pulsed VMAT that omits the need to split into ten arcs and excludes any beam-off gaps.Methods. The study was conducted using computed tomographic images of 24 patients previously treated at our institution with the conventional PLDR technique. Our newly installed Elekta machine has a low dose rate option on the order of 25 MU min-1. PLDR requires an effective dose rate of 6.7 cGy min-1with attention being paid to the maximum dose received within any point within the target not to exceed 13 cGy min-1. The quality of treatment plans was judged based on dose-volume histograms, isodose distribution, dose conformality to the target, and target dose homogeneity. The dose delivery accuracy was assessed by measurements using theMatriXXEvolution2D array system.Results. All cases were normalized to cover 95% of the target volume with 100% of the prescription dose. The average conformity index was 1.03 ± 0.08 while the average homogeneity index was 1.05 ± 0.02. The maximum reported dose rate at any point within the target was 10.44 cGy min-1. The mean dose rate for all pulsed VMAT plans was 6.88 ± 0.1 cGy min-1. All cases passed our gamma analysis with an average passing rate of 99.00% ± 0.48%.Conclusion. The study showed the applicability of planning pulsed VMAT using Eclipse and its successful delivery on our Elekta linac. Pulsed VMAT using the machine's low dose rate mode is more efficient than our previous pulsed VMAT delivery.
{"title":"Investigation of the linear accelerator low dose rate mode for pulsed low-dose-rate radiotherapy delivery.","authors":"Mahmoud H Abdelgawad, Ahmed A Eldib, Tamer M Elsayed, Cm Charlie Ma","doi":"10.1088/2057-1976/ad73dd","DOIUrl":"10.1088/2057-1976/ad73dd","url":null,"abstract":"<p><p><i>Purpose</i>. Pulsed volumetric modulated arc therapy (VMAT) was proposed as an advanced treatment that combines the biological benefits of pulsed low dose rate (PLDR) and the dosimetric benefits of the intensity-modulated beams. In our conventional pulsed VMAT technique, a daily fractional dose of 200 cGy is delivered in 10 arcs with 3 min intervals between the arcs. In this study, we are testing the feasibility of pulsed VMAT that omits the need to split into ten arcs and excludes any beam-off gaps.<i>Methods</i>. The study was conducted using computed tomographic images of 24 patients previously treated at our institution with the conventional PLDR technique. Our newly installed Elekta machine has a low dose rate option on the order of 25 MU min<sup>-1</sup>. PLDR requires an effective dose rate of 6.7 cGy min<sup>-1</sup>with attention being paid to the maximum dose received within any point within the target not to exceed 13 cGy min<sup>-1</sup>. The quality of treatment plans was judged based on dose-volume histograms, isodose distribution, dose conformality to the target, and target dose homogeneity. The dose delivery accuracy was assessed by measurements using the<i>MatriXX</i><sup><i>Evolution</i></sup>2D array system.<i>Results</i>. All cases were normalized to cover 95% of the target volume with 100% of the prescription dose. The average conformity index was 1.03 ± 0.08 while the average homogeneity index was 1.05 ± 0.02. The maximum reported dose rate at any point within the target was 10.44 cGy min<sup>-1</sup>. The mean dose rate for all pulsed VMAT plans was 6.88 ± 0.1 cGy min<sup>-1</sup>. All cases passed our gamma analysis with an average passing rate of 99.00% ± 0.48%.<i>Conclusion</i>. The study showed the applicability of planning pulsed VMAT using Eclipse and its successful delivery on our Elekta linac. Pulsed VMAT using the machine's low dose rate mode is more efficient than our previous pulsed VMAT delivery.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1088/2057-1976/ad78e3
Robson Rodrigues da Silva,Gabriel Marcos de Sousa Motta,Matheus Leonardo Alves de Camargo,Daniel Gustavo Goroso,José Luis Puglisi
This study addresses the Force - Frequency relationship, a fundamental characteristic of cardiac muscle influenced by β1-adrenergic stimulation. This relationship reveals that heart rate (HR) changes at the sinoatrial node lead to alterations in ventricular cell contractility, increasing the force and decreasing relaxation time for higher beat rates. Traditional models lacking this relationship offer an incomplete physiological depiction, impacting the interpretation of in silico experiment results. To improve this, we propose a new mathematical model for ventricular myocytes, named "Feed Forward Modeling" (FFM).
Methods:
FFM adjusts model parameters like channel conductance and Ca2+pump affinity according to stimulation frequency, in contrast to fixed parameter values. An empirical sigmoid curve guided the adaptation of each parameter, integrated into a rabbit ventricular cell electromechanical model. Model validation was achieved by comparing simulated data with experimental current-voltage (I-V) curves for L-type Calcium and slow Potassium currents.
Results:
FFM-enhanced simulations align more closely with physiological behaviors, accurately reflecting inotropic and lusitropic responses. For instance, action potential duration at 90% repolarization (APD90) decreased from 206 ms at 1 Hz to 173 ms at 4 Hz using FFM, contrary to the conventional model, where APD90 increased, limiting high-frequency heartbeats. Peak force also showed an increase with FFM, from 8.5 mN/mm2at 1 Hz to 11.9 mN/mm2at 4 Hz, while it barely changed without FFM. Relaxation time at 50% of maximum force (t50) similarly improved, dropping from 114 ms at 1 Hz to 75.9 ms at 4 Hz with FFM, a change not observed without the model.
Conclusion:
The FFM approach offers computational efficiency, bypassing the need to model all beta-adrenergic pathways, thus facilitating large-scale simulations. The study recommends that frequency change experiments include fractional dosing of isoproterenol to better replicate heart conditions in vivo.
.
{"title":"Feed Forward modeling: An efficient approach for mathematical modeling of the force frequency relationship in the rabbit isolated ventricular myocyte.","authors":"Robson Rodrigues da Silva,Gabriel Marcos de Sousa Motta,Matheus Leonardo Alves de Camargo,Daniel Gustavo Goroso,José Luis Puglisi","doi":"10.1088/2057-1976/ad78e3","DOIUrl":"https://doi.org/10.1088/2057-1976/ad78e3","url":null,"abstract":"
This study addresses the Force - Frequency relationship, a fundamental characteristic of cardiac muscle influenced by β1-adrenergic stimulation. This relationship reveals that heart rate (HR) changes at the sinoatrial node lead to alterations in ventricular cell contractility, increasing the force and decreasing relaxation time for higher beat rates. Traditional models lacking this relationship offer an incomplete physiological depiction, impacting the interpretation of in silico experiment results. To improve this, we propose a new mathematical model for ventricular myocytes, named \"Feed Forward Modeling\" (FFM).
Methods:
FFM adjusts model parameters like channel conductance and Ca2+pump affinity according to stimulation frequency, in contrast to fixed parameter values. An empirical sigmoid curve guided the adaptation of each parameter, integrated into a rabbit ventricular cell electromechanical model. Model validation was achieved by comparing simulated data with experimental current-voltage (I-V) curves for L-type Calcium and slow Potassium currents.
Results:
FFM-enhanced simulations align more closely with physiological behaviors, accurately reflecting inotropic and lusitropic responses. For instance, action potential duration at 90% repolarization (APD90) decreased from 206 ms at 1 Hz to 173 ms at 4 Hz using FFM, contrary to the conventional model, where APD90 increased, limiting high-frequency heartbeats. Peak force also showed an increase with FFM, from 8.5 mN/mm2at 1 Hz to 11.9 mN/mm2at 4 Hz, while it barely changed without FFM. Relaxation time at 50% of maximum force (t50) similarly improved, dropping from 114 ms at 1 Hz to 75.9 ms at 4 Hz with FFM, a change not observed without the model.
Conclusion:
The FFM approach offers computational efficiency, bypassing the need to model all beta-adrenergic pathways, thus facilitating large-scale simulations. The study recommends that frequency change experiments include fractional dosing of isoproterenol to better replicate heart conditions in vivo.
.","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":"82 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1088/2057-1976/ad7608
Vinyas, Subraya Krishna Bhat, Hiroshi Yamada and N Shyamasunder Bhat
Low back pain is a serious health concern prevalent in majority of the people around the world, especially in case of the elderly. The root cause for this is mostly observed to be the development of lesions/ tears complemented by degenerative effects in the intervertebral disc of L4-L5 and L5-S1 segments. This study aims to analyse the effects of disc degeneration and tears on the mechanical responses of the L5-S1 spinal unit, which has not been investigated. The annulus is represented by an anisotropic hyperelastic Gasser-Ogden-Holzapfel (GOH) model wherein the effect of degeneration is defined by varying the constants responsible for the behaviour of the material in different strain-ranges. A systematic approach is proposed for modelling the effects of disc degeneration in the annulus. Further, the commonly found anterior circumferential tear is modelled to understand its combined effects with degeneration of the annulus. The damaging effect of the tear was limited only to extension movement, causing critical stress variations in its vicinity. However, degeneration had a significant influence on both stress and range of motion of the spinal unit across all types of movements. This study highlights the complex relationship of the physiological movements with pathogenesis of tear and degeneration leading to discogenic pain thus enabling clinicians to develop conservative treatment strategies for specific age groups.
{"title":"In-silico study on cumulative effects of degeneration and anterior circumferential annular tear on the L5-S1 spinal unit","authors":"Vinyas, Subraya Krishna Bhat, Hiroshi Yamada and N Shyamasunder Bhat","doi":"10.1088/2057-1976/ad7608","DOIUrl":"https://doi.org/10.1088/2057-1976/ad7608","url":null,"abstract":"Low back pain is a serious health concern prevalent in majority of the people around the world, especially in case of the elderly. The root cause for this is mostly observed to be the development of lesions/ tears complemented by degenerative effects in the intervertebral disc of L4-L5 and L5-S1 segments. This study aims to analyse the effects of disc degeneration and tears on the mechanical responses of the L5-S1 spinal unit, which has not been investigated. The annulus is represented by an anisotropic hyperelastic Gasser-Ogden-Holzapfel (GOH) model wherein the effect of degeneration is defined by varying the constants responsible for the behaviour of the material in different strain-ranges. A systematic approach is proposed for modelling the effects of disc degeneration in the annulus. Further, the commonly found anterior circumferential tear is modelled to understand its combined effects with degeneration of the annulus. The damaging effect of the tear was limited only to extension movement, causing critical stress variations in its vicinity. However, degeneration had a significant influence on both stress and range of motion of the spinal unit across all types of movements. This study highlights the complex relationship of the physiological movements with pathogenesis of tear and degeneration leading to discogenic pain thus enabling clinicians to develop conservative treatment strategies for specific age groups.","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":"38 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1088/2057-1976/ad78e2
Filip Samal,Vojtech Cerny,Petr Kujal,Jakub Jezek,Jiri Skala-Rosenbaum,Josef Sepitka
This study aimed to characterize the mechanical properties of native human ligamentum flavum (LF) and correlate them with histopathological changes. Mechanical property gradients across the cranial, medial, and caudal regions of LF were mapped and compared with histological sections. We also compared lumbar spinal stenosis (LSS) samples with disc herniation (DH) samples as reference material to identify differences in mechanical properties and histopathological features. Our results revealed significant heterogeneity in LF mechanical properties, with local variations correlating with specific histopathological changes such as chondroid metaplasia and loss of elastic fibers. These findings underscore the importance of considering LF heterogeneity in mechanical characterization and provide insights into its behavior under pathological conditions.
{"title":"Distribution of mechanical properties of native human ligamentum flavum depending on histopathological changes.","authors":"Filip Samal,Vojtech Cerny,Petr Kujal,Jakub Jezek,Jiri Skala-Rosenbaum,Josef Sepitka","doi":"10.1088/2057-1976/ad78e2","DOIUrl":"https://doi.org/10.1088/2057-1976/ad78e2","url":null,"abstract":"This study aimed to characterize the mechanical properties of native human ligamentum flavum (LF) and correlate them with histopathological changes. Mechanical property gradients across the cranial, medial, and caudal regions of LF were mapped and compared with histological sections. We also compared lumbar spinal stenosis (LSS) samples with disc herniation (DH) samples as reference material to identify differences in mechanical properties and histopathological features. Our results revealed significant heterogeneity in LF mechanical properties, with local variations correlating with specific histopathological changes such as chondroid metaplasia and loss of elastic fibers. These findings underscore the importance of considering LF heterogeneity in mechanical characterization and provide insights into its behavior under pathological conditions.","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":"22 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1088/2057-1976/ad7591
Mohamad Hasan Bin Tasneem, Farooq Al-Jahwari, Mahmood Al-Kindi, Imad Al-Lawati, Abdulmonem Al Lawati
Plate-like structures had been thoroughly studied in literature over years to reduce the computational space from 3D to 2D. Many of these theories suffer either from satisfying the free traction condition or thickness extensibility in addition to the consistency of transverse shear strain energy. This work presents a higher order shear deformation thickness-extensible plate theory (eHSDT) for the analysis of plates. The proposed eHSDT satisfies the condition of free traction as other theories do but it also satisfies the condition of consistency of transverse shear strain energy which is neglected by many theories in the area of plates and shells. The implementation of the proposed theory in displacement-based finite element procedure requires continuity of derivatives across elements. This necessary condition was achieved using the penalty enforcement method for derivative-based nodal degrees of freedom across the standard 9-nodes Lagrange element. The theory was tested for elastic bending deformation of Polyether-ether-ketone (PEEK) which is one of the basic materials for medical implants. The theory showed good accuracy compared to experimental data of the three-points bending test. The present eHSDT was also tested for different conditions with a wide range of aspects ratios (thin to thick plates) and different boundary conditions. The accuracy of the proposed eHSDT was verified against exact solutions for these conditions which showed the advantage over other approaches and commercial finite element packages.
{"title":"Thickness-extensible higher order plate theory with enforced C1 continuity for the analysis of PEEK medical implants.","authors":"Mohamad Hasan Bin Tasneem, Farooq Al-Jahwari, Mahmood Al-Kindi, Imad Al-Lawati, Abdulmonem Al Lawati","doi":"10.1088/2057-1976/ad7591","DOIUrl":"10.1088/2057-1976/ad7591","url":null,"abstract":"<p><p>Plate-like structures had been thoroughly studied in literature over years to reduce the computational space from 3D to 2D. Many of these theories suffer either from satisfying the free traction condition or thickness extensibility in addition to the consistency of transverse shear strain energy. This work presents a higher order shear deformation thickness-extensible plate theory (eHSDT) for the analysis of plates. The proposed eHSDT satisfies the condition of free traction as other theories do but it also satisfies the condition of consistency of transverse shear strain energy which is neglected by many theories in the area of plates and shells. The implementation of the proposed theory in displacement-based finite element procedure requires continuity of derivatives across elements. This necessary condition was achieved using the penalty enforcement method for derivative-based nodal degrees of freedom across the standard 9-nodes Lagrange element. The theory was tested for elastic bending deformation of Polyether-ether-ketone (PEEK) which is one of the basic materials for medical implants. The theory showed good accuracy compared to experimental data of the three-points bending test. The present eHSDT was also tested for different conditions with a wide range of aspects ratios (thin to thick plates) and different boundary conditions. The accuracy of the proposed eHSDT was verified against exact solutions for these conditions which showed the advantage over other approaches and commercial finite element packages.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1088/2057-1976/ad7593
Behzad Ebrahimi
Objectives. This study investigates the association between cerebral blood flow (CBF) and overall survival (OS) in glioblastoma multiforme (GBM) patients receiving chemoradiation. Identifying CBF biomarkers could help predict patient response to this treatment, facilitating the development of personalized therapeutic strategies.Materials and Methods. This retrospective study analyzed CBF data from dynamic susceptibility contrast (DSC) MRI in 30 newly diagnosed GBM patients (WHO grade IV). Radiomics features were extracted from CBF maps, tested for robustness, and correlated with OS. Kaplan-Meier analysis was used to assess the predictive value of radiomic features significantly associated with OS, aiming to stratify patients into groups with distinct post-treatment survival outcomes.Results. While mean relative CBF and CBV failed to serve as independent prognostic markers for OS, the prognostic potential of radiomic features extracted from CBF maps was explored. Ten out of forty-three radiomic features with highest intraclass correlation coefficients (ICC > 0.9), were selected for characterization. While Correlation and Zone Size Variance (ZSV) features showed significant OS correlations, indicating prognostic potential, Kaplan-Meier analysis did not significantly stratify patients based on these features. Visual analysis of the graphs revealed a predominant association between the identified radiomic features and OS under two years. Focusing on this subgroup, Correlation, ZSV, and Gray-Level Nonuniformity (GLN) emerged as significant, suggesting that a lack of heterogeneity in perfusion patterns may be indicative of a poorer outcome. Kaplan-Meier analysis effectively stratified this cohort based on the features mentioned above. Receiver operating characteristic (ROC) analysis further validated their prognostic value, with ZSV demonstrating the highest sensitivity and specificity (0.75 and 0.85, respectively).Conclusion. Our findings underscored radiomics features sensitive to CBF heterogeneity as pivotal predictors for patient stratification. Our results suggest that these markers may have the potential to identify patients who are unlikely to benefit from standard chemoradiation therapy.
研究目的本研究探讨了接受化疗的多形性胶质母细胞瘤(GBM)患者脑血流(CBF)与总生存期(OS)之间的关系。确定CBF生物标志物有助于预测患者对这种治疗的反应,从而促进个性化治疗策略的开发:这项回顾性研究分析了 30 名新确诊的 GBM 患者(WHO IV 级)的动态易感对比(DSC)磁共振成像的 CBF 数据。从CBF图中提取放射组学特征,测试其稳健性,并将其与OS相关联。采用卡普兰-梅耶尔分析评估与OS显著相关的放射组学特征的预测价值,旨在将患者分为具有不同治疗后生存结果的组别:结果:虽然平均相对 CBF 和 CBV 未能作为 OS 的独立预后指标,但研究人员探索了从 CBF 图中提取的放射学特征的预后潜力。在 43 个具有最高类内相关系数(ICC > 0.9)的放射学特征中,有 10 个被选中进行特征描述。虽然相关性和区域大小方差(ZSV)特征显示出显著的 OS 相关性,表明了预后潜力,但 Kaplan-Meier 分析并未根据这些特征对患者进行显著分层。对图表的直观分析显示,已确定的放射学特征与两年以下的OS之间存在主要关联。针对这一亚组,相关性、ZSV 和灰阶不均匀性(GLN)具有重要意义,表明灌注模式缺乏异质性可能预示着较差的预后。卡普兰-梅耶尔分析根据上述特征对该队列进行了有效的分层。接收者操作特征(ROC)分析进一步验证了这些特征的预后价值,其中ZSV的敏感性和特异性最高(分别为0.75和0.85):我们的研究结果表明,对CBF异质性敏感的放射组学特征是对患者进行分层的关键预测指标。我们的研究结果表明,这些标记物有可能鉴别出那些不太可能从标准化学放疗中获益的患者。
{"title":"Radiomics analysis of cerebral blood flow suggests a possible link between perfusion homogeneity and poor glioblastoma multiforme prognosis.","authors":"Behzad Ebrahimi","doi":"10.1088/2057-1976/ad7593","DOIUrl":"10.1088/2057-1976/ad7593","url":null,"abstract":"<p><p><i>Objectives</i>. This study investigates the association between cerebral blood flow (CBF) and overall survival (OS) in glioblastoma multiforme (GBM) patients receiving chemoradiation. Identifying CBF biomarkers could help predict patient response to this treatment, facilitating the development of personalized therapeutic strategies.<i>Materials and Methods</i>. This retrospective study analyzed CBF data from dynamic susceptibility contrast (DSC) MRI in 30 newly diagnosed GBM patients (WHO grade IV). Radiomics features were extracted from CBF maps, tested for robustness, and correlated with OS. Kaplan-Meier analysis was used to assess the predictive value of radiomic features significantly associated with OS, aiming to stratify patients into groups with distinct post-treatment survival outcomes.<i>Results</i>. While mean relative CBF and CBV failed to serve as independent prognostic markers for OS, the prognostic potential of radiomic features extracted from CBF maps was explored. Ten out of forty-three radiomic features with highest intraclass correlation coefficients (ICC > 0.9), were selected for characterization. While Correlation and Zone Size Variance (ZSV) features showed significant OS correlations, indicating prognostic potential, Kaplan-Meier analysis did not significantly stratify patients based on these features. Visual analysis of the graphs revealed a predominant association between the identified radiomic features and OS under two years. Focusing on this subgroup, Correlation, ZSV, and Gray-Level Nonuniformity (GLN) emerged as significant, suggesting that a lack of heterogeneity in perfusion patterns may be indicative of a poorer outcome. Kaplan-Meier analysis effectively stratified this cohort based on the features mentioned above. Receiver operating characteristic (ROC) analysis further validated their prognostic value, with ZSV demonstrating the highest sensitivity and specificity (0.75 and 0.85, respectively).<i>Conclusion</i>. Our findings underscored radiomics features sensitive to CBF heterogeneity as pivotal predictors for patient stratification. Our results suggest that these markers may have the potential to identify patients who are unlikely to benefit from standard chemoradiation therapy.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1088/2057-1976/ad785e
Subitcha Jayasankar,N Sujatha
The heterogeneity, non-uniform nature, and ethical concerns in sourcing biological tissues pose several challenges to designing, calibrating, standardizing, and evaluating the performance of spectroscopy-based diagnostic methods. A synthetic phantom module that can resemble a multi-layered tissue structure while including multiple tissue biomarkers with long-shelf life and stability is vital to overcome these challenges. This work uses a multi-layered silicone phantom to incorporate multiple biomarkers suitable for multi-modal spectroscopy testing and calibration. The phantom mimics the microcalcification distribution in the breast tissues using hydroxyapatite and the endogenous fluorescence seen in the tissues using Flavin Adenine Dinucleotide (FAD) and Nicotinamide Adenine Dinucleotide (NADH). The utility of this phantom for tumor margin analysis is analyzed using Diffuse reflectance, fluorescence, and Raman spectroscopy. The observed relative differences in intensity with changes in the silicone tumor layer depth and thickness are suitable for instrument calibration and fiber-optic probe design for tumor margin analysis.
.
{"title":"Multi-layered silicone-based breast tissue phantom for multi-modal optical spectroscopy.","authors":"Subitcha Jayasankar,N Sujatha","doi":"10.1088/2057-1976/ad785e","DOIUrl":"https://doi.org/10.1088/2057-1976/ad785e","url":null,"abstract":"The heterogeneity, non-uniform nature, and ethical concerns in sourcing biological tissues pose several challenges to designing, calibrating, standardizing, and evaluating the performance of spectroscopy-based diagnostic methods. A synthetic phantom module that can resemble a multi-layered tissue structure while including multiple tissue biomarkers with long-shelf life and stability is vital to overcome these challenges. This work uses a multi-layered silicone phantom to incorporate multiple biomarkers suitable for multi-modal spectroscopy testing and calibration. The phantom mimics the microcalcification distribution in the breast tissues using hydroxyapatite and the endogenous fluorescence seen in the tissues using Flavin Adenine Dinucleotide (FAD) and Nicotinamide Adenine Dinucleotide (NADH). The utility of this phantom for tumor margin analysis is analyzed using Diffuse reflectance, fluorescence, and Raman spectroscopy. The observed relative differences in intensity with changes in the silicone tumor layer depth and thickness are suitable for instrument calibration and fiber-optic probe design for tumor margin analysis.
.","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":"38 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}