首页 > 最新文献

Biomedical Physics & Engineering Express最新文献

英文 中文
Optimizing pulmonary chest x-ray classification with stacked feature ensemble and swin transformer integration. 利用堆叠特征集合和swin变换器集成优化肺部胸部X光片分类。
IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-11-06 DOI: 10.1088/2057-1976/ad8c46
Manas Ranjan Mohanty, Pradeep Kumar Mallick, Annapareddy V N Reddy

This research presents an integrated framework designed to automate the classification of pulmonary chest x-ray images. Leveraging convolutional neural networks (CNNs) with a focus on transformer architectures, the aim is to improve both the accuracy and efficiency of pulmonary chest x-ray image analysis. A central aspect of this approach involves utilizing pre-trained networks such as VGG16, ResNet50, and MobileNetV2 to create a feature ensemble. A notable innovation is the adoption of a stacked ensemble technique, which combines outputs from multiple pre-trained models to generate a comprehensive feature representation. In the feature ensemble approach, each image undergoes individual processing through the three pre-trained networks, and pooled images are extracted just before the flatten layer of each model. Consequently, three pooled images in 2D grayscale format are obtained for each original image. These pooled images serve as samples for creating 3D images resembling RGB images through stacking, intended for classifier input in subsequent analysis stages. By incorporating stacked pooling layers to facilitate feature ensemble, a broader range of features is utilized while effectively managing complexities associated with processing the augmented feature pool. Moreover, the study incorporates the Swin Transformer architecture, known for effectively capturing both local and global features. The Swin Transformer architecture is further optimized using the artificial hummingbird algorithm (AHA). By fine-tuning hyperparameters such as patch size, multi-layer perceptron (MLP) ratio, and channel numbers, the AHA optimization technique aims to maximize classification accuracy. The proposed integrated framework, featuring the AHA-optimized Swin Transformer classifier utilizing stacked features, is evaluated using three diverse chest x-ray datasets-VinDr-CXR, PediCXR, and MIMIC-CXR. The observed accuracies of 98.874%, 98.528%, and 98.958% respectively, underscore the robustness and generalizability of the developed model across various clinical scenarios and imaging conditions.

这项研究提出了一个综合框架,旨在自动对肺部胸部 X 光图像进行分类。利用以变压器架构为重点的卷积神经网络 (CNN),旨在提高肺部胸部 X 光图像分析的准确性和效率。这种方法的核心是利用 VGG16、ResNet50 和 MobileNetV2 等预先训练好的网络来创建特征集合。一个值得注意的创新是采用了堆叠集合技术,将多个预训练模型的输出结果结合起来,生成一个综合的特征表示。在特征集合方法中,每幅图像都要经过三个预训练网络的单独处理,并在每个模型的扁平化层之前提取集合图像。因此,每张原始图像都会得到三张二维灰度格式的集合图像。这些汇集图像可作为样本,通过堆叠创建类似于 RGB 图像的三维图像,用于后续分析阶段的分类器输入。通过采用堆叠集合层来促进特征集合,可以利用更广泛的特征,同时有效管理与处理增强特征池相关的复杂性。此外,这项研究还采用了 Swin Transformer 架构,该架构以有效捕捉局部和全局特征而著称。利用人工蜂鸟算法(AHA)进一步优化了 Swin Transformer 架构。通过微调补丁大小、多层感知器(MLP)比例和通道数等超参数,AHA 优化技术旨在最大限度地提高分类准确性。利用堆叠特征的 AHA 优化 Swin Transformer 分类器,所提出的集成框架通过三个不同的胸部 X 光数据集进行了评估:VinDr-CXR、PediCXR 和 MIMIC-CXR。观察到的准确率分别为 98.874%、98.528% 和 98.958%,这凸显了所开发模型在各种临床场景和成像条件下的稳健性和通用性。
{"title":"Optimizing pulmonary chest x-ray classification with stacked feature ensemble and swin transformer integration.","authors":"Manas Ranjan Mohanty, Pradeep Kumar Mallick, Annapareddy V N Reddy","doi":"10.1088/2057-1976/ad8c46","DOIUrl":"https://doi.org/10.1088/2057-1976/ad8c46","url":null,"abstract":"<p><p>This research presents an integrated framework designed to automate the classification of pulmonary chest x-ray images. Leveraging convolutional neural networks (CNNs) with a focus on transformer architectures, the aim is to improve both the accuracy and efficiency of pulmonary chest x-ray image analysis. A central aspect of this approach involves utilizing pre-trained networks such as VGG16, ResNet50, and MobileNetV2 to create a feature ensemble. A notable innovation is the adoption of a stacked ensemble technique, which combines outputs from multiple pre-trained models to generate a comprehensive feature representation. In the feature ensemble approach, each image undergoes individual processing through the three pre-trained networks, and pooled images are extracted just before the flatten layer of each model. Consequently, three pooled images in 2D grayscale format are obtained for each original image. These pooled images serve as samples for creating 3D images resembling RGB images through stacking, intended for classifier input in subsequent analysis stages. By incorporating stacked pooling layers to facilitate feature ensemble, a broader range of features is utilized while effectively managing complexities associated with processing the augmented feature pool. Moreover, the study incorporates the Swin Transformer architecture, known for effectively capturing both local and global features. The Swin Transformer architecture is further optimized using the artificial hummingbird algorithm (AHA). By fine-tuning hyperparameters such as patch size, multi-layer perceptron (MLP) ratio, and channel numbers, the AHA optimization technique aims to maximize classification accuracy. The proposed integrated framework, featuring the AHA-optimized Swin Transformer classifier utilizing stacked features, is evaluated using three diverse chest x-ray datasets-VinDr-CXR, PediCXR, and MIMIC-CXR. The observed accuracies of 98.874%, 98.528%, and 98.958% respectively, underscore the robustness and generalizability of the developed model across various clinical scenarios and imaging conditions.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":"11 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radar-based contactless heart beat detection with a modified Pan-Tompkins algorithm. 利用改进的 Pan-Tompkins 算法进行基于雷达的非接触式心跳检测。
IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-11-06 DOI: 10.1088/2057-1976/ad8c48
Hoang Thi Yen, Vuong Tri Tiep, Van-Phuc Hoang, Quang-Kien Trinh, Hai-Duong Nguyen, Nguyen Trong Tuyen, Guanghao Sun

Background.Using radar for non-contact measuring human vital signs has garnered significant attention due to its undeniable benefits. However, achieving reasonably good accuracy in contactless measurement senarios is still a technical challenge.Materials and methods.The proposed method includes two stages. The first stage involves the process of datasegmentation and signal channel selection. In the next phase, the raw radar signal from the chosen channel is subjected to modified Pan-Tompkins.Results.The experimental findings from twelve individuals demonstrated a strong agreement between the contactless radar and contact electrocardiography (ECG) devices for heart rate measurement, with correlation coefficient of 98.74 percentage; and the 95% limits of agreement obtained by radar and those obtained by ECG were 2.4 beats per minute.Conclusion.The results showed high agreement between heart rate calculated by radar signals and heart rate by electrocardiograph. This research paves the way for future applications using non-contact sensors to support and potentially replace contact sensors in healthcare.

背景:使用雷达非接触式测量人体生命体征因其无可否认的优点而备受关注。材料和方法:所提出的方法包括两个阶段。第一阶段包括数据分割和信号通道选择。结果.12 个人的实验结果表明,非接触式雷达和接触式心电图(ECG)设备在心率测量方面具有很高的一致性,相关系数为 98.74%;雷达获得的心率与心电图获得的心率的 95% 的一致性限值为每分钟 2.4 次.结论.结果表明,雷达信号计算的心率与心电图计算的心率具有很高的一致性。这项研究为未来使用非接触式传感器支持并有可能取代接触式传感器在医疗保健领域的应用铺平了道路。
{"title":"Radar-based contactless heart beat detection with a modified Pan-Tompkins algorithm.","authors":"Hoang Thi Yen, Vuong Tri Tiep, Van-Phuc Hoang, Quang-Kien Trinh, Hai-Duong Nguyen, Nguyen Trong Tuyen, Guanghao Sun","doi":"10.1088/2057-1976/ad8c48","DOIUrl":"https://doi.org/10.1088/2057-1976/ad8c48","url":null,"abstract":"<p><p><i>Background.</i>Using radar for non-contact measuring human vital signs has garnered significant attention due to its undeniable benefits. However, achieving reasonably good accuracy in contactless measurement senarios is still a technical challenge.<i>Materials and methods.</i>The proposed method includes two stages. The first stage involves the process of datasegmentation and signal channel selection. In the next phase, the raw radar signal from the chosen channel is subjected to modified Pan-Tompkins.<i>Results.</i>The experimental findings from twelve individuals demonstrated a strong agreement between the contactless radar and contact electrocardiography (ECG) devices for heart rate measurement, with correlation coefficient of 98.74 percentage; and the 95% limits of agreement obtained by radar and those obtained by ECG were 2.4 beats per minute.<i>Conclusion.</i>The results showed high agreement between heart rate calculated by radar signals and heart rate by electrocardiograph. This research paves the way for future applications using non-contact sensors to support and potentially replace contact sensors in healthcare.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":"11 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A study on sleep posture analysis using fibre bragg grating arrays based mattress. 利用基于光纤布拉格光栅阵列的床垫进行睡姿分析的研究。
IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-11-05 DOI: 10.1088/2057-1976/ad8b52
Manish Mishra, Prasant Kumar Sahu, Mrinal Datta

Prolonged sleeping postures or unusual postures can lead to the development of various ailments such as subacromial impingement syndrome, sleep paralysis in the elderly, nocturnal gastroesophageal reflux, sore development, etc Fibre Bragg Gratings (a variety of optical sensors) have gained huge popularity due to their small size, higher sensitivity and responsivity, and encapsulation flexibilities. However, in the present study, FBG Arrays (two FBGs with 10 mm space between them) are employed as they are advantageous in terms of data collection, mitigating sensor location effects, and multiplexing features. In this work, Liquid silicone encapsulated FBG arrays are placed in the head (E), shoulder (C, D), and lower half body (A, B) region for analyzing the strain patterns generated by different sleeping postures namely, Supine (P1), Left Fetus (P2), Right Fetus (P3), and Over stomach (P4). These strain patterns were analyzed in two ways, combined (averaging the data from each FBG of the array) and Individual (data from each FBG was analyzed separately). Both analyses suggested that the FBGs in the arrays responded swiftly to the strain changes that occurred due to changes in sleeping postures. 3D histograms were utilized to track the strain changes and analyze different sleeping postures. A discussion regarding closely related postures and long hour monitoring has also been included. Arrays in the lower half (A, B) and shoulder (C, D) regions proved to be pivotal in discriminating body postures. The average standard deviation of strain for the different arrays was in the range of 0.1 to 0.19 suggesting the reliable and appreciable strain-handling capabilities of the Liquid silicone encapsulated arrays.

长时间的睡姿或不正常的姿势会导致各种疾病的发生,如肩峰下撞击综合征、老年人睡眠麻痹、夜间胃食管反流、疮疡等。光纤布拉格光栅(一种光学传感器)因其体积小、灵敏度和响应度高、封装灵活等优点而大受欢迎。不过,在本研究中,采用的是光纤光栅阵列(两个光纤光栅之间有 10 毫米的空间),因为它们在数据收集、减轻传感器位置效应和多路复用功能方面具有优势。在这项工作中,液态硅胶封装的 FBG 阵列被放置在头部(E)、肩部(C、D)和下半身(A、B)区域,用于分析不同睡姿(即仰卧(P1)、左胎(P2)、右胎(P3)和俯卧(P4))产生的应变模式。这些应变模式有两种分析方法,一种是组合分析(对阵列中每个 FBG 的数据进行平均),另一种是单独分析(对每个 FBG 的数据进行单独分析)。这两种分析表明,阵列中的 FBG 对睡姿变化引起的应变变化反应迅速。三维直方图用于跟踪应变变化和分析不同的睡眠姿势。此外,还对密切相关的姿势和长时间监测进行了讨论。事实证明,下半身(A、B)和肩部(C、D)区域的阵列在辨别身体姿势方面起着关键作用。不同阵列的平均应变标准偏差在 0.1 到 0.19 之间,这表明液体硅胶封装阵列具有可靠和显著的应变处理能力。
{"title":"A study on sleep posture analysis using fibre bragg grating arrays based mattress.","authors":"Manish Mishra, Prasant Kumar Sahu, Mrinal Datta","doi":"10.1088/2057-1976/ad8b52","DOIUrl":"10.1088/2057-1976/ad8b52","url":null,"abstract":"<p><p>Prolonged sleeping postures or unusual postures can lead to the development of various ailments such as subacromial impingement syndrome, sleep paralysis in the elderly, nocturnal gastroesophageal reflux, sore development, etc Fibre Bragg Gratings (a variety of optical sensors) have gained huge popularity due to their small size, higher sensitivity and responsivity, and encapsulation flexibilities. However, in the present study, FBG Arrays (two FBGs with 10 mm space between them) are employed as they are advantageous in terms of data collection, mitigating sensor location effects, and multiplexing features. In this work, Liquid silicone encapsulated FBG arrays are placed in the head (E), shoulder (C, D), and lower half body (A, B) region for analyzing the strain patterns generated by different sleeping postures namely, Supine (P1), Left Fetus (P2), Right Fetus (P3), and Over stomach (P4). These strain patterns were analyzed in two ways, combined (averaging the data from each FBG of the array) and Individual (data from each FBG was analyzed separately). Both analyses suggested that the FBGs in the arrays responded swiftly to the strain changes that occurred due to changes in sleeping postures. 3D histograms were utilized to track the strain changes and analyze different sleeping postures. A discussion regarding closely related postures and long hour monitoring has also been included. Arrays in the lower half (A, B) and shoulder (C, D) regions proved to be pivotal in discriminating body postures. The average standard deviation of strain for the different arrays was in the range of 0.1 to 0.19 suggesting the reliable and appreciable strain-handling capabilities of the Liquid silicone encapsulated arrays.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In silicodosimetry for a prostate cancer treatment using198Au nanoparticles. 利用 198Au 纳米粒子进行前列腺癌治疗的硅模拟试验。
IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-11-05 DOI: 10.1088/2057-1976/ad8acc
Lucas Verdi Angelocci, Sabrina Spigaroli Sgrignoli, Carla Daruich de Souza, Paula Cristina Guimarães Antunes, Maria Elisa Chuery Martins Rostelato, Carlos Alberto Zeituni

Objective. To estimate dose rates delivered by using radioactive198Au nanoparticles for prostate cancer nanobrachytherapy, identifying contribution by photons and electrons emmited from the source.Approach. Utilizingin silicomodels, two different anatomical representations were compared: a mathematical model and a unstructured mesh model based on the International Commission on Radiological Protection (ICRP) Publication 145 phantom. Dose rates by activity were calculated to the tumor and nearby healthy tissues, including healthy prostate tissue, urinary bladder wall and rectum, using Monte Carlo code MCNP6.2.Main results. Results indicate that both models provide dose rate estimates within the same order of magnitude, with the mathematical model overestimating doses to the prostate and bladder by approximately 20% compared to the unstructured mesh model. The discrepancies for the tumor and rectum were below 4%. Photons emmited from the source were defined as the primary contributors to dose to other organs, while 97.9% of the dose to the tumor was due to electrons emmited from the source.Significance. Our findings emphasize the importance of model selection in dosimetry, particularly the advantages of using realistic anatomical phantoms for accurate dose calculations. The study demonstrates the feasibility and effectiveness of198Au nanoparticles in achieving high dose concentrations in tumor regions while minimizing exposure to surrounding healthy tissues. Beta emissions were found to be predominantly responsible for tumor dose delivery, reinforcing the potential of198Au nanoparticles in localized radiation therapy. We advocate for using realistic body phantoms in further research to enhance reliability in dosimetry for nanobrachytherapy, as the field still lacks dedicated protocols.

目标: 估算使用放射性198金纳米粒子进行前列腺癌纳米近距离治疗时的剂量率,确定放射源发射的光子和电子的贡献 方法: 利用硅模型,比较两种不同的解剖表示方法:一种是数学模型,另一种是基于国际放射防护委员会(ICRP)第145号出版物模型的非结构化网格模型。使用蒙特卡罗代码 MCNP6.2,按放射性活度计算了肿瘤和附近健康组织(包括健康的前列腺组织、膀胱壁和直肠)的剂量率。 主要结果: 结果表明,两种模型提供的剂量率估计值在同一数量级内,与非结构化网格模型相比,数学模型高估了前列腺和膀胱约 20% 的剂量。肿瘤和直肠的差异低于 4%。光源发射的光子被定义为其他器官剂量的主要来源,而肿瘤 97.9% 的剂量是由光源发射的电子造成的。这项研究证明了198金纳米粒子在肿瘤区域实现高剂量浓度的可行性和有效性,同时最大限度地减少了对周围健康组织的照射。研究发现,β发射是肿瘤剂量传递的主要原因,这加强了198金纳米粒子在局部放射治疗中的潜力。我们主张在进一步的研究中使用真实的人体模型,以提高纳米近距离放射治疗剂量测定的可靠性,因为该领域仍然缺乏专门的规程。
{"title":"<i>In silico</i>dosimetry for a prostate cancer treatment using<sup>198</sup>Au nanoparticles.","authors":"Lucas Verdi Angelocci, Sabrina Spigaroli Sgrignoli, Carla Daruich de Souza, Paula Cristina Guimarães Antunes, Maria Elisa Chuery Martins Rostelato, Carlos Alberto Zeituni","doi":"10.1088/2057-1976/ad8acc","DOIUrl":"10.1088/2057-1976/ad8acc","url":null,"abstract":"<p><p><i>Objective</i>. To estimate dose rates delivered by using radioactive<sup>198</sup>Au nanoparticles for prostate cancer nanobrachytherapy, identifying contribution by photons and electrons emmited from the source.<i>Approach</i>. Utilizing<i>in silico</i>models, two different anatomical representations were compared: a mathematical model and a unstructured mesh model based on the International Commission on Radiological Protection (ICRP) Publication 145 phantom. Dose rates by activity were calculated to the tumor and nearby healthy tissues, including healthy prostate tissue, urinary bladder wall and rectum, using Monte Carlo code MCNP6.2.<i>Main results</i>. Results indicate that both models provide dose rate estimates within the same order of magnitude, with the mathematical model overestimating doses to the prostate and bladder by approximately 20% compared to the unstructured mesh model. The discrepancies for the tumor and rectum were below 4%. Photons emmited from the source were defined as the primary contributors to dose to other organs, while 97.9% of the dose to the tumor was due to electrons emmited from the source.<i>Significance</i>. Our findings emphasize the importance of model selection in dosimetry, particularly the advantages of using realistic anatomical phantoms for accurate dose calculations. The study demonstrates the feasibility and effectiveness of<sup>198</sup>Au nanoparticles in achieving high dose concentrations in tumor regions while minimizing exposure to surrounding healthy tissues. Beta emissions were found to be predominantly responsible for tumor dose delivery, reinforcing the potential of<sup>198</sup>Au nanoparticles in localized radiation therapy. We advocate for using realistic body phantoms in further research to enhance reliability in dosimetry for nanobrachytherapy, as the field still lacks dedicated protocols.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification of EEG evoked in 2D and 3D virtual reality: traditional machine learning versus deep learning. 二维和三维虚拟现实中诱发的脑电图分类:传统机器学习与深度学习。
IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-11-05 DOI: 10.1088/2057-1976/ad89c5
MingLiang Zuo, BingBing Yu, Li Sui

Backgrounds. Virtual reality (VR) simulates real-life events and scenarios and is widely utilized in education, entertainment, and medicine. VR can be presented in two dimensions (2D) or three dimensions (3D), with 3D VR offering a more realistic and immersive experience. Previous research has shown that electroencephalogram (EEG) profiles induced by 3D VR differ from those of 2D VR in various aspects, including brain rhythm power, activation, and functional connectivity. However, studies focused on classifying EEG in 2D and 3D VR contexts remain limited.Methods. A 56-channel EEG was recorded while visual stimuli were presented in 2D and 3D VR. The recorded EEG signals were classified using two machine learning approaches: traditional machine learning and deep learning. In the traditional approach, features such as power spectral density (PSD) and common spatial patterns (CSP) were extracted, and three classifiers-support vector machines (SVM), K-nearest neighbors (KNN), and random forests (RF)-were used. For the deep learning approach, a specialized convolutional neural network, EEGNet, was employed. The classification performance of these methods was then compared.Results. In terms of accuracy, precision, recall, and F1-score, the deep learning method outperformed traditional machine learning approaches. Specifically, the classification accuracy using the EEGNet deep learning model reached up to 97.86%.Conclusions. EEGNet-based deep learning significantly outperforms conventional machine learning methods in classifying EEG signals induced by 2D and 3D VR. Given EEGNet's design for EEG-based brain-computer interfaces (BCI), this superior classification performance suggests that it can enhance the application of 3D VR in BCI systems.

背景:虚拟现实(VR)模拟现实生活中的事件和场景,广泛应用于教育、娱乐和医疗领域。VR 可以以二维或三维(2D 或 3D )的形式呈现,而 3D VR 能带来更逼真、更身临其境的体验。以往的研究发现,3D VR 诱导的脑电图(EEG)与 2D VR 的脑电图(EEG)具有不同的特征,表现在大脑节律的力量、大脑激活和大脑功能连接等多个方面。方法:记录 64 通道脑电图,同时在 2D 和 3D VR 中给予视觉刺激。对这些记录的脑电信号的分类采用了两种机器学习方法:传统方法和深度学习方法。在传统的机器学习分类中,提取了功率谱密度(PSD)和常见空间模式(CSP)的脑电图特征,并使用了支持向量机(SVM)、K-近邻(KNN)和随机森林(RF)三种分类算法。在深度学习分类中使用了专门的卷积神经网络 EEGNet。对这些分类方法的分类性能进行了比较:结果:在分类的准确度、精确度、召回率和 F1 分数这四个性能评估方面,使用深度学习方法进行的分类优于传统的机器学习方法。使用深度学习与 EEGNet 的分类准确率高达 97.86%:结论:基于 EEGNet 的深度学习可以实现二维和三维 VR 诱导脑电图的分类性能,优于传统的机器学习方法。鉴于 EEGNet 专为基于脑电图的脑机接口(BCI)而设计,因此可以预见,在二维和三维 VR 环境中,更好的脑电图分类性能将有助于三维 VR 在 BCI 中的应用。
{"title":"Classification of EEG evoked in 2D and 3D virtual reality: traditional machine learning versus deep learning.","authors":"MingLiang Zuo, BingBing Yu, Li Sui","doi":"10.1088/2057-1976/ad89c5","DOIUrl":"10.1088/2057-1976/ad89c5","url":null,"abstract":"<p><p><i>Backgrounds</i>. Virtual reality (VR) simulates real-life events and scenarios and is widely utilized in education, entertainment, and medicine. VR can be presented in two dimensions (2D) or three dimensions (3D), with 3D VR offering a more realistic and immersive experience. Previous research has shown that electroencephalogram (EEG) profiles induced by 3D VR differ from those of 2D VR in various aspects, including brain rhythm power, activation, and functional connectivity. However, studies focused on classifying EEG in 2D and 3D VR contexts remain limited.<i>Methods</i>. A 56-channel EEG was recorded while visual stimuli were presented in 2D and 3D VR. The recorded EEG signals were classified using two machine learning approaches: traditional machine learning and deep learning. In the traditional approach, features such as power spectral density (PSD) and common spatial patterns (CSP) were extracted, and three classifiers-support vector machines (SVM), K-nearest neighbors (KNN), and random forests (RF)-were used. For the deep learning approach, a specialized convolutional neural network, EEGNet, was employed. The classification performance of these methods was then compared.<i>Results</i>. In terms of accuracy, precision, recall, and F1-score, the deep learning method outperformed traditional machine learning approaches. Specifically, the classification accuracy using the EEGNet deep learning model reached up to 97.86%.<i>Conclusions</i>. EEGNet-based deep learning significantly outperforms conventional machine learning methods in classifying EEG signals induced by 2D and 3D VR. Given EEGNet's design for EEG-based brain-computer interfaces (BCI), this superior classification performance suggests that it can enhance the application of 3D VR in BCI systems.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An improved AlexNet deep learning method for limb tumor cancer prediction and detection. 一种用于肢体肿瘤癌症预测和检测的改进型 AlexNet 深度学习方法。
IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-11-05 DOI: 10.1088/2057-1976/ad89c7
Arunachalam Perumal, Janakiraman Nithiyanantham, Jamuna Nagaraj

Synovial sarcoma (SS) is a rare cancer that forms in soft tissues around joints, and early detection is crucial for improving patient survival rates. This study introduces a convolutional neural network (CNN) using an improved AlexNet deep learning classifier to improve SS diagnosis from digital pathological images. Key preprocessing steps, such as dataset augmentation and noise reduction techniques, such as adaptive median filtering (AMF) and histogram equalization were employed to improve image quality. Feature extraction was conducted using the Gray-Level Co-occurrence Matrix (GLCM) and Improved Linear Discriminant Analysis (ILDA), while image segmentation targeted spindle-shaped cells using repetitive phase-level set segmentation (RPLSS). The improved AlexNet architecture features additional convolutional layers and resized input images, leading to superior performance. The model demonstrated significant improvements in accuracy, sensitivity, specificity, and AUC, outperforming existing methods by 3%, 1.70%, 6.08%, and 8.86%, respectively, in predicting SS.

滑膜肉瘤(SS)是一种在关节周围软组织中形成的罕见癌症,早期发现对提高患者生存率至关重要。本研究利用改进的 AlexNet 深度学习分类器引入了卷积神经网络(CNN),以提高数字病理图像对滑膜肉瘤的诊断率。研究采用了数据集扩增、自适应中值滤波(AMF)和直方图均衡化等降噪技术等关键预处理步骤来提高图像质量。特征提取采用灰度共现矩阵(GLCM)和改进线性判别分析(ILDA),图像分割采用重复相位级集分割(RPLSS),以纺锤形细胞为目标。改进后的 AlexNet 架构增加了卷积层,并调整了输入图像的大小,从而实现了更优越的性能。该模型在准确性、灵敏度、特异性和 AUC 方面都有显著提高,在预测 SS 方面分别比现有方法高出 3%、1.70%、6.08% 和 8.86%。
{"title":"An improved AlexNet deep learning method for limb tumor cancer prediction and detection.","authors":"Arunachalam Perumal, Janakiraman Nithiyanantham, Jamuna Nagaraj","doi":"10.1088/2057-1976/ad89c7","DOIUrl":"10.1088/2057-1976/ad89c7","url":null,"abstract":"<p><p>Synovial sarcoma (SS) is a rare cancer that forms in soft tissues around joints, and early detection is crucial for improving patient survival rates. This study introduces a convolutional neural network (CNN) using an improved AlexNet deep learning classifier to improve SS diagnosis from digital pathological images. Key preprocessing steps, such as dataset augmentation and noise reduction techniques, such as adaptive median filtering (AMF) and histogram equalization were employed to improve image quality. Feature extraction was conducted using the Gray-Level Co-occurrence Matrix (GLCM) and Improved Linear Discriminant Analysis (ILDA), while image segmentation targeted spindle-shaped cells using repetitive phase-level set segmentation (RPLSS). The improved AlexNet architecture features additional convolutional layers and resized input images, leading to superior performance. The model demonstrated significant improvements in accuracy, sensitivity, specificity, and AUC, outperforming existing methods by 3%, 1.70%, 6.08%, and 8.86%, respectively, in predicting SS.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MCI Net: Mamba- Convolutional lightweight self-attention medical image segmentation network. MCI net:mamba--卷积轻量级自关注医学图像分割网络。
IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-11-05 DOI: 10.1088/2057-1976/ad8acb
Yelin Zhang, Guanglei Wang, Pengchong Ma, Yan Li

With the development of deep learning in the field of medical image segmentation, various network segmentation models have been developed. Currently, the most common network models in medical image segmentation can be roughly categorized into pure convolutional networks, Transformer-based networks, and networks combining convolution and Transformer architectures. However, when dealing with complex variations and irregular shapes in medical images, existing networks face issues such as incomplete information extraction, large model parameter sizes, high computational complexity, and long processing times. In contrast, models with lower parameter counts and complexity can efficiently, quickly, and accurately identify lesion areas, significantly reducing diagnosis time and providing valuable time for subsequent treatments. Therefore, this paper proposes a lightweight network named MCI-Net, with only 5.48 M parameters, a computational complexity of 4.41, and a time complexity of just 0.263. By performing linear modeling on sequences, MCI-Net permanently marks effective features and filters out irrelevant information. It efficiently captures local-global information with a small number of channels, reduces the number of parameters, and utilizes attention calculations with exchange value mapping. This achieves model lightweighting and enables thorough interaction of local-global information within the computation, establishing an overall semantic relationship of local-global information. To verify the effectiveness of the MCI-Net network, we conducted comparative experiments with other advanced representative networks on five public datasets: X-ray, Lung, ISIC-2016, ISIC-2018, and capsule endoscopy and gastrointestinal segmentation. We also performed ablation experiments on the first four datasets. The experimental results outperformed the other compared networks, confirming the effectiveness of MCI-Net. This research provides a valuable reference for achieving lightweight, accurate, and high-performance medical image segmentation network models.

随着深度学习在医学图像分割领域的发展,各种网络分割模型应运而生。目前,医学图像分割领域最常见的网络模型大致可分为纯卷积网络、基于变换器的网络以及卷积与变换器架构相结合的网络。然而,在处理医学图像中的复杂变化和不规则形状时,现有网络面临着信息提取不完整、模型参数量大、计算复杂度高和处理时间长等问题。相比之下,参数数和复杂度较低的模型可以高效、快速、准确地识别病变区域,大大缩短诊断时间,为后续治疗提供宝贵的时间。因此,本文提出了一种名为 MCI-Net 的轻量级网络,其参数数仅为 548 万,计算复杂度为 4.41,时间复杂度仅为 0.263。通过对序列进行线性建模,MCI-Net 可永久标记有效特征并过滤掉无关信息。它通过少量通道有效捕捉局部-全局信息,减少参数数量,并利用交换值映射进行注意力计算。这就实现了模型的轻量化,并在计算过程中实现了本地-全局信息的全面互动,建立了本地-全局信息的整体语义关系。为了验证 MCI-Net 网络的有效性,我们在五个公共数据集上与其他先进的代表性网络进行了对比实验:X射线、肺部、ISIC-2016、ISIC-2018以及胶囊内窥镜和胃肠道分割。我们还在前四个数据集上进行了消融实验。实验结果优于其他比较网络,证实了 MCI-Net 的有效性。这项研究为实现轻量级、精确和高性能的医学图像分割网络模型提供了宝贵的参考。
{"title":"MCI Net: Mamba- Convolutional lightweight self-attention medical image segmentation network.","authors":"Yelin Zhang, Guanglei Wang, Pengchong Ma, Yan Li","doi":"10.1088/2057-1976/ad8acb","DOIUrl":"10.1088/2057-1976/ad8acb","url":null,"abstract":"<p><p>With the development of deep learning in the field of medical image segmentation, various network segmentation models have been developed. Currently, the most common network models in medical image segmentation can be roughly categorized into pure convolutional networks, Transformer-based networks, and networks combining convolution and Transformer architectures. However, when dealing with complex variations and irregular shapes in medical images, existing networks face issues such as incomplete information extraction, large model parameter sizes, high computational complexity, and long processing times. In contrast, models with lower parameter counts and complexity can efficiently, quickly, and accurately identify lesion areas, significantly reducing diagnosis time and providing valuable time for subsequent treatments. Therefore, this paper proposes a lightweight network named MCI-Net, with only 5.48 M parameters, a computational complexity of 4.41, and a time complexity of just 0.263. By performing linear modeling on sequences, MCI-Net permanently marks effective features and filters out irrelevant information. It efficiently captures local-global information with a small number of channels, reduces the number of parameters, and utilizes attention calculations with exchange value mapping. This achieves model lightweighting and enables thorough interaction of local-global information within the computation, establishing an overall semantic relationship of local-global information. To verify the effectiveness of the MCI-Net network, we conducted comparative experiments with other advanced representative networks on five public datasets: X-ray, Lung, ISIC-2016, ISIC-2018, and capsule endoscopy and gastrointestinal segmentation. We also performed ablation experiments on the first four datasets. The experimental results outperformed the other compared networks, confirming the effectiveness of MCI-Net. This research provides a valuable reference for achieving lightweight, accurate, and high-performance medical image segmentation network models.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pioneering diabetes screening tool: machine learning driven optical vascular signal analysis. 开创性的糖尿病筛查工具:机器学习驱动的光学血管信号分析。
IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-11-01 DOI: 10.1088/2057-1976/ad89c8
Sameera Fathimal M, J S Kumar, A Jeya Prabha, Jothiraj Selvaraj, Angeline Kirubha S P

The escalating prevalence of diabetes mellitus underscores the critical need for non-invasive screening tools capable of early disease detection. Present diagnostic techniques depend on invasive procedures, which highlights the need for advancement of non-invasive alternatives for initial disease detection. Machine learning in integration with the optical sensing technology can effectively analyze the signal patterns associated with diabetes. The objective of this research is to develop and evaluate a non-invasive optical-based method combined with machine learning algorithms for the classification of individuals into normal, prediabetic, and diabetic categories. A novel device was engineered to capture real-time optical vascular signals from participants representing the three glycemic states. The signals were then subjected to quality assessment and preprocessing to ensure data reliability. Subsequently, feature extraction was performed using time-domain analysis and wavelet scattering techniques to derive meaningful characteristics from the optical signals. The extracted features were subsequently employed to train and validate a suite of machine learning algorithms. An ensemble bagged trees classifier with wavelet scattering features and random forest classifier with time-domain features demonstrated superior performance, achieving an overall accuracy of 86.6% and 80.0% in differentiating between normal, prediabetic, and diabetic individuals based on the optical vascular signals. The proposed non-invasive optical-based approach, coupled with advanced machine learning techniques, holds promise as a potential screening tool for diabetes mellitus. The classification accuracy achieved in this study warrants further investigation and validation in larger and more diverse populations.

糖尿病发病率的不断攀升凸显了对能够早期发现疾病的非侵入性筛查工具的迫切需要。目前的诊断技术依赖于侵入性程序,这凸显了对非侵入性替代方法进行初步疾病检测的需求。将机器学习与光学传感技术相结合,可以有效分析与糖尿病相关的信号模式。这项研究的目的是开发和评估一种基于光学的无创方法,并结合机器学习算法,将人分为正常、糖尿病前期和糖尿病三个类别。研究人员设计了一种新型设备,用于捕捉代表三种血糖状态的参与者的实时光学血管信号。然后对信号进行质量评估和预处理,以确保数据的可靠性。随后,利用时域分析和小波散射技术进行特征提取,从光学信号中提取有意义的特征。提取的特征随后用于训练和验证一套机器学习算法。采用小波散射特征的集合袋装树分类器和采用时域特征的随机森林分类器表现出卓越的性能,在根据光学血管信号区分正常人、糖尿病前期和糖尿病人方面的总体准确率分别达到了 86.6% 和 80.0%。所提出的基于光学的无创方法与先进的机器学习技术相结合,有望成为一种潜在的糖尿病筛查工具。这项研究达到的分类准确性值得在更大范围和更多样化的人群中进一步研究和验证。
{"title":"Pioneering diabetes screening tool: machine learning driven optical vascular signal analysis.","authors":"Sameera Fathimal M, J S Kumar, A Jeya Prabha, Jothiraj Selvaraj, Angeline Kirubha S P","doi":"10.1088/2057-1976/ad89c8","DOIUrl":"10.1088/2057-1976/ad89c8","url":null,"abstract":"<p><p>The escalating prevalence of diabetes mellitus underscores the critical need for non-invasive screening tools capable of early disease detection. Present diagnostic techniques depend on invasive procedures, which highlights the need for advancement of non-invasive alternatives for initial disease detection. Machine learning in integration with the optical sensing technology can effectively analyze the signal patterns associated with diabetes. The objective of this research is to develop and evaluate a non-invasive optical-based method combined with machine learning algorithms for the classification of individuals into normal, prediabetic, and diabetic categories. A novel device was engineered to capture real-time optical vascular signals from participants representing the three glycemic states. The signals were then subjected to quality assessment and preprocessing to ensure data reliability. Subsequently, feature extraction was performed using time-domain analysis and wavelet scattering techniques to derive meaningful characteristics from the optical signals. The extracted features were subsequently employed to train and validate a suite of machine learning algorithms. An ensemble bagged trees classifier with wavelet scattering features and random forest classifier with time-domain features demonstrated superior performance, achieving an overall accuracy of 86.6% and 80.0% in differentiating between normal, prediabetic, and diabetic individuals based on the optical vascular signals. The proposed non-invasive optical-based approach, coupled with advanced machine learning techniques, holds promise as a potential screening tool for diabetes mellitus. The classification accuracy achieved in this study warrants further investigation and validation in larger and more diverse populations.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cascaded redundant convolutional encoder-decoder network improved apnea detection performance using tracheal sounds in post anesthesia care unit patients. 级联冗余卷积编码器-解码器网络利用气管声改善了麻醉后护理病房患者呼吸暂停检测性能。
IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-11-01 DOI: 10.1088/2057-1976/ad89c6
Erpeng Zhang, Xiuzhu Jia, Yanan Wu, Jing Liu, Lu Yu

Objective. Methods of detecting apnea based on acoustic features can be prone to misdiagnosed and missed diagnoses due to the influence of noise. The aim of this paper is to improve the performance of apnea detection algorithms in the Post Anesthesia Care Unit (PACU) using a denoising method that processes tracheal sounds without the need for separate background noise.Approach. Tracheal sound data from laboratory subjects was collected using a microphone. Record a segment of clinical background noise and clean tracheal sound data to synthesize the noisy tracheal sound data according to a specified signal-to-noise ratio. Extract the frequency-domain features of the tracheal sounds using the Short Time Fourier Transform (STFT) and input the Cascaded Redundant Convolutional Encoder-Decoder network (CR-CED) network for training. Patients' tracheal sound data collected in the PACU were then fed into the CR-CED network as test data and inversely transformed by STFT to obtain denoised tracheal sounds. The apnea detection algorithm was used to detect the tracheal sound after denoising.Results. Apnea events were correctly detected 207 times and normal respiratory events 11,305 times using tracheal sounds denoised by the CR-CED network. The sensitivity and specificity of apnea detection were 88% and 98.6%, respectively.Significance. The apnea detection results of tracheal sounds after CR-CED network denoising in the PACU are accurate and reliable. Tracheal sound can be denoised using this approach without separate background noise. It effectively improves the applicability of the tracheal sound denoising method in the medical environment while ensuring its correctness.

目的: 基于声学特征的呼吸暂停检测方法容易因噪声影响而造成误诊和漏诊。本文旨在使用去噪方法提高麻醉后护理病房(PACU)中呼吸暂停检测算法的性能,该方法无需单独的背景噪声即可处理气管声。记录一段临床背景噪声和干净的气管声音数据,根据指定的信噪比合成有噪声的气管声音数据。使用短时傅里叶变换(STFT)提取气管声音的频域特征,并输入级联冗余卷积编码器-解码器网络(CR-CED)进行训练。然后将在 PACU 收集到的患者气管声数据作为测试数据输入 CR-CED 网络,并通过 STFT 进行反变换,以获得去噪气管声。结果: CR-CED 网络对气管声进行去噪后,正确检测到呼吸暂停事件 207 次,正常呼吸事件 11,305 次。呼吸暂停检测的灵敏度和特异度分别为 88% 和 98.6%。 意义: 在 PACU 中对气管声进行 CR-CED 网络去噪后的呼吸暂停检测结果准确可靠。使用这种方法对气管声进行去噪,无需单独的背景噪声。它有效提高了气管声去噪方法在医疗环境中的适用性,同时确保了其正确性。
{"title":"Cascaded redundant convolutional encoder-decoder network improved apnea detection performance using tracheal sounds in post anesthesia care unit patients.","authors":"Erpeng Zhang, Xiuzhu Jia, Yanan Wu, Jing Liu, Lu Yu","doi":"10.1088/2057-1976/ad89c6","DOIUrl":"10.1088/2057-1976/ad89c6","url":null,"abstract":"<p><p><i>Objective</i>. Methods of detecting apnea based on acoustic features can be prone to misdiagnosed and missed diagnoses due to the influence of noise. The aim of this paper is to improve the performance of apnea detection algorithms in the Post Anesthesia Care Unit (PACU) using a denoising method that processes tracheal sounds without the need for separate background noise.<i>Approach</i>. Tracheal sound data from laboratory subjects was collected using a microphone. Record a segment of clinical background noise and clean tracheal sound data to synthesize the noisy tracheal sound data according to a specified signal-to-noise ratio. Extract the frequency-domain features of the tracheal sounds using the Short Time Fourier Transform (STFT) and input the Cascaded Redundant Convolutional Encoder-Decoder network (CR-CED) network for training. Patients' tracheal sound data collected in the PACU were then fed into the CR-CED network as test data and inversely transformed by STFT to obtain denoised tracheal sounds. The apnea detection algorithm was used to detect the tracheal sound after denoising.<i>Results</i>. Apnea events were correctly detected 207 times and normal respiratory events 11,305 times using tracheal sounds denoised by the CR-CED network. The sensitivity and specificity of apnea detection were 88% and 98.6%, respectively.<i>Significance</i>. The apnea detection results of tracheal sounds after CR-CED network denoising in the PACU are accurate and reliable. Tracheal sound can be denoised using this approach without separate background noise. It effectively improves the applicability of the tracheal sound denoising method in the medical environment while ensuring its correctness.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of anticipatory and compensatory postural adjustment in women of different age groups using surface electromyography. 利用表面肌电图分析不同年龄组妇女的预期和补偿性姿势调整。
IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-10-30 DOI: 10.1088/2057-1976/ad8ce2
Luan de Almeida Moura, Terigi Augusto Scardovelli, André Roberto Fernandes da Silva, Mariana da Palma Valério, Higor Barreto Campos, Matheus Leonardo Alves de Camargo, Isabella Titico Moraes, Silvia Cristina Martini, Silvia Regina Matos da Silva Boschi, Tabajara de Oliveira Gonzalez, Alessandro Pereira da Silva

Postural balance is crucial for daily activities, relying on the coordination of sensory systems. Balance impairment, common in the elderly, is a leading cause of mortality in this population. To analyze balance, methods like postural adjustment analysis using electromyography (EMG) have been developed. With age, women tend to experience reduced mobility and greater muscle loss compared to men. However, few studies have focused on postural adjustments in women of different ages using EMG of the lower limbs during laterolateral and anteroposterior movements. This gap could reveal a decrease in muscle activation time with aging, as activation time is vital for postural adjustments. This study aimed to analyze muscle activation times in women of different ages during postural adjustments. Thirty women were divided into two groups: young and older women. A controlled biaxial force platform was used for static and dynamic balance tests while recording lower limb muscle activity using EMG. Data analysis focused on identifying muscle activation points and analyzing postural adjustment times. Results showed significant differences in muscle activation times between the two groups across various muscles and platform tilt conditions. Younger women had longer muscle activation times than older women, particularly during laterolateral platform inclinations. In anteroposterior movements, older women exhibited longer activation times compared to their laterolateral performance, with fewer differences between the groups. Overall, older women had shorter muscle activation times than younger women, suggesting a potential indicator of imbalance and increased fall risk.

姿势平衡对日常活动至关重要,它依赖于感觉系统的协调。平衡障碍常见于老年人,是导致老年人死亡的主要原因。为了分析平衡,人们开发了使用肌电图(EMG)进行姿势调整分析等方法。与男性相比,随着年龄的增长,女性往往会出现活动能力下降和肌肉流失的情况。然而,很少有研究关注不同年龄女性在后外侧和前后侧运动时使用下肢肌电图进行姿势调整的情况。这一差距可能揭示了随着年龄增长肌肉激活时间的减少,因为激活时间对姿势调整至关重要。本研究旨在分析不同年龄女性在体位调整时的肌肉激活时间。30 名女性被分为两组:年轻女性和老年女性。使用受控双轴力平台进行静态和动态平衡测试,同时使用肌电图记录下肢肌肉活动。数据分析的重点是确定肌肉激活点和分析姿势调整时间。结果显示,在不同肌肉和平台倾斜条件下,两组之间的肌肉激活时间存在明显差异。年轻女性的肌肉激活时间长于年长女性,尤其是在平台后外侧倾斜时。在前倾运动中,老年妇女的激活时间长于后外侧运动,但两组之间的差异较小。总体而言,老年妇女的肌肉激活时间比年轻妇女短,这表明存在不平衡和增加跌倒风险的潜在指标。
{"title":"Analysis of anticipatory and compensatory postural adjustment in women of different age groups using surface electromyography.","authors":"Luan de Almeida Moura, Terigi Augusto Scardovelli, André Roberto Fernandes da Silva, Mariana da Palma Valério, Higor Barreto Campos, Matheus Leonardo Alves de Camargo, Isabella Titico Moraes, Silvia Cristina Martini, Silvia Regina Matos da Silva Boschi, Tabajara de Oliveira Gonzalez, Alessandro Pereira da Silva","doi":"10.1088/2057-1976/ad8ce2","DOIUrl":"https://doi.org/10.1088/2057-1976/ad8ce2","url":null,"abstract":"<p><p>Postural balance is crucial for daily activities, relying on the coordination of sensory systems. Balance impairment, common in the elderly, is a leading cause of mortality in this population. To analyze balance, methods like postural adjustment analysis using electromyography (EMG) have been developed. With age, women tend to experience reduced mobility and greater muscle loss compared to men. However, few studies have focused on postural adjustments in women of different ages using EMG of the lower limbs during laterolateral and anteroposterior movements. This gap could reveal a decrease in muscle activation time with aging, as activation time is vital for postural adjustments. This study aimed to analyze muscle activation times in women of different ages during postural adjustments. Thirty women were divided into two groups: young and older women. A controlled biaxial force platform was used for static and dynamic balance tests while recording lower limb muscle activity using EMG. Data analysis focused on identifying muscle activation points and analyzing postural adjustment times. Results showed significant differences in muscle activation times between the two groups across various muscles and platform tilt conditions. Younger women had longer muscle activation times than older women, particularly during laterolateral platform inclinations. In anteroposterior movements, older women exhibited longer activation times compared to their laterolateral performance, with fewer differences between the groups. Overall, older women had shorter muscle activation times than younger women, suggesting a potential indicator of imbalance and increased fall risk.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biomedical Physics & Engineering Express
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1