Low-frequency sonophoresis has emerged as a promising minimally invasive transdermal drug delivery method. However, effectively inducing cavitation on the skin surface with a compact, low-frequency ultrasound transducer poses a significant challenge. This paper presents a modified design of a low-frequency ultrasound transducer capable of generating ultrasound cavitation on the skin surfaces. The transducer comprises a piezoelectric ceramic disk and a bowl-shaped acoustic resonator. A conical slit structure was incorporated into the modified transducer design to amplify vibration displacement and enhance the maximum sound pressure. The FEM-based simulation results confirmed that the maximum sound pressure at the resonance frequency of 78 kHz was increased by 1.9 times that of the previous design. Ultrasound cavitation could be experimentally observed on the gel surface. Moreover, 3 min of ultrasound treatment significantly improved the caffeine permeability across an artificial membrane. These results demonstrated that this transducer holds promise for enhancing drug permeation by generating ultrasound cavitation on the skin surface.
Echocardiography is one the most commonly used imaging modalities for the diagnosis of congenital heart disease. Echocardiographic image analysis is crucial to obtaining accurate cardiac anatomy information. Semantic segmentation models can be used to precisely delimit the borders of the left ventricle, and allow an accurate and automatic identification of the region of interest, which can be extremely useful for cardiologists. In the field of computer vision, convolutional neural network (CNN) architectures remain dominant. Existing CNN approaches have proved highly efficient for the segmentation of various medical images over the past decade. However, these solutions usually struggle to capture long-range dependencies, especially when it comes to images with objects of different scales and complex structures. In this study, we present an efficient method for semantic segmentation of echocardiographic images that overcomes these challenges by leveraging the self-attention mechanism of the Transformer architecture. The proposed solution extracts long-range dependencies and efficiently processes objects at different scales, improving performance in a variety of tasks. We introduce Shifted Windows Transformer models (Swin Transformers), which encode both the content of anatomical structures and the relationship between them. Our solution combines the Swin Transformer and U-Net architectures, producing a U-shaped variant. The validation of the proposed method is performed with the EchoNet-Dynamic dataset used to train our model. The results show an accuracy of 0.97, a Dice coefficient of 0.87, and an Intersection over union (IoU) of 0.78. Swin Transformer models are promising for semantically segmenting echocardiographic images and may help assist cardiologists in automatically analyzing and measuring complex echocardiographic images.
Some pathologies such as cancer and dementia require multiple imaging modalities to fully diagnose and assess the extent of the disease. Magnetic resonance imaging offers this kind of polyvalence, but examinations take time and can require contrast agent injection. The flexible synthesis of these imaging sequences based on the available ones for a given patient could help reduce scan times or circumvent the need for contrast agent injection. In this work, we propose a deep learning architecture that can perform the synthesis of all missing imaging sequences from any subset of available images. The network is trained adversarially, with the generator consisting of parallel 3D U-Net encoders and decoders that optimally combines their multi-resolution representations with a fusion operation learned by an attention network trained conjointly with the generator network. We compare our synthesis performance with 3D networks using other types of fusion and a comparable number of trainable parameters, such as the mean/variance fusion. In all synthesis scenarios except one, the synthesis performance of the network using attention-guided fusion was better than the other fusion schemes. We also inspect the encoded representations and the attention network outputs to gain insights into the synthesis process, and uncover desirable behaviors such as prioritization of specific modalities, flexible construction of the representation when important modalities are missing, and modalities being selected in regions where they carry sequence-specific information. This work suggests that a better construction of the latent representation space in hetero-modal networks can be achieved by using an attention network.
Hand Movement Recognition (HMR) with sEMG is crucial for artificial hand prostheses. HMR performance mostly depends on the feature information that is fed to the classifiers. However, sEMG often captures noise like power line interference (PLI) and motion artifacts. This may extract redundant and insignificant feature information, which can degrade HMR performance and increase computational complexity. This study aims to address these issues by proposing a novel procedure for automatically removing PLI and motion artifacts from experimental sEMG signals. This will make it possible to extract better features from the signal and improve the categorization of various hand movements. Empirical mode decomposition and energy entropy thresholding are utilized to select relevant mode components for artifact removal. Time domain features are then used to train classifiers (kNN, LDA, SVM) for hand movement categorization, achieving average accuracies of 92.36%, 93.63%, and 98.12%, respectively, across subjects. Additionally, muscle contraction efforts are classified into low, medium, and high categories using this technique. Validation is performed on data from ten subjects performing eight hand movement classes and three muscle contraction efforts with three surface electrode channels. Results indicate that the proposed preprocessing improves average accuracy by 9.55% with the SVM classifier, significantly reducing computational time.
18F-Fluoromisonidazole (18F-FMISO) is a highly promising positron emission tomography radiopharmaceutical for identifying hypoxic regions in solid tumors. This research employs spatiotemporal multi-scale mathematical modeling to explore how different levels of angiogenesis influence the transport of radiopharmaceuticals within tumors. In this study, two tumor geometries with heterogeneous and uniform distributions of capillary networks were employed to incorporate varying degrees of microvascular density. The synthetic image of the heterogeneous and vascularized tumor was generated by simulating the angiogenesis process. The proposed multi-scale spatiotemporal model accounts for intricate physiological and biochemical factors within the tumor microenvironment, such as the transvascular transport of the radiopharmaceutical agent, its movement into the interstitial space by diffusion and convection mechanisms, and ultimately its uptake by tumor cells. Results showed that both quantitative and semi-quantitative metrics of18F-FMISO uptake differ spatially and temporally at different stages during tumor growth. The presence of a high microvascular density in uniformly vascularized tumor increases cellular uptake, as it allows for more efficient release and rapid distribution of radiopharmaceutical molecules. This results in enhanced uptake compared to the heterogeneous vascularized tumor. In both heterogeneous and uniform distribution of microvessels in tumors, the diffusion transport mechanism has a more pronounced than convection. The findings of this study shed light on the transport phenomena behind18F-FMISO radiopharmaceutical distribution and its delivery in the tumor microenvironment, aiding oncologists in their routine decision-making processes.