Pub Date : 2025-12-27DOI: 10.3390/biomimetics11010014
S M Mizanoor Rahman
We presented a biomimetic approach to designing robot-to-human handover of objects in a collaborative assembly task. We developed a human-robot hybrid cell where a human and a robot collaborated with each other to perform the assembly operations of a product in a flexible manufacturing setup. Firstly, we investigated human psychology and biomechanics (kinetics and kinematics) for human-to-robot handover of an object in the human-robot collaborative set-up in three separate experimental conditions: (i) human possessed high trust in the robot, (ii) human possessed moderate trust in the robot, and (iii) human possessed low trust in the robot. The results showed that human psychology was significantly impacted by human trust in the robot, which also impacted the biomechanics of human-to-robot handover, i.e., human hand movement slowed down, the angle between human hand and robot arm increased (formed a braced handover configuration), and human grip forces increased if human trust in the robot decreased, and vice versa. Secondly, being inspired by those empirical results related to human psychology and biomechanics, we proposed a novel robot-to-human object handover mechanism (strategy). According to the novel handover mechanism, the robot varied its handover configurations and motions through kinematic redundancy with the aim of reducing potential impulse forces on the human body through the object during the handover when robot trust in the human was low. We implemented the proposed robot-to-human handover mechanism in the human-robot collaborative assembly task in the hybrid cell. The experimental evaluation results showed significant improvements in human-robot interaction (HRI) in terms of transparency, naturalness, engagement, cooperation, cognitive workload, and human trust in the robot, and in overall performance in terms of handover safety, handover success rate, and assembly efficiency. The results can help design and develop human-robot handover mechanisms for human-robot collaborative tasks in various applications such as industrial manufacturing and manipulation, medical surgery, warehouse, transport, logistics, construction, machine shops, goods delivery, etc.
{"title":"Biomimetic Approach to Designing Trust-Based Robot-to-Human Object Handover in a Collaborative Assembly Task.","authors":"S M Mizanoor Rahman","doi":"10.3390/biomimetics11010014","DOIUrl":"10.3390/biomimetics11010014","url":null,"abstract":"<p><p>We presented a biomimetic approach to designing robot-to-human handover of objects in a collaborative assembly task. We developed a human-robot hybrid cell where a human and a robot collaborated with each other to perform the assembly operations of a product in a flexible manufacturing setup. Firstly, we investigated human psychology and biomechanics (kinetics and kinematics) for human-to-robot handover of an object in the human-robot collaborative set-up in three separate experimental conditions: (i) human possessed high trust in the robot, (ii) human possessed moderate trust in the robot, and (iii) human possessed low trust in the robot. The results showed that human psychology was significantly impacted by human trust in the robot, which also impacted the biomechanics of human-to-robot handover, i.e., human hand movement slowed down, the angle between human hand and robot arm increased (formed a braced handover configuration), and human grip forces increased if human trust in the robot decreased, and vice versa. Secondly, being inspired by those empirical results related to human psychology and biomechanics, we proposed a novel robot-to-human object handover mechanism (strategy). According to the novel handover mechanism, the robot varied its handover configurations and motions through kinematic redundancy with the aim of reducing potential impulse forces on the human body through the object during the handover when robot trust in the human was low. We implemented the proposed robot-to-human handover mechanism in the human-robot collaborative assembly task in the hybrid cell. The experimental evaluation results showed significant improvements in human-robot interaction (HRI) in terms of transparency, naturalness, engagement, cooperation, cognitive workload, and human trust in the robot, and in overall performance in terms of handover safety, handover success rate, and assembly efficiency. The results can help design and develop human-robot handover mechanisms for human-robot collaborative tasks in various applications such as industrial manufacturing and manipulation, medical surgery, warehouse, transport, logistics, construction, machine shops, goods delivery, etc.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"11 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12838840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146050036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-27DOI: 10.3390/biomimetics11010013
Le Minh Triet, Nguyen Truong Thinh
Bio-cybernetic organisms combine biological locomotion with electronic control but face significant challenges regarding individual variability and stimulus habituation. This study introduces an Adaptive Neuro-Fuzzy Inference System (ANFIS) designed to dynamically calibrate to individual Gromphadorhina portentosa specimens. Using a miniaturized neural controller, we compared ANFIS's performance against natural behavior and non-adaptive control methods. Results demonstrate ANFIS's superiority: obstacle navigation efficiency reached 81% (compared to 42% for non-adaptive methods), and effective behavioral modulation was sustained for 47 min (versus 26 min). Furthermore, the system achieved 73% target acquisition in complex terrain and maintained stimulus responsiveness 3.5-fold longer through sophisticated habituation compensation. Biocompatibility assessments confirmed interface functionality over 14-day periods. This research establishes foundational benchmarks for arthropod bio-cybernetics, demonstrating that adaptive neuro-fuzzy architectures significantly outperform conventional methods, enabling robust bio-hybrid platforms suitable for confined-space search-and-rescue operations.
{"title":"Mitigating Neural Habituation in Insect Bio-Bots: A Dual-Timescale Adaptive Control Approach.","authors":"Le Minh Triet, Nguyen Truong Thinh","doi":"10.3390/biomimetics11010013","DOIUrl":"10.3390/biomimetics11010013","url":null,"abstract":"<p><p>Bio-cybernetic organisms combine biological locomotion with electronic control but face significant challenges regarding individual variability and stimulus habituation. This study introduces an Adaptive Neuro-Fuzzy Inference System (ANFIS) designed to dynamically calibrate to individual <i>Gromphadorhina portentosa</i> specimens. Using a miniaturized neural controller, we compared ANFIS's performance against natural behavior and non-adaptive control methods. Results demonstrate ANFIS's superiority: obstacle navigation efficiency reached 81% (compared to 42% for non-adaptive methods), and effective behavioral modulation was sustained for 47 min (versus 26 min). Furthermore, the system achieved 73% target acquisition in complex terrain and maintained stimulus responsiveness 3.5-fold longer through sophisticated habituation compensation. Biocompatibility assessments confirmed interface functionality over 14-day periods. This research establishes foundational benchmarks for arthropod bio-cybernetics, demonstrating that adaptive neuro-fuzzy architectures significantly outperform conventional methods, enabling robust bio-hybrid platforms suitable for confined-space search-and-rescue operations.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"11 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12838690/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146050062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-27DOI: 10.3390/biomimetics11010012
Sheikh Md Mosharof Hossen, Md Abdul Khaleque, Min-Su Lim, Jin-Kyu Kang, Do-Kyun Kim, Hwan-Hee Lee, Young-Yul Kim
Bone regeneration remains difficult due to the complex bone microenvironment and the limited healing capacity of large defects. Biomimetic strategies offer promising solutions by using advanced 3D scaffolds guided by natural tissue cues. Recent advances in additive manufacturing, nanotechnology, and tissue engineering now allow the fabrication of hierarchical scaffolds that closely mimic native bone. Smart scaffold systems combine materials with biochemical and mechanical signals. These features improve vascularization, enhance tissue integration, and support better regenerative outcomes. Bio-inspired materials also help connect inert implants with living tissues by promoting vascular network formation and improving cell communication. Multiscale design approaches recreate bone nano- to macro-level structure and support both osteogenic activity and immune regulation. Intelligent and adaptive scaffolds are being developed to respond to physiological changes and enable personalized bone repair. This review discusses the current landscape of biomimetic scaffold design, fabrication techniques, material strategies, biological mechanisms, and translational considerations shaping next-generation bone regeneration technologies. Future directions focus on sustainable, clinically translatable biomimetic systems that can integrate with digital health tools for improved treatment planning.
{"title":"Biomimetic Strategies for Bone Regeneration: Smart Scaffolds and Multiscale Cues.","authors":"Sheikh Md Mosharof Hossen, Md Abdul Khaleque, Min-Su Lim, Jin-Kyu Kang, Do-Kyun Kim, Hwan-Hee Lee, Young-Yul Kim","doi":"10.3390/biomimetics11010012","DOIUrl":"10.3390/biomimetics11010012","url":null,"abstract":"<p><p>Bone regeneration remains difficult due to the complex bone microenvironment and the limited healing capacity of large defects. Biomimetic strategies offer promising solutions by using advanced 3D scaffolds guided by natural tissue cues. Recent advances in additive manufacturing, nanotechnology, and tissue engineering now allow the fabrication of hierarchical scaffolds that closely mimic native bone. Smart scaffold systems combine materials with biochemical and mechanical signals. These features improve vascularization, enhance tissue integration, and support better regenerative outcomes. Bio-inspired materials also help connect inert implants with living tissues by promoting vascular network formation and improving cell communication. Multiscale design approaches recreate bone nano- to macro-level structure and support both osteogenic activity and immune regulation. Intelligent and adaptive scaffolds are being developed to respond to physiological changes and enable personalized bone repair. This review discusses the current landscape of biomimetic scaffold design, fabrication techniques, material strategies, biological mechanisms, and translational considerations shaping next-generation bone regeneration technologies. Future directions focus on sustainable, clinically translatable biomimetic systems that can integrate with digital health tools for improved treatment planning.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"11 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12838871/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146050064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-26DOI: 10.3390/biomimetics11010011
Develyn I S Bastos, Sergio C M Gomes, Eduardo A F Dias, Pedro H F Ulhoa, Raphaele C J S Gomes, Fabiana D Marinho, Rafhael M Andrade
Stroke is a leading cause of disability, often resulting in motor, cognitive, and language deficits, with significant impact on upper-limb function. Robotic therapy (RT) has emerged as an effective strategy, providing intensive, repetitive, and adaptable practice to optimize functional recovery. This pilot study aimed to describe and evaluate the effects of robotic rehabilitation as a complement to conventional therapy, using a biomimetic activities-of-daily-living (ADL)-based protocol, on upper-limb function in post-stroke patients. Three participants (aged 30-80 years) undergoing occupational and/or physiotherapy received individualized robotic training with a lightweight cable-driven upper-limb exoskeleton, m-FLEX™, twice a week for ten weeks (30 min per session). Movements were designed to mimic natural upper-limb actions, including elbow flexion-extension, forearm pronation-supination, tripod pinch, and functional tasks such as grasping a cup. Assessments included the Fugl-Meyer (FM) scale, the Functional Independence Measure (FIM), and device satisfaction, performed at baseline, mid-intervention, and post-intervention. Descriptive analysis of the tabulated data revealed improvements in range of motion and functional outcomes. These findings suggest that biomimetic protocol of robotic rehabilitation, when combined with conventional therapy, can enhance motor and functional recovery in post-stroke patients.
{"title":"Towards Biomimetic Robotic Rehabilitation: Pilot Study of an Upper-Limb Cable-Driven Exoskeleton in Post-Stroke Patients.","authors":"Develyn I S Bastos, Sergio C M Gomes, Eduardo A F Dias, Pedro H F Ulhoa, Raphaele C J S Gomes, Fabiana D Marinho, Rafhael M Andrade","doi":"10.3390/biomimetics11010011","DOIUrl":"10.3390/biomimetics11010011","url":null,"abstract":"<p><p>Stroke is a leading cause of disability, often resulting in motor, cognitive, and language deficits, with significant impact on upper-limb function. Robotic therapy (RT) has emerged as an effective strategy, providing intensive, repetitive, and adaptable practice to optimize functional recovery. This pilot study aimed to describe and evaluate the effects of robotic rehabilitation as a complement to conventional therapy, using a biomimetic activities-of-daily-living (ADL)-based protocol, on upper-limb function in post-stroke patients. Three participants (aged 30-80 years) undergoing occupational and/or physiotherapy received individualized robotic training with a lightweight cable-driven upper-limb exoskeleton, m-FLEX™, twice a week for ten weeks (30 min per session). Movements were designed to mimic natural upper-limb actions, including elbow flexion-extension, forearm pronation-supination, tripod pinch, and functional tasks such as grasping a cup. Assessments included the Fugl-Meyer (FM) scale, the Functional Independence Measure (FIM), and device satisfaction, performed at baseline, mid-intervention, and post-intervention. Descriptive analysis of the tabulated data revealed improvements in range of motion and functional outcomes. These findings suggest that biomimetic protocol of robotic rehabilitation, when combined with conventional therapy, can enhance motor and functional recovery in post-stroke patients.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"11 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12839029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146050136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-25DOI: 10.3390/biomimetics11010010
Broderick Crawford, Álex Paz, Ricardo Soto, Álvaro Peña Fritz, Gino Astorga, Felipe Cisternas-Caneo, Claudio Patricio Toledo Mac-Lean, Fabián Solís-Piñones, José Lara Arce, Giovanni Giachetti
Metaheuristics are a fundament pillar of Industry 4.0, as they allow for complex optimization problems to be solved by finding good solutions in a reasonable amount of computational time. One category of important problems in modern industry is that of binary problems, where decision variables can take values of zero or one. In this work, we propose a binary version of the Pufferfish optimization algorithm (BPOA), which was originally created to solve continuous problems. The binary mapping follows a two-step technique, first transforming using transfer functions and then discretizing using binarization rules. We study representative pairings of transfer functions and binarization rules, comparing our algorithm with Particle Swarm Optimization, Secretary Bird Optimization Algorithm, and Arithmetic Optimization Algorithm with identical computational budgets. To validate its correct functioning, we solved binary problems present in industry, such as the Set Covering Problem together with its Unicost variant, as well as the Knapsack Problem. The results we achieved with regard to these problems were promising and statistically validated. The tests performed on the executions indicate that many pair differences are not statistically significant when both methods are already close to the optimal level, and significance arises precisely where the descriptive gaps widen, underscoring that transfer-rule pairing is the main performance factor. BPOA is a competitive and flexible framework whose effectiveness is mainly governed by the discretization design.
{"title":"Binary Pufferfish Optimization Algorithm for Combinatorial Problems.","authors":"Broderick Crawford, Álex Paz, Ricardo Soto, Álvaro Peña Fritz, Gino Astorga, Felipe Cisternas-Caneo, Claudio Patricio Toledo Mac-Lean, Fabián Solís-Piñones, José Lara Arce, Giovanni Giachetti","doi":"10.3390/biomimetics11010010","DOIUrl":"10.3390/biomimetics11010010","url":null,"abstract":"<p><p>Metaheuristics are a fundament pillar of Industry 4.0, as they allow for complex optimization problems to be solved by finding good solutions in a reasonable amount of computational time. One category of important problems in modern industry is that of binary problems, where decision variables can take values of zero or one. In this work, we propose a binary version of the Pufferfish optimization algorithm (BPOA), which was originally created to solve continuous problems. The binary mapping follows a two-step technique, first transforming using transfer functions and then discretizing using binarization rules. We study representative pairings of transfer functions and binarization rules, comparing our algorithm with Particle Swarm Optimization, Secretary Bird Optimization Algorithm, and Arithmetic Optimization Algorithm with identical computational budgets. To validate its correct functioning, we solved binary problems present in industry, such as the Set Covering Problem together with its Unicost variant, as well as the Knapsack Problem. The results we achieved with regard to these problems were promising and statistically validated. The tests performed on the executions indicate that many pair differences are not statistically significant when both methods are already close to the optimal level, and significance arises precisely where the descriptive gaps widen, underscoring that transfer-rule pairing is the main performance factor. BPOA is a competitive and flexible framework whose effectiveness is mainly governed by the discretization design.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"11 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12839208/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146050061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-24DOI: 10.3390/biomimetics11010008
Bogdan Valeriu Sorca, Ana-Maria Rosca, Durmuş Alpaslan Kaya, Sergiu-Marian Vatamanu, Mădălina Georgiana Albu Kaya, Cristina Elena Dinu-Pîrvu, Mihaela Violeta Ghica, Alina Elena Coman, Laura Cristina Rusu, Irina Titorencu
Osseointegration in dental implants involves the use of materials that mimic the bone tissue, with special properties such as biocompatibility and biodegradability. In this study, we describe the preparation and characterization of composites based on collagen, chondroitin sulfate, and sage oil obtained by freeze-drying method. Their morphological structures were determined by water uptake and scanning electron microscopy, the physical-chemical interactions between components by FT-IR, the stability by in vitro collagenase degradation, and the results indicate that the samples' properties are highly influenced by the hydrophobic and hydrophilic character of sage essential oil and chondroitin sulfate, respectively, concluding that we can design a formulation with certain properties. The composite spongious forms were evaluated for cytocompatibility using the MG63 osteoblast cell line and subjected to histological observation. The results showed that the samples with sage essential oil were most resistant to enzymatic degradation, and the ones with chondroitin sulfate promoted the deposition of an abundant extracellular matrix. Taken together, the results suggest that incorporating chondroitin sulfate and sage oil in a controlled manner into collagen scaffolds represents a promising approach for enhancing bone tissue regeneration.
{"title":"Composites Based on Collagen, Chondroitin Sulfate, and Sage Oil with Potential Use in Dentistry.","authors":"Bogdan Valeriu Sorca, Ana-Maria Rosca, Durmuş Alpaslan Kaya, Sergiu-Marian Vatamanu, Mădălina Georgiana Albu Kaya, Cristina Elena Dinu-Pîrvu, Mihaela Violeta Ghica, Alina Elena Coman, Laura Cristina Rusu, Irina Titorencu","doi":"10.3390/biomimetics11010008","DOIUrl":"10.3390/biomimetics11010008","url":null,"abstract":"<p><p>Osseointegration in dental implants involves the use of materials that mimic the bone tissue, with special properties such as biocompatibility and biodegradability. In this study, we describe the preparation and characterization of composites based on collagen, chondroitin sulfate, and sage oil obtained by freeze-drying method. Their morphological structures were determined by water uptake and scanning electron microscopy, the physical-chemical interactions between components by FT-IR, the stability by in vitro collagenase degradation, and the results indicate that the samples' properties are highly influenced by the hydrophobic and hydrophilic character of sage essential oil and chondroitin sulfate, respectively, concluding that we can design a formulation with certain properties. The composite spongious forms were evaluated for cytocompatibility using the MG63 osteoblast cell line and subjected to histological observation. The results showed that the samples with sage essential oil were most resistant to enzymatic degradation, and the ones with chondroitin sulfate promoted the deposition of an abundant extracellular matrix. Taken together, the results suggest that incorporating chondroitin sulfate and sage oil in a controlled manner into collagen scaffolds represents a promising approach for enhancing bone tissue regeneration.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"11 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12838586/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146050020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, a numerical tool is presented to simulate the dynamics of insect wing folding by example of the fan folding of the dermapteran hindwing. The scalability of the system is demonstrated by generalising the mechanical behaviour from the small geometry of the wing to a suitable scale for engineering applications, such as deployable structures for space applications. The tool is written in Python and based on the MuJoCo physics engine. Sections of the anal fan are modelled as a bar-and-hinge model with elastic tendons, allowing a high number of design parameters and fast computation. In light of these advantages, the wing folding and unfolding behaviour is investigated with respect to the tendon's elastic properties and the actuation of the deformation. Bistability is characterised using a single tendon and the entire fan section. Given the upscaled geometry of the analysed section, the required tendon characteristics to transition between the stable states are identified within a reasonable range for technological transfer towards biomimetic structures modelled after the dermapteran hindwing.
{"title":"Quantifying Nature's Bistability: Simulation of Earwig Fan Folding.","authors":"Nele Binder, Leone Costi, Dario Izzo, Tobias Seidl","doi":"10.3390/biomimetics11010009","DOIUrl":"10.3390/biomimetics11010009","url":null,"abstract":"<p><p>In this work, a numerical tool is presented to simulate the dynamics of insect wing folding by example of the fan folding of the dermapteran hindwing. The scalability of the system is demonstrated by generalising the mechanical behaviour from the small geometry of the wing to a suitable scale for engineering applications, such as deployable structures for space applications. The tool is written in Python and based on the MuJoCo physics engine. Sections of the anal fan are modelled as a bar-and-hinge model with elastic tendons, allowing a high number of design parameters and fast computation. In light of these advantages, the wing folding and unfolding behaviour is investigated with respect to the tendon's elastic properties and the actuation of the deformation. Bistability is characterised using a single tendon and the entire fan section. Given the upscaled geometry of the analysed section, the required tendon characteristics to transition between the stable states are identified within a reasonable range for technological transfer towards biomimetic structures modelled after the dermapteran hindwing.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"11 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12838769/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146050133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-23DOI: 10.3390/biomimetics11010005
Mohammad Moshfeghi, Yasushi Mitani, Yuko Okai-Kojima, Bumkyoo Choi
Background: Impaired mucus drainage from the paranasal sinuses is often associated with nasal obstruction and reduced airway function in growing patients. Orthopedic maxillary protraction and expansion techniques can enhance airway dynamics, but their underlying fluid-structure mechanisms remain insufficiently understood. Objective: To validate that the Right Angle Maxillary Protraction Appliance (RAMPA), combined with a semi-rapid maxillary expansion (sRME) intraoral device gHu-1, improves mucus drainage by enhancing nasal airflow through nasal cavity expansion. Methods: The effects of RAMPA therapy were analyzed using computational fluid dynamics (CFD) for single-phase (air) and two-phase (air-mucus) flows within the nasal cavity, employing the unsteady RANS turbulence model. Finite element method (FEM) results from prior studies were synthesized to assess changes in the center and radius of maxillary rotation induced by RAMPA-assisted sRME. A male patient (aged 8 years 7 months to 11 years 7 months) treated with extraoral RAMPA and the intraoral appliance (gHu-1) underwent pre- and post-treatment cone-beam computed tomography (CBCT) and ear, nose, and throat (ENT) evaluation. Results: FEM analysis revealed an increased radius and elevated center of maxillary rotation, producing expansion that was more parallel to the palatal plane. CFD simulations showed that nasal cavity expansion increased airflow velocity and pressure drop, enhancing the suction effect that promotes mucus clearance from the frontal sinus. Clinically, nasal passages widened, paranasal opacities resolved, and occlusal and intermolar widths improved. Conclusions: RAMPA combined with sRME improves nasal airflow and maxillary skeletal expansion, facilitating paranasal mucus clearance and offering a promising adjunctive approach for enhancing upper airway function in growing patients.
{"title":"Impact of RAMPA Therapy on Nasal Cavity Expansion and Paranasal Drainage: Fluid Mechanics Analysis, CAE Simulation, and a Case Study.","authors":"Mohammad Moshfeghi, Yasushi Mitani, Yuko Okai-Kojima, Bumkyoo Choi","doi":"10.3390/biomimetics11010005","DOIUrl":"10.3390/biomimetics11010005","url":null,"abstract":"<p><p><b>Background:</b> Impaired mucus drainage from the paranasal sinuses is often associated with nasal obstruction and reduced airway function in growing patients. Orthopedic maxillary protraction and expansion techniques can enhance airway dynamics, but their underlying fluid-structure mechanisms remain insufficiently understood. <b>Objective:</b> To validate that the Right Angle Maxillary Protraction Appliance (RAMPA), combined with a semi-rapid maxillary expansion (sRME) intraoral device gHu-1, improves mucus drainage by enhancing nasal airflow through nasal cavity expansion. <b>Methods:</b> The effects of RAMPA therapy were analyzed using computational fluid dynamics (CFD) for single-phase (air) and two-phase (air-mucus) flows within the nasal cavity, employing the unsteady RANS turbulence model. Finite element method (FEM) results from prior studies were synthesized to assess changes in the center and radius of maxillary rotation induced by RAMPA-assisted sRME. A male patient (aged 8 years 7 months to 11 years 7 months) treated with extraoral RAMPA and the intraoral appliance (gHu-1) underwent pre- and post-treatment cone-beam computed tomography (CBCT) and ear, nose, and throat (ENT) evaluation. <b>Results:</b> FEM analysis revealed an increased radius and elevated center of maxillary rotation, producing expansion that was more parallel to the palatal plane. CFD simulations showed that nasal cavity expansion increased airflow velocity and pressure drop, enhancing the suction effect that promotes mucus clearance from the frontal sinus. Clinically, nasal passages widened, paranasal opacities resolved, and occlusal and intermolar widths improved. <b>Conclusions:</b> RAMPA combined with sRME improves nasal airflow and maxillary skeletal expansion, facilitating paranasal mucus clearance and offering a promising adjunctive approach for enhancing upper airway function in growing patients.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"11 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12839102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146050067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-23DOI: 10.3390/biomimetics11010007
Davut Izci, Serdar Ekinci, Mostafa Jabari, Behçet Kocaman, Burcu Bektaş Güneş, Enver Adas, Mohd Ashraf Ahmad
This paper proposes a Gudermannian function-based proportional-integral-derivative (G-PID) controller to enhance the transient performance of automatic voltage regulator (AVR) systems operating under highly dynamic conditions. By embedding the smooth and bounded nonlinear mapping of the Gudermannian function into the classical PID structure, the proposed controller improves adaptability to large signal variations while effectively suppressing overshoot. The controller parameters are optimally tuned using the starfish optimization algorithm (SFOA), which provides a robust balance between exploration and exploitation in nonlinear search spaces. Simulation results demonstrate that the SFOA-optimized G-PID controller achieves superior transient performance, with a rise time of 0.0551 s, zero overshoot, and a settling time of 0.0830 s. Comparative evaluations confirm that the proposed approach outperforms widely used optimization algorithms (particle swarm optimization, grey wolf optimizer, success history-based adaptive differential evolution with linear population size, and Kirchhoff's law algorithm) and advanced AVR control schemes, including fractional-order and higher-order PID-based designs. These results indicate that the proposed SFOA optimized G-PID controller offers a computationally efficient and structurally simple solution for high-performance voltage regulation in modern power systems.
{"title":"A Novel Gudermannian Function-Driven Controller Architecture Optimized by Starfish Optimizer for Superior Transient Performance of Automatic Voltage Regulation.","authors":"Davut Izci, Serdar Ekinci, Mostafa Jabari, Behçet Kocaman, Burcu Bektaş Güneş, Enver Adas, Mohd Ashraf Ahmad","doi":"10.3390/biomimetics11010007","DOIUrl":"10.3390/biomimetics11010007","url":null,"abstract":"<p><p>This paper proposes a Gudermannian function-based proportional-integral-derivative (G-PID) controller to enhance the transient performance of automatic voltage regulator (AVR) systems operating under highly dynamic conditions. By embedding the smooth and bounded nonlinear mapping of the Gudermannian function into the classical PID structure, the proposed controller improves adaptability to large signal variations while effectively suppressing overshoot. The controller parameters are optimally tuned using the starfish optimization algorithm (SFOA), which provides a robust balance between exploration and exploitation in nonlinear search spaces. Simulation results demonstrate that the SFOA-optimized G-PID controller achieves superior transient performance, with a rise time of 0.0551 s, zero overshoot, and a settling time of 0.0830 s. Comparative evaluations confirm that the proposed approach outperforms widely used optimization algorithms (particle swarm optimization, grey wolf optimizer, success history-based adaptive differential evolution with linear population size, and Kirchhoff's law algorithm) and advanced AVR control schemes, including fractional-order and higher-order PID-based designs. These results indicate that the proposed SFOA optimized G-PID controller offers a computationally efficient and structurally simple solution for high-performance voltage regulation in modern power systems.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"11 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12838566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146050024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-23DOI: 10.3390/biomimetics11010006
Halil Ibrahim Demir, Suraka Dervis
Global air transport has become the dominant mode of long-distance travel, carrying more than four billion passengers in 2019 and projected to exceed 8 billion by 2040. Nevertheless, limited demand and economic inefficiencies often make direct connections unfeasible, forcing many passengers to rely on transfers. In such cases, synchronizing arrivals and departures at hub airports is crucial to minimizing transfer times and maximizing passenger retention. This study investigates the synchronization problem at Istanbul Airport, one of the world's largest hubs, using metaheuristic optimization. Three algorithms-Genetic Algorithms (GA), Modified Discrete Particle Swarm Optimization (MDPSO), and Evolutionary Strategies (ES)-were applied in parallel to optimize arrival and departure schedules for a major airline. The proposed chromosome-based framework was tested through parameter tuning and validated with statistical analyses, including ANOVA and Games-Howell pairwise comparisons. The results show that MDPSO achieved strong improvements, while ES consistently outperformed both GA and MDPSO, increasing successful passenger transfers by more than 200% compared to the original schedule. These findings demonstrate the effectiveness of evolutionary metaheuristics for large-scale airline scheduling and highlight their potential for improving hub connectivity. This framework is generalizable to other hub airports and airlines, and future research could extend it by integrating hybrid metaheuristics or applying enhanced forecasting methods and more dynamic scheduling approaches.
{"title":"Enhancing Flight Connectivity via Synchronization of Arrivals and Departures in Hub Airports with Evolutionary and Swarm-Based Metaheuristics.","authors":"Halil Ibrahim Demir, Suraka Dervis","doi":"10.3390/biomimetics11010006","DOIUrl":"10.3390/biomimetics11010006","url":null,"abstract":"<p><p>Global air transport has become the dominant mode of long-distance travel, carrying more than four billion passengers in 2019 and projected to exceed 8 billion by 2040. Nevertheless, limited demand and economic inefficiencies often make direct connections unfeasible, forcing many passengers to rely on transfers. In such cases, synchronizing arrivals and departures at hub airports is crucial to minimizing transfer times and maximizing passenger retention. This study investigates the synchronization problem at Istanbul Airport, one of the world's largest hubs, using metaheuristic optimization. Three algorithms-Genetic Algorithms (GA), Modified Discrete Particle Swarm Optimization (MDPSO), and Evolutionary Strategies (ES)-were applied in parallel to optimize arrival and departure schedules for a major airline. The proposed chromosome-based framework was tested through parameter tuning and validated with statistical analyses, including ANOVA and Games-Howell pairwise comparisons. The results show that MDPSO achieved strong improvements, while ES consistently outperformed both GA and MDPSO, increasing successful passenger transfers by more than 200% compared to the original schedule. These findings demonstrate the effectiveness of evolutionary metaheuristics for large-scale airline scheduling and highlight their potential for improving hub connectivity. This framework is generalizable to other hub airports and airlines, and future research could extend it by integrating hybrid metaheuristics or applying enhanced forecasting methods and more dynamic scheduling approaches.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"11 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12839015/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146049995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}