Scaling and thermal loss on the surfaces of industrial equipment and pipelines usually lead to increased energy consumption and reduced operational efficiency. To solve these severe problems, developing advanced coatings with the dual functions of scale resistance and thermal insulation is an effective approach. Inspired by the antifouling agents released from corals and the thermal insulation of goose down, we herein have developed a bioinspired hollow silica microsphere-based (BHSM) coating, exhibiting the synergistic effect of anti-scaling and thermal insulation properties. The BHSM coating is composed of aluminum phosphate (AP) as an inorganic adhesive and scale inhibitor, and hollow silica microspheres (HSMs) as a thermal insulator. In brief, the effective anti-scaling capability comes from released phosphate ions of AP adhesive for chelating with mineral ions, while the high thermal insulation results from the internal air of the HSMs. Compared to the stainless steel (SS 304), the BHSM coating exhibited ~86% scale reduction. Furthermore, the extremely low thermal conductivity of the HSMs endows the BHSM coating with excellent thermal insulation, resulting in a 20% reduction in heat loss relative to the SS 304 surface. Thus, this work presents a promising strategy for anti-scaling and thermal insulation in industrial equipment and pipelines.
扫码关注我们
求助内容:
应助结果提醒方式:
