Pub Date : 2025-12-15DOI: 10.3390/biomimetics10120839
Hang Chen, Maomao Luo
To address the limitations of the traditional Coati Optimization Algorithm (COA), such as insufficient global exploration, poor population cooperation, and low convergence efficiency in global optimization and photovoltaic (PV) model parameter identification, this paper proposes a Multi-strategy Enhanced Coati Optimization Algorithm (MECOA). MECOA improves performance through three core strategies: (1) Elite-guided search, which replaces the single global best solution with an elite pool of three top individuals and incorporates the heavy-tailed property of Lévy flights to balance large-step exploration and small-step exploitation; (2) Horizontal crossover, which simulates biological gene recombination to promote information sharing among individuals and enhance cooperative search efficiency; and (3) Precise elimination, which discards 20% of low-fitness individuals in each generation and generates new individuals around the best solution to improve population quality. Experiments on the CEC2017 (30/50/100-dimensional) and CEC2022 (20-dimensional) benchmark suites demonstrate that MECOA achieves superior performance. On CEC2017, MECOA ranks first with an average rank of 1.87, 2.07, 1.83, outperforming the second-best LSHADE (2.03, 2.43 and 2.63) and the original COA (9.93, 9.93 and 9.96). On CEC2022, MECOA also maintains the leading position with an average rank of 1.58, far surpassing COA (8.92). Statistical analysis using the Wilcoxon rank-sum test (significance level 0.05) confirms the superiority of MECOA. Furthermore, MECOA is applied to parameter identification of single-diode (SDM) and double-diode (DDM) PV models. Experiments based on real measurement data show that the SDM model achieves an RMSE of 9.8610 × 10-4, which is only 1/20 of that of COA. For the DDM model, the fitted curves almost perfectly overlap with the experimental data, with a total integrated absolute error (IAE) of only 0.021555 A. These results fully validate the effectiveness and reliability of MECOA in solving complex engineering optimization problems, providing a robust and efficient solution for accurate modeling and optimization of PV systems.
{"title":"MECOA: A Multi-Strategy Enhanced Coati Optimization Algorithm for Global Optimization and Photovoltaic Models Parameter Estimation.","authors":"Hang Chen, Maomao Luo","doi":"10.3390/biomimetics10120839","DOIUrl":"10.3390/biomimetics10120839","url":null,"abstract":"<p><p>To address the limitations of the traditional Coati Optimization Algorithm (COA), such as insufficient global exploration, poor population cooperation, and low convergence efficiency in global optimization and photovoltaic (PV) model parameter identification, this paper proposes a Multi-strategy Enhanced Coati Optimization Algorithm (MECOA). MECOA improves performance through three core strategies: (1) Elite-guided search, which replaces the single global best solution with an elite pool of three top individuals and incorporates the heavy-tailed property of Lévy flights to balance large-step exploration and small-step exploitation; (2) Horizontal crossover, which simulates biological gene recombination to promote information sharing among individuals and enhance cooperative search efficiency; and (3) Precise elimination, which discards 20% of low-fitness individuals in each generation and generates new individuals around the best solution to improve population quality. Experiments on the CEC2017 (30/50/100-dimensional) and CEC2022 (20-dimensional) benchmark suites demonstrate that MECOA achieves superior performance. On CEC2017, MECOA ranks first with an average rank of 1.87, 2.07, 1.83, outperforming the second-best LSHADE (2.03, 2.43 and 2.63) and the original COA (9.93, 9.93 and 9.96). On CEC2022, MECOA also maintains the leading position with an average rank of 1.58, far surpassing COA (8.92). Statistical analysis using the Wilcoxon rank-sum test (significance level 0.05) confirms the superiority of MECOA. Furthermore, MECOA is applied to parameter identification of single-diode (SDM) and double-diode (DDM) PV models. Experiments based on real measurement data show that the SDM model achieves an RMSE of 9.8610 × 10<sup>-4</sup>, which is only 1/20 of that of COA. For the DDM model, the fitted curves almost perfectly overlap with the experimental data, with a total integrated absolute error (IAE) of only 0.021555 A. These results fully validate the effectiveness and reliability of MECOA in solving complex engineering optimization problems, providing a robust and efficient solution for accurate modeling and optimization of PV systems.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 12","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12730401/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145817763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-15DOI: 10.3390/biomimetics10120841
Yuchuang Tong, Haotian Liu, Zhengtao Zhang
Inspired by the adaptive flexible motion coordination of biological systems, this study presents a bioinspired control strategy that enables robotic manipulators to achieve precise and compliant motion-force coordination for embodied intelligence and dexterous interaction in physically constrained environments. To this end, a learning-based motion-force hybrid control (LMFC) framework is proposed, which unifies learning and kinematic-level control to regulate both motion and interaction forces under incomplete or implicit kinematic information, thereby enhancing robustness and precision. The LMFC formulation recasts motion-force coordination as a time-varying quadratic programming (TVQP) problem, seamlessly incorporating multiple practical constraints-including joint limits, end-effector orientation maintenance, and obstacle avoidance-at the acceleration level, while determining control decisions at the velocity level. An RNN-based controller is further designed to integrate adaptive learning and control, enabling online estimation of uncertain kinematic parameters and mitigating joint drift. Simulation and experimental results demonstrate the effectiveness and practicality of the proposed framework, highlighting its potential for adaptive and compliant robotic control in constraint-rich environments.
{"title":"Bioinspired Simultaneous Learning and Motion-Force Hybrid Control for Robotic Manipulators Under Multiple Constraints.","authors":"Yuchuang Tong, Haotian Liu, Zhengtao Zhang","doi":"10.3390/biomimetics10120841","DOIUrl":"10.3390/biomimetics10120841","url":null,"abstract":"<p><p>Inspired by the adaptive flexible motion coordination of biological systems, this study presents a bioinspired control strategy that enables robotic manipulators to achieve precise and compliant motion-force coordination for embodied intelligence and dexterous interaction in physically constrained environments. To this end, a learning-based motion-force hybrid control (LMFC) framework is proposed, which unifies learning and kinematic-level control to regulate both motion and interaction forces under incomplete or implicit kinematic information, thereby enhancing robustness and precision. The LMFC formulation recasts motion-force coordination as a time-varying quadratic programming (TVQP) problem, seamlessly incorporating multiple practical constraints-including joint limits, end-effector orientation maintenance, and obstacle avoidance-at the acceleration level, while determining control decisions at the velocity level. An RNN-based controller is further designed to integrate adaptive learning and control, enabling online estimation of uncertain kinematic parameters and mitigating joint drift. Simulation and experimental results demonstrate the effectiveness and practicality of the proposed framework, highlighting its potential for adaptive and compliant robotic control in constraint-rich environments.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 12","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12730972/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145817795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-15DOI: 10.3390/biomimetics10120838
Benjamin Kellum Cooper, Sasindu Pinto, Henry Hong, Yang Zhang, Louis Cattafesta, Wen Wu
Passive flow control methods are widely used to reduce drag in wall-bounded flows. A recent numerical study on separating turbulent flows over a bump covered with shark denticles revealed the formation of a reverse pore flow (RPF) beneath the denticle crowns under an adverse pressure gradient (APG). This RPF generates an upstream thrust, leading to drag reduction. Motivated by these findings, the present study investigates a bio-inspired Anisotropic Permeable Propulsive Substrate (APPS) that incorporates key geometric features of the shark denticles, enabling thrust generation by the RPF. The designed APPS is evaluated through both direct numerical simulations of turbulent channel flows at Reτ = 1500 and experiments using 3D-printed structures in a turbulent boundary layer over a flat-plate model subjected to APG and flow separation (at Reθ = 800). Both approaches demonstrate that the APPS successfully reproduces the RPF-induced thrust mechanism of shark denticles. The results further reveal the dependence of the pore flow on pressure gradient and substrate geometry. This work highlights two features of a thrust-generating APPS: a top surface that shields the porous media from the overlying flow while enabling vertical mass exchange, and a bottom region with dominant wall-parallel permeability, which guides the pore flow in the streamwise direction to generate the thrust.
{"title":"DNS and Experimental Assessment of Shark-Denticle-Inspired Anisotropic Porous Substrates for Drag Reduction.","authors":"Benjamin Kellum Cooper, Sasindu Pinto, Henry Hong, Yang Zhang, Louis Cattafesta, Wen Wu","doi":"10.3390/biomimetics10120838","DOIUrl":"10.3390/biomimetics10120838","url":null,"abstract":"<p><p>Passive flow control methods are widely used to reduce drag in wall-bounded flows. A recent numerical study on separating turbulent flows over a bump covered with shark denticles revealed the formation of a reverse pore flow (RPF) beneath the denticle crowns under an adverse pressure gradient (APG). This RPF generates an upstream thrust, leading to drag reduction. Motivated by these findings, the present study investigates a bio-inspired Anisotropic Permeable Propulsive Substrate (APPS) that incorporates key geometric features of the shark denticles, enabling thrust generation by the RPF. The designed APPS is evaluated through both direct numerical simulations of turbulent channel flows at Reτ = 1500 and experiments using 3D-printed structures in a turbulent boundary layer over a flat-plate model subjected to APG and flow separation (at Reθ = 800). Both approaches demonstrate that the APPS successfully reproduces the RPF-induced thrust mechanism of shark denticles. The results further reveal the dependence of the pore flow on pressure gradient and substrate geometry. This work highlights two features of a thrust-generating APPS: a top surface that shields the porous media from the overlying flow while enabling vertical mass exchange, and a bottom region with dominant wall-parallel permeability, which guides the pore flow in the streamwise direction to generate the thrust.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 12","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12730901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145817515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-15DOI: 10.3390/biomimetics10120840
Pascal Mindermann, Martha Elisabeth Grupp
Bamboo has evolved a highly optimized structural system in its culms, which this study transfers into lightweight fiber composite trusses fabricated by coreless filament winding. Focusing on the structural segmentation involving diaphragms of the biological role model, this design principle was integrated into the additive manufacturing process using a multi-stage winding, a tiling approach, and a water-soluble winding fixture. Through a FE-assisted analytical abstraction procedure, the transition to a carbon fiber material system was considered by determining a geometrical configuration optimized for structural mass, bending deflection, and radial buckling. Samples were fabricated from CFRP and experimentally tested in four-point bending. In mass-specific terms, integrating diaphragms into wound fiber composite samples improved failure load by 36%, ultimate load by 62%, and energy absorption by a factor of 7, at a reduction of only 14% in stiffness. Benchmarking against steel and PVC demonstrated superior mass-specific performance, although mōsō bamboo still outperformed all technical solutions, except in energy absorption.
{"title":"Transferring Structural Design Principles from Bamboo to Coreless Filament-Wound Lightweight Composite Trusses.","authors":"Pascal Mindermann, Martha Elisabeth Grupp","doi":"10.3390/biomimetics10120840","DOIUrl":"10.3390/biomimetics10120840","url":null,"abstract":"<p><p>Bamboo has evolved a highly optimized structural system in its culms, which this study transfers into lightweight fiber composite trusses fabricated by coreless filament winding. Focusing on the structural segmentation involving diaphragms of the biological role model, this design principle was integrated into the additive manufacturing process using a multi-stage winding, a tiling approach, and a water-soluble winding fixture. Through a FE-assisted analytical abstraction procedure, the transition to a carbon fiber material system was considered by determining a geometrical configuration optimized for structural mass, bending deflection, and radial buckling. Samples were fabricated from CFRP and experimentally tested in four-point bending. In mass-specific terms, integrating diaphragms into wound fiber composite samples improved failure load by 36%, ultimate load by 62%, and energy absorption by a factor of 7, at a reduction of only 14% in stiffness. Benchmarking against steel and PVC demonstrated superior mass-specific performance, although mōsō bamboo still outperformed all technical solutions, except in energy absorption.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 12","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12731146/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145817786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-14DOI: 10.3390/biomimetics10120836
Sultan Hassan Hakmi, Hashim Alnami, Badr M Al Faiya, Ghareeb Moustafa
This study introduces an innovative Honey Badger Optimization (HBO) designed to address the Optimal Power Flow (OPF) challenge in electrical power systems. HBO is a unique population-based searching method inspired by the resourceful foraging behavior of honey badgers when hunting for food. In this algorithm, the dynamic search process of honey badgers, characterized by digging and honey-seeking tactics, is divided into two distinct stages, exploration and exploitation. The OPF problem is formulated with objectives including fuel cost minimization and voltage deviation reduction, alongside operational constraints such as generator limits, transformer settings, and line power flows. HBO is applied to the IEEE 30-bus test system, outperforming existing methods such as Particle Swarm Optimization (PSO) and Gray Wolf Optimization (GWO) in both fuel cost reduction and voltage profile enhancement. Results indicate significant improvements in system performance, achieving 38.5% and 22.78% better voltage deviations compared to GWO and PSO, respectively. This demonstrates HBO's efficacy as a robust optimization tool for modern power systems. In addition to the single-objective studies, a multi-objective OPF formulation was investigated to produce the complete Pareto front between fuel cost and voltage deviation objectives. The proposed HBO successfully generated a well-distributed set of trade-off solutions, revealing a clear conflict between economic efficiency and voltage quality. The Pareto analysis demonstrated HBO's strong capability to balance these competing objectives, identify knee-point operating conditions, and provide flexible decision-making options for system operators.
{"title":"Multidimensional Optimal Power Flow with Voltage Profile Enhancement in Electrical Systems via Honey Badger Algorithm.","authors":"Sultan Hassan Hakmi, Hashim Alnami, Badr M Al Faiya, Ghareeb Moustafa","doi":"10.3390/biomimetics10120836","DOIUrl":"10.3390/biomimetics10120836","url":null,"abstract":"<p><p>This study introduces an innovative Honey Badger Optimization (HBO) designed to address the Optimal Power Flow (OPF) challenge in electrical power systems. HBO is a unique population-based searching method inspired by the resourceful foraging behavior of honey badgers when hunting for food. In this algorithm, the dynamic search process of honey badgers, characterized by digging and honey-seeking tactics, is divided into two distinct stages, exploration and exploitation. The OPF problem is formulated with objectives including fuel cost minimization and voltage deviation reduction, alongside operational constraints such as generator limits, transformer settings, and line power flows. HBO is applied to the IEEE 30-bus test system, outperforming existing methods such as Particle Swarm Optimization (PSO) and Gray Wolf Optimization (GWO) in both fuel cost reduction and voltage profile enhancement. Results indicate significant improvements in system performance, achieving 38.5% and 22.78% better voltage deviations compared to GWO and PSO, respectively. This demonstrates HBO's efficacy as a robust optimization tool for modern power systems. In addition to the single-objective studies, a multi-objective OPF formulation was investigated to produce the complete Pareto front between fuel cost and voltage deviation objectives. The proposed HBO successfully generated a well-distributed set of trade-off solutions, revealing a clear conflict between economic efficiency and voltage quality. The Pareto analysis demonstrated HBO's strong capability to balance these competing objectives, identify knee-point operating conditions, and provide flexible decision-making options for system operators.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 12","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12730417/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145817772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-13DOI: 10.3390/biomimetics10120835
Enrique Fernández-Rodicio, Christian Dondrup, Javier Sevilla-Salcedo, Álvaro Castro-González, Miguel A Salichs
In recent years, robots have started to be used in tasks involving human interaction. For this to be possible, humans must perceive robots as suitable interaction partners. This can be achieved by giving the robots an animate appearance. One of the methods that can be utilised to endow a robot with a lively appearance is giving it the ability to perform expressions on its own, that is, combining multimodal actions to convey information. However, this can become a challenge if the robot has to use gestures and speech simultaneously, as the non-verbal actions need to support the message communicated by the verbal component. In this manuscript, we present a system that, based on a robot's utterances, predicts the corresponding gesture and synchronises it with the speech. A deep learning-based prediction model labels the robot's speech with the types of expressions that should accompany it. Then, a rule-based synchronisation module connects different gestures to the correct parts of the speech. For this, we have tested two different approaches: (i) using a combination of recurrent neural networks and conditional random fields; and (ii) using transformer models. The results show that the proposed system can properly select co-speech gestures under the time constraints imposed by real-world interactions.
{"title":"Predicting and Synchronising Co-Speech Gestures for Enhancing Human-Robot Interactions Using Deep Learning Models.","authors":"Enrique Fernández-Rodicio, Christian Dondrup, Javier Sevilla-Salcedo, Álvaro Castro-González, Miguel A Salichs","doi":"10.3390/biomimetics10120835","DOIUrl":"10.3390/biomimetics10120835","url":null,"abstract":"<p><p>In recent years, robots have started to be used in tasks involving human interaction. For this to be possible, humans must perceive robots as suitable interaction partners. This can be achieved by giving the robots an animate appearance. One of the methods that can be utilised to endow a robot with a lively appearance is giving it the ability to perform expressions on its own, that is, combining multimodal actions to convey information. However, this can become a challenge if the robot has to use gestures and speech simultaneously, as the non-verbal actions need to support the message communicated by the verbal component. In this manuscript, we present a system that, based on a robot's utterances, predicts the corresponding gesture and synchronises it with the speech. A deep learning-based prediction model labels the robot's speech with the types of expressions that should accompany it. Then, a rule-based synchronisation module connects different gestures to the correct parts of the speech. For this, we have tested two different approaches: (i) using a combination of recurrent neural networks and conditional random fields; and (ii) using transformer models. The results show that the proposed system can properly select co-speech gestures under the time constraints imposed by real-world interactions.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 12","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12730220/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145817783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fine-grained image recognition is one of the key tasks in the field of computer vision. However, due to subtle inter-class differences and significant intra-class differences, it still faces severe challenges. Conventional approaches often struggle with background interference and feature degradation. To address these issues, we draw inspiration from the human visual system, which adeptly focuses on discriminative regions, to propose a bio-inspired gradient-aware attention mechanism. Our method explicitly models gradient information to guide the attention, mimicking biological edge sensitivity, thereby enhancing the discrimination between global structures and local details. Experiments on the CUB-200-2011, iNaturalist2018, nabbirds and Stanford Cars datasets demonstrated the superiority of our method, achieving Top-1 accuracy rates of 92.9%, 90.5%, 93.1% and 95.1%, respectively.
{"title":"Fine-Grained Image Recognition with Bio-Inspired Gradient-Aware Attention.","authors":"Bing Ma, Junyi Li, Zhengbei Jin, Wei Zhang, Xiaohui Song, Beibei Jin","doi":"10.3390/biomimetics10120834","DOIUrl":"10.3390/biomimetics10120834","url":null,"abstract":"<p><p>Fine-grained image recognition is one of the key tasks in the field of computer vision. However, due to subtle inter-class differences and significant intra-class differences, it still faces severe challenges. Conventional approaches often struggle with background interference and feature degradation. To address these issues, we draw inspiration from the human visual system, which adeptly focuses on discriminative regions, to propose a bio-inspired gradient-aware attention mechanism. Our method explicitly models gradient information to guide the attention, mimicking biological edge sensitivity, thereby enhancing the discrimination between global structures and local details. Experiments on the CUB-200-2011, iNaturalist2018, nabbirds and Stanford Cars datasets demonstrated the superiority of our method, achieving Top-1 accuracy rates of 92.9%, 90.5%, 93.1% and 95.1%, respectively.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 12","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12731059/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145817690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-12DOI: 10.3390/biomimetics10120832
Dong-Geun Lee, Seung-Bo Lee
Electroencephalography (EEG)-based brain-computer interface (BCI) mimics the brain's intrinsic information-processing mechanisms by translating neural oscillations into actionable commands. In motor imagery (MI) BCI, imagined movements evoke characteristic patterns over the sensorimotor cortex, forming a biomimetic channel through which internal motor intentions are decoded. However, this biomimetic interaction is highly vulnerable to signal degradation, particularly in mobile or low-resource environments where low sampling frequencies obscure these MI-related oscillations. To address this limitation, we propose a robust MI classification framework that integrates spatial, spectral, and temporal dynamics through a filter bank common spatial pattern with time segmentation (FBCSP-TS). This framework classifies motor imagery tasks into four classes (left hand, right hand, foot, and tongue), segments EEG signals into overlapping time domains, and extracts frequency-specific spatial features across multiple subbands. Segment-level predictions are combined via soft voting, reflecting the brain's distributed integration of information and enhancing resilience to transient noise and localized artifacts. Experiments performed on BCI Competition IV datasets 2a (250 Hz) and 1 (100 Hz) demonstrate that FBCSP-TS outperforms CSP and FBCSP. A paired t-test confirms that accuracy at 110 Hz is not significantly different from that at 250 Hz (p < 0.05), supporting the robustness of the proposed framework. Optimal temporal parameters (window length = 3.5 s, moving length = 0.5 s) further stabilize transient-signal capture and improve SNR. External validation yielded a mean accuracy of 0.809 ± 0.092 and Cohen's kappa of 0.619 ± 0.184, confirming strong generalizability. By preserving MI-relevant neural patterns under degraded conditions, this framework advances practical, biomimetic BCI suitable for wearable and real-world deployment.
{"title":"Robust Motor Imagery-Brain-Computer Interface Classification in Signal Degradation: A Multi-Window Ensemble Approach.","authors":"Dong-Geun Lee, Seung-Bo Lee","doi":"10.3390/biomimetics10120832","DOIUrl":"10.3390/biomimetics10120832","url":null,"abstract":"<p><p>Electroencephalography (EEG)-based brain-computer interface (BCI) mimics the brain's intrinsic information-processing mechanisms by translating neural oscillations into actionable commands. In motor imagery (MI) BCI, imagined movements evoke characteristic patterns over the sensorimotor cortex, forming a biomimetic channel through which internal motor intentions are decoded. However, this biomimetic interaction is highly vulnerable to signal degradation, particularly in mobile or low-resource environments where low sampling frequencies obscure these MI-related oscillations. To address this limitation, we propose a robust MI classification framework that integrates spatial, spectral, and temporal dynamics through a filter bank common spatial pattern with time segmentation (FBCSP-TS). This framework classifies motor imagery tasks into four classes (left hand, right hand, foot, and tongue), segments EEG signals into overlapping time domains, and extracts frequency-specific spatial features across multiple subbands. Segment-level predictions are combined via soft voting, reflecting the brain's distributed integration of information and enhancing resilience to transient noise and localized artifacts. Experiments performed on BCI Competition IV datasets 2a (250 Hz) and 1 (100 Hz) demonstrate that FBCSP-TS outperforms CSP and FBCSP. A paired t-test confirms that accuracy at 110 Hz is not significantly different from that at 250 Hz (<i>p</i> < 0.05), supporting the robustness of the proposed framework. Optimal temporal parameters (window length = 3.5 s, moving length = 0.5 s) further stabilize transient-signal capture and improve SNR. External validation yielded a mean accuracy of 0.809 ± 0.092 and Cohen's kappa of 0.619 ± 0.184, confirming strong generalizability. By preserving MI-relevant neural patterns under degraded conditions, this framework advances practical, biomimetic BCI suitable for wearable and real-world deployment.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 12","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12730602/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145817760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-12DOI: 10.3390/biomimetics10120831
Anthony Drago, Nicholas Marcouiller, Shraman Kadapa, Frank E Fish, James L Tangorra
Unmanned underwater vehicles (UUVs) capable of agile, high-speed maneuvering in complex environments require propulsion systems that can dynamically modulate three-dimensional forces. The California sea lion (Zalophus californianus) provides an exceptional biological model, using its foreflippers to achieve rapid turns and powerful propulsion. However, the specific kinematic mechanisms that govern instantaneous force generation from its powerful foreflippers remain poorly quantified. This study experimentally characterizes the time-varying thrust and lift produced by a bio-robotic sea lion foreflipper to determine how flipper twist, sweep, and phase overlap modulate propulsive forces. A three-degree-of-freedom bio-robotic flipper with a simplified, low-aspect-ratio planform and single compliant hinge was tested in a circulating flow tank, executing parameterized power and paddle strokes in both isolated and combined-phase trials. The time-resolved force data reveal that the propulsive stroke functions as a tunable hybrid system. The power phase acts as a force-vectoring mechanism, where the flipper's twist angle reorients the resultant vector: thrust is maximized in a broad, robust range peaking near 45°, while lift increases monotonically to 90°. The paddle phase operates as a flow-insensitive, geometrically driven thruster, where twist angle (0° optimal) regulates thrust by altering the presented surface area. In the full stroke, a temporal-phase overlap governs thrust augmentation, while the power-phase twist provides robust steering control. Within the tested inertial flow regime (Re ≈ 104-105), this control map is highly consistent with propulsion dominated by geometric momentum redirection and impulse timing, rather than circulation-based lift. These findings establish a practical, experimentally derived control map linking kinematic inputs to propulsive force vectors, providing a foundation for the design and control of agile, bio-inspired underwater vehicles.
{"title":"Propulsive Force Characterization of a Bio-Robotic Sea Lion Foreflipper: A Kinematic Basis for Agile Propulsion.","authors":"Anthony Drago, Nicholas Marcouiller, Shraman Kadapa, Frank E Fish, James L Tangorra","doi":"10.3390/biomimetics10120831","DOIUrl":"10.3390/biomimetics10120831","url":null,"abstract":"<p><p>Unmanned underwater vehicles (UUVs) capable of agile, high-speed maneuvering in complex environments require propulsion systems that can dynamically modulate three-dimensional forces. The California sea lion (<i>Zalophus californianus</i>) provides an exceptional biological model, using its foreflippers to achieve rapid turns and powerful propulsion. However, the specific kinematic mechanisms that govern instantaneous force generation from its powerful foreflippers remain poorly quantified. This study experimentally characterizes the time-varying thrust and lift produced by a bio-robotic sea lion foreflipper to determine how flipper twist, sweep, and phase overlap modulate propulsive forces. A three-degree-of-freedom bio-robotic flipper with a simplified, low-aspect-ratio planform and single compliant hinge was tested in a circulating flow tank, executing parameterized power and paddle strokes in both isolated and combined-phase trials. The time-resolved force data reveal that the propulsive stroke functions as a tunable hybrid system. The power phase acts as a force-vectoring mechanism, where the flipper's twist angle reorients the resultant vector: thrust is maximized in a broad, robust range peaking near 45°, while lift increases monotonically to 90°. The paddle phase operates as a flow-insensitive, geometrically driven thruster, where twist angle (0° optimal) regulates thrust by altering the presented surface area. In the full stroke, a temporal-phase overlap governs thrust augmentation, while the power-phase twist provides robust steering control. Within the tested inertial flow regime (Re ≈ 10<sup>4</sup>-10<sup>5</sup>), this control map is highly consistent with propulsion dominated by geometric momentum redirection and impulse timing, rather than circulation-based lift. These findings establish a practical, experimentally derived control map linking kinematic inputs to propulsive force vectors, providing a foundation for the design and control of agile, bio-inspired underwater vehicles.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 12","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12730486/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145817793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-12DOI: 10.3390/biomimetics10120833
Rimah Nassar, Tali Chackartchi, Haim Doron, Jonathan Mann, Mordechai Findler, Guy Tobias
Background: This study examined the trends in restorative dental practice among 12-year-old children treated at a nationwide public health maintenance organization in Israel between 2016 and 2022, focusing on the use of amalgam versus composite resin restorations in permanent premolars and molars.
Methods: Data were extracted from electronic health records of the second-largest public health organization in Israel, identifying children who underwent restorative treatments during the study period. Restoration rates were compared overall and stratified by gender, socioeconomic status, and number of surfaces restored. Statistical analysis was conducted using SPSS version 27, employing Levene's test for equality of variances and Welch's one-way ANOVA.
Results: The results showed a statistically significant decline in amalgam use (p < 0.05) alongside a marked increase in composite resin restorations (p < 0.05), consistent across genders and socioeconomic groups. Notably, composite resins were increasingly selected for complex, multi-surface restorations (p < 0.05).
Conclusions: These findings highlight a substantial shift in paediatric restorative practice in Israel, reflecting growing preference for composite resins likely influenced by patient demands and national dental reforms that eliminated financial barriers. The observed trend underscores the importance of continued monitoring of material selection to guide evidence-based practice in pediatric dentistry.
{"title":"Use of Amalgam and Composite Restorations Among 12-Year-Old Children in Israel: A Retrospective Study.","authors":"Rimah Nassar, Tali Chackartchi, Haim Doron, Jonathan Mann, Mordechai Findler, Guy Tobias","doi":"10.3390/biomimetics10120833","DOIUrl":"10.3390/biomimetics10120833","url":null,"abstract":"<p><strong>Background: </strong>This study examined the trends in restorative dental practice among 12-year-old children treated at a nationwide public health maintenance organization in Israel between 2016 and 2022, focusing on the use of amalgam versus composite resin restorations in permanent premolars and molars.</p><p><strong>Methods: </strong>Data were extracted from electronic health records of the second-largest public health organization in Israel, identifying children who underwent restorative treatments during the study period. Restoration rates were compared overall and stratified by gender, socioeconomic status, and number of surfaces restored. Statistical analysis was conducted using SPSS version 27, employing Levene's test for equality of variances and Welch's one-way ANOVA.</p><p><strong>Results: </strong>The results showed a statistically significant decline in amalgam use (<i>p</i> < 0.05) alongside a marked increase in composite resin restorations (<i>p</i> < 0.05), consistent across genders and socioeconomic groups. Notably, composite resins were increasingly selected for complex, multi-surface restorations (<i>p</i> < 0.05).</p><p><strong>Conclusions: </strong>These findings highlight a substantial shift in paediatric restorative practice in Israel, reflecting growing preference for composite resins likely influenced by patient demands and national dental reforms that eliminated financial barriers. The observed trend underscores the importance of continued monitoring of material selection to guide evidence-based practice in pediatric dentistry.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 12","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12730884/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145817717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}