首页 > 最新文献

Biomimetics最新文献

英文 中文
Improving the Long-Term Mechanical Properties of Thermoplastic Short Natural Fiber Compounds by Using Alternative Matrices.
IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2025-01-13 DOI: 10.3390/biomimetics10010046
Renato Lemos Cosse, Tobias van der Most, Vincent S D Voet, Rudy Folkersma, Katja Loos

Wood plastic composites (WPCs) offer a means to reduce the carbon footprint by incorporating natural fibers to enhance the mechanical properties. However, there is limited information on the mechanical properties of these materials under hostile conditions. This study evaluated composites of polypropylene (PP), polystyrene (PS), and polylactic acid (PLA) processed via extrusion and injection molding. Tests were conducted on tensile and flexural strength and modulus, heat deflection temperature (HDT), and creep analysis under varying relative humidity conditions (10% and 90%) and water immersion, followed by freeze-thaw cycles. The addition of fibers generally improved the mechanical properties but increased water absorption. HDT and creep were dependent on the crystallinity of the composites. PLA and PS demonstrated a superior overall performance, except for their impact properties, where PP was slightly better than PLA.

{"title":"Improving the Long-Term Mechanical Properties of Thermoplastic Short Natural Fiber Compounds by Using Alternative Matrices.","authors":"Renato Lemos Cosse, Tobias van der Most, Vincent S D Voet, Rudy Folkersma, Katja Loos","doi":"10.3390/biomimetics10010046","DOIUrl":"10.3390/biomimetics10010046","url":null,"abstract":"<p><p>Wood plastic composites (WPCs) offer a means to reduce the carbon footprint by incorporating natural fibers to enhance the mechanical properties. However, there is limited information on the mechanical properties of these materials under hostile conditions. This study evaluated composites of polypropylene (PP), polystyrene (PS), and polylactic acid (PLA) processed via extrusion and injection molding. Tests were conducted on tensile and flexural strength and modulus, heat deflection temperature (HDT), and creep analysis under varying relative humidity conditions (10% and 90%) and water immersion, followed by freeze-thaw cycles. The addition of fibers generally improved the mechanical properties but increased water absorption. HDT and creep were dependent on the crystallinity of the composites. PLA and PS demonstrated a superior overall performance, except for their impact properties, where PP was slightly better than PLA.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761199/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Strategy Improved Whale Optimization Algorithm and Its Engineering Applications.
IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2025-01-13 DOI: 10.3390/biomimetics10010047
Yu Zhou, Zijun Hao

The Whale Optimization Algorithm (WOA) is recognized for its simplicity, few control parameters, and effective local optima avoidance. However, it struggles with global search efficiency and slow convergence. This paper introduces the Improved WOA (ImWOA) to overcome these challenges. Initially, ImWOA utilizes a dynamic elastic boundary optimization strategy, which leverages boundary information and the current optimal position to guide solutions that exceed the boundaries back within permissible limits, gradually converging towards the optimal solution. Subsequently, ImWOA integrates an advanced random searching strategy that equilibrates global and local searches by focusing on the current optimal location and the mean position of all individuals. Lastly, a combined mutation mechanism is employed to enhance population diversity, prevent the algorithm from stagnating in local optima, and consequently augment its overall search capability. Performance evaluations on CEC2017 benchmark functions show ImWOA outperforming five metaheuristic algorithms and three WOA variants in optimization accuracy, stability, and convergence speed. ImWOA excelled in 25 out of 29 test functions in 30D and 26 out of 29 in 100D scenarios. Furthermore, its efficacy in addressing complex challenges is corroborated by real-world applications in reducer design, vehicle side impact design, and welded beam design, highlighting its potential utility across various engineering domains.

{"title":"Multi-Strategy Improved Whale Optimization Algorithm and Its Engineering Applications.","authors":"Yu Zhou, Zijun Hao","doi":"10.3390/biomimetics10010047","DOIUrl":"10.3390/biomimetics10010047","url":null,"abstract":"<p><p>The Whale Optimization Algorithm (WOA) is recognized for its simplicity, few control parameters, and effective local optima avoidance. However, it struggles with global search efficiency and slow convergence. This paper introduces the Improved WOA (ImWOA) to overcome these challenges. Initially, ImWOA utilizes a dynamic elastic boundary optimization strategy, which leverages boundary information and the current optimal position to guide solutions that exceed the boundaries back within permissible limits, gradually converging towards the optimal solution. Subsequently, ImWOA integrates an advanced random searching strategy that equilibrates global and local searches by focusing on the current optimal location and the mean position of all individuals. Lastly, a combined mutation mechanism is employed to enhance population diversity, prevent the algorithm from stagnating in local optima, and consequently augment its overall search capability. Performance evaluations on CEC2017 benchmark functions show ImWOA outperforming five metaheuristic algorithms and three WOA variants in optimization accuracy, stability, and convergence speed. ImWOA excelled in 25 out of 29 test functions in 30D and 26 out of 29 in 100D scenarios. Furthermore, its efficacy in addressing complex challenges is corroborated by real-world applications in reducer design, vehicle side impact design, and welded beam design, highlighting its potential utility across various engineering domains.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762550/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extend Plastron Longevity on Superhydrophobic Surface Using Gas Soluble and Gas Permeable Polydimethylsiloxane (PDMS).
IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2025-01-13 DOI: 10.3390/biomimetics10010045
Ankit Gupta, Hangjian Ling

The gas (or plastron) trapped between micro/nano-scale surface textures, such as that on superhydrophobic surfaces, is crucial for many engineering applications, including drag reduction, heat and mass transfer enhancement, anti-biofouling, anti-icing, and self-cleaning. However, the longevity of the plastron is significantly affected by gas diffusion, a process where gas molecules slowly diffuse into the ambient liquid. In this work, we demonstrated that plastron longevity could be extended using a gas-soluble and gas-permeable polydimethylsiloxane (PDMS) surface. We performed experiments for PDMS surfaces consisting of micro-posts and micro-holes. We measured the plastron longevity in undersaturated liquids by an optical method. Our results showed that the plastron longevity increased with increasing the thickness of the PDMS surface, suggesting that gas initially dissolved between polymer chains was transferred to the liquid, delaying the wetting transition. Numerical simulations confirmed that a thicker PDMS material released more gas across the PDMS-liquid interface, resulting in a higher gas concentration near the plastron. Furthermore, we found that plastron longevity increased with increasing pressure differences across the PDMS material, indicating that the plastron was replenished by the gas injected through the PDMS. With increasing pressure, the mass flux caused by gas injection surpassed the mass flux caused by the diffusion of gas from plastron to liquid. Overall, our results provide new solutions for extending plastron longevity and will have significant impacts on engineering applications where a stable plastron is desired.

{"title":"Extend Plastron Longevity on Superhydrophobic Surface Using Gas Soluble and Gas Permeable Polydimethylsiloxane (PDMS).","authors":"Ankit Gupta, Hangjian Ling","doi":"10.3390/biomimetics10010045","DOIUrl":"10.3390/biomimetics10010045","url":null,"abstract":"<p><p>The gas (or plastron) trapped between micro/nano-scale surface textures, such as that on superhydrophobic surfaces, is crucial for many engineering applications, including drag reduction, heat and mass transfer enhancement, anti-biofouling, anti-icing, and self-cleaning. However, the longevity of the plastron is significantly affected by gas diffusion, a process where gas molecules slowly diffuse into the ambient liquid. In this work, we demonstrated that plastron longevity could be extended using a gas-soluble and gas-permeable polydimethylsiloxane (PDMS) surface. We performed experiments for PDMS surfaces consisting of micro-posts and micro-holes. We measured the plastron longevity in undersaturated liquids by an optical method. Our results showed that the plastron longevity increased with increasing the thickness of the PDMS surface, suggesting that gas initially dissolved between polymer chains was transferred to the liquid, delaying the wetting transition. Numerical simulations confirmed that a thicker PDMS material released more gas across the PDMS-liquid interface, resulting in a higher gas concentration near the plastron. Furthermore, we found that plastron longevity increased with increasing pressure differences across the PDMS material, indicating that the plastron was replenished by the gas injected through the PDMS. With increasing pressure, the mass flux caused by gas injection surpassed the mass flux caused by the diffusion of gas from plastron to liquid. Overall, our results provide new solutions for extending plastron longevity and will have significant impacts on engineering applications where a stable plastron is desired.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762837/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of Novel Human Wrist Prostheses Based on Parallel Architectures: Dimensional Synthesis and Kinetostatics.
IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2025-01-12 DOI: 10.3390/biomimetics10010044
Raffaele Di Gregorio

The human wrist affects the ability to efficiently perform many manipulation tasks. Despite this, most upper-limb prostheses are focused on the hand's mobility, which makes users compensate for the lost wrist mobility with complex manipulation strategies relying on the mobility of other body parts. In this context, research on wrist prostheses is still open to new contributions, even though a number of such prostheses are already present in the literature and on the market. In particular, the potential uses of parallel mechanisms in wrist prosthesis design have not been fully explored yet. In this work, after recalling the mobility characteristics of human wrists and reviewing the literature both on wrist prostheses and parallel mechanisms, a number of parallel architectures employable in a wrist prosthesis are selected. Then, with reference to the design requirements of this prosthesis type, the dimensional synthesis and kinetostatic analysis of the selected architectures are addressed. The results of this work are new wrist prosthesis architectures together with the analysis of their kinetostatic performances. These findings complete the first step of a research project aimed at developing new concepts for mechatronic wrists.

{"title":"Design of Novel Human Wrist Prostheses Based on Parallel Architectures: Dimensional Synthesis and Kinetostatics.","authors":"Raffaele Di Gregorio","doi":"10.3390/biomimetics10010044","DOIUrl":"10.3390/biomimetics10010044","url":null,"abstract":"<p><p>The human wrist affects the ability to efficiently perform many manipulation tasks. Despite this, most upper-limb prostheses are focused on the hand's mobility, which makes users compensate for the lost wrist mobility with complex manipulation strategies relying on the mobility of other body parts. In this context, research on wrist prostheses is still open to new contributions, even though a number of such prostheses are already present in the literature and on the market. In particular, the potential uses of parallel mechanisms in wrist prosthesis design have not been fully explored yet. In this work, after recalling the mobility characteristics of human wrists and reviewing the literature both on wrist prostheses and parallel mechanisms, a number of parallel architectures employable in a wrist prosthesis are selected. Then, with reference to the design requirements of this prosthesis type, the dimensional synthesis and kinetostatic analysis of the selected architectures are addressed. The results of this work are new wrist prosthesis architectures together with the analysis of their kinetostatic performances. These findings complete the first step of a research project aimed at developing new concepts for mechatronic wrists.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762260/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of the Sodium Titanate Crystal Size of Biomimetic Dental Implants on Osteoblastic Behavior: An In Vitro Study.
IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2025-01-12 DOI: 10.3390/biomimetics10010043
Saray Fernández-Hernández, Javier Gil, Daniel Robles-Cantero, Esteban Pérez-Pevida, Mariano Herrero-Climent, Aritza Brizuela-Velasco

Treating the surfaces of dental implants in an alkaline medium allows us to obtain microstructures of sodium titanate crystals that favor the appearance of apatite in the physiological environment, producing osteoconductive surfaces. In this research, 385 discs made of titanium used in dental implants underwent different NaOH treatments with a 6M concentration at 600 °C and cooling rates of 20, 50, 75, and 115 °C/h. Using high-resolution electron microscopy, the microstructures were observed, and the different crystal sizes were determined and compared with control samples (those without biomimetic treatment). Roughness, wettability, surface energy and the sodium content of the surface were determined. The different surfaces were cultured with human osteoblastic cells; cell adhesion was determined at 3 and 14 days, and the degree of mineralization was determined at 14 days via alkaline phosphatase levels. Variations in the microstructure and size of sodium titanate crystals in NaOH solutions rich (1 g/L) or low in calcium (approximately 100 ppm) were determined. The results show that as the cooling rate increases, the size of the crystals decreases (from 0.4 μm to 0.8 μm) except for the case of 115 °C/h, when the rate is too fast for crystalline nucleation to occur on the surface of the titanium. The thermochemical treatment does not influence the roughness or the cooling rate since a Sa of 0.21 μm is maintained. However, the presence of titanate causes a decrease in the contact angle from 70° to 42° and, in turn, causes an increase in the total surface energy from 35 to 49.5 mJ/m2, with the polar component standing out in this energy increase. No variations were observed in the thermochemical treatments in the presence of sodium, which was around 1200 ppm. It was observed that as the size of the crystals decreases, cell adhesion increases at 3 days and decreases at 14 days. This is because finer crystals on the surface are already in the mineralization process, as demonstrated using the level of alkaline phosphatase that is maximal for the cooling rate of 75 °C/h. It was possible to confirm that the variations in the concentrated NaOH solutions with different calcium contents did not affect the crystal sizes or the microstructure of the surface. This research makes it possible to obtain dental implants with different mineralization speeds depending on the cooling rate applied.

{"title":"Influence of the Sodium Titanate Crystal Size of Biomimetic Dental Implants on Osteoblastic Behavior: An In Vitro Study.","authors":"Saray Fernández-Hernández, Javier Gil, Daniel Robles-Cantero, Esteban Pérez-Pevida, Mariano Herrero-Climent, Aritza Brizuela-Velasco","doi":"10.3390/biomimetics10010043","DOIUrl":"10.3390/biomimetics10010043","url":null,"abstract":"<p><p>Treating the surfaces of dental implants in an alkaline medium allows us to obtain microstructures of sodium titanate crystals that favor the appearance of apatite in the physiological environment, producing osteoconductive surfaces. In this research, 385 discs made of titanium used in dental implants underwent different NaOH treatments with a 6M concentration at 600 °C and cooling rates of 20, 50, 75, and 115 °C/h. Using high-resolution electron microscopy, the microstructures were observed, and the different crystal sizes were determined and compared with control samples (those without biomimetic treatment). Roughness, wettability, surface energy and the sodium content of the surface were determined. The different surfaces were cultured with human osteoblastic cells; cell adhesion was determined at 3 and 14 days, and the degree of mineralization was determined at 14 days via alkaline phosphatase levels. Variations in the microstructure and size of sodium titanate crystals in NaOH solutions rich (1 g/L) or low in calcium (approximately 100 ppm) were determined. The results show that as the cooling rate increases, the size of the crystals decreases (from 0.4 μm to 0.8 μm) except for the case of 115 °C/h, when the rate is too fast for crystalline nucleation to occur on the surface of the titanium. The thermochemical treatment does not influence the roughness or the cooling rate since a Sa of 0.21 μm is maintained. However, the presence of titanate causes a decrease in the contact angle from 70° to 42° and, in turn, causes an increase in the total surface energy from 35 to 49.5 mJ/m<sup>2</sup>, with the polar component standing out in this energy increase. No variations were observed in the thermochemical treatments in the presence of sodium, which was around 1200 ppm. It was observed that as the size of the crystals decreases, cell adhesion increases at 3 days and decreases at 14 days. This is because finer crystals on the surface are already in the mineralization process, as demonstrated using the level of alkaline phosphatase that is maximal for the cooling rate of 75 °C/h. It was possible to confirm that the variations in the concentrated NaOH solutions with different calcium contents did not affect the crystal sizes or the microstructure of the surface. This research makes it possible to obtain dental implants with different mineralization speeds depending on the cooling rate applied.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763335/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilization of TiN and the Texture of Bionic Pangolin Scales to Improve the Wear Resistance of Cast Steel 20Mn Metal.
IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2025-01-10 DOI: 10.3390/biomimetics10010042
Wenwen Zhang, Mingyuan Zhang, Xingliang Dong, Yuanzhe Huang, Shukun Cao

This research centers around cast steel 20Mn, which is the material utilized for the ear-picking roller of a corn harvester. The study delves into methods of enhancing its hydrophobicity and wear resistance. Fiber laser-processing technology was employed to fabricate pangolin bionic micro-textures on the material surface, and PVD technology was utilized to deposit a TiN coating. The wear resistance of the modified surface was investigated via the reciprocating dry sliding wear method, while its hydrophobicity was concurrently examined. The results demonstrate that the laser texturing technology and TiN coating managed to reduce the friction coefficient of the sample surface by 20% and 30.9%, respectively. This can be chiefly attributed to the significant effects of the modified surface in augmenting hardness, diminishing the contact area of the friction surface, lowering shear stress, and entrapping wear debris. When the pangolin texture and TiN coating work in concert, the abrasive and fatigue wear between the two surfaces is conspicuously mitigated, and the friction coefficient is reduced by 38.09%. Moreover, the experiment also reveals that a superhydrophobic surface can be achieved by fabricating the pangolin micro-textures.

{"title":"Utilization of TiN and the Texture of Bionic Pangolin Scales to Improve the Wear Resistance of Cast Steel 20Mn Metal.","authors":"Wenwen Zhang, Mingyuan Zhang, Xingliang Dong, Yuanzhe Huang, Shukun Cao","doi":"10.3390/biomimetics10010042","DOIUrl":"10.3390/biomimetics10010042","url":null,"abstract":"<p><p>This research centers around cast steel 20Mn, which is the material utilized for the ear-picking roller of a corn harvester. The study delves into methods of enhancing its hydrophobicity and wear resistance. Fiber laser-processing technology was employed to fabricate pangolin bionic micro-textures on the material surface, and PVD technology was utilized to deposit a TiN coating. The wear resistance of the modified surface was investigated via the reciprocating dry sliding wear method, while its hydrophobicity was concurrently examined. The results demonstrate that the laser texturing technology and TiN coating managed to reduce the friction coefficient of the sample surface by 20% and 30.9%, respectively. This can be chiefly attributed to the significant effects of the modified surface in augmenting hardness, diminishing the contact area of the friction surface, lowering shear stress, and entrapping wear debris. When the pangolin texture and TiN coating work in concert, the abrasive and fatigue wear between the two surfaces is conspicuously mitigated, and the friction coefficient is reduced by 38.09%. Moreover, the experiment also reveals that a superhydrophobic surface can be achieved by fabricating the pangolin micro-textures.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MSBKA: A Multi-Strategy Improved Black-Winged Kite Algorithm for Feature Selection of Natural Disaster Tweets Classification.
IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2025-01-10 DOI: 10.3390/biomimetics10010041
Guangyu Mu, Jiaxue Li, Zhanhui Liu, Jiaxiu Dai, Jiayi Qu, Xiurong Li

With the advancement of the Internet, social media platforms have gradually become powerful in spreading crisis-related content. Identifying informative tweets associated with natural disasters is beneficial for the rescue operation. When faced with massive text data, choosing the pivotal features, reducing the calculation expense, and increasing the model classification performance is a significant challenge. Therefore, this study proposes a multi-strategy improved black-winged kite algorithm (MSBKA) for feature selection of natural disaster tweets classification based on the wrapper method's principle. Firstly, BKA is improved by utilizing the enhanced Circle mapping, integrating the hierarchical reverse learning, and introducing the Nelder-Mead method. Then, MSBKA is combined with the excellent classifier SVM (RBF kernel function) to construct a hybrid model. Finally, the MSBKA-SVM model performs feature selection and tweet classification tasks. The empirical analysis of the data from four natural disasters shows that the proposed model has achieved an accuracy of 0.8822. Compared with GA, PSO, SSA, and BKA, the accuracy is increased by 4.34%, 2.13%, 2.94%, and 6.35%, respectively. This research proves that the MSBKA-SVM model can play a supporting role in reducing disaster risk.

{"title":"MSBKA: A Multi-Strategy Improved Black-Winged Kite Algorithm for Feature Selection of Natural Disaster Tweets Classification.","authors":"Guangyu Mu, Jiaxue Li, Zhanhui Liu, Jiaxiu Dai, Jiayi Qu, Xiurong Li","doi":"10.3390/biomimetics10010041","DOIUrl":"10.3390/biomimetics10010041","url":null,"abstract":"<p><p>With the advancement of the Internet, social media platforms have gradually become powerful in spreading crisis-related content. Identifying informative tweets associated with natural disasters is beneficial for the rescue operation. When faced with massive text data, choosing the pivotal features, reducing the calculation expense, and increasing the model classification performance is a significant challenge. Therefore, this study proposes a multi-strategy improved black-winged kite algorithm (MSBKA) for feature selection of natural disaster tweets classification based on the wrapper method's principle. Firstly, BKA is improved by utilizing the enhanced Circle mapping, integrating the hierarchical reverse learning, and introducing the Nelder-Mead method. Then, MSBKA is combined with the excellent classifier SVM (RBF kernel function) to construct a hybrid model. Finally, the MSBKA-SVM model performs feature selection and tweet classification tasks. The empirical analysis of the data from four natural disasters shows that the proposed model has achieved an accuracy of 0.8822. Compared with GA, PSO, SSA, and BKA, the accuracy is increased by 4.34%, 2.13%, 2.94%, and 6.35%, respectively. This research proves that the MSBKA-SVM model can play a supporting role in reducing disaster risk.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763058/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Calcium Chloride Crosslinking Solution Concentration on the Long-Term Cell Viability of 16HBE14o- Human Bronchial Cells Embedded in Alginate-Based Hydrogels.
IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2025-01-10 DOI: 10.3390/biomimetics10010040
Nathan Wood, Esther I Doria, Taieba Tuba Rahman, Wanhe Li, Zhijian Pei, Hongmin Qin

In this preliminary study, the long-term effects of calcium chloride crosslinking concentration on viability of 16HBE14o- human bronchial epithelial cells embedded in alginate-extracellular matrix (ECM) or alginate-methylcellulose-ECM hydrogels have been investigated. There is currently a limited understanding regarding the effects of crosslinking solution concentration on lung epithelial cells embedded in hydrogel. Furthermore, the effects of calcium chloride concentration in crosslinking solutions on other cell types have not been reported regarding whether the addition of viscosity and stiffness tuning agents such as methylcellulose will alter the responses of cells to changes in calcium chloride concentration in crosslinking solutions. While there were no significant effects of calcium chloride concentration on cell viability in alginate-ECM hydrogels, there is a decrease in cell viability in alginate-methylcellulose-ECM hydrogels crosslinked with 300 mM calcium chloride crosslinking solution. These findings have implications in the maintenance of 16HBE14o- 3D cultures with respect to the gelation of alginate with high concentrations of ionic crosslinking solution.

{"title":"Effects of Calcium Chloride Crosslinking Solution Concentration on the Long-Term Cell Viability of 16HBE14o- Human Bronchial Cells Embedded in Alginate-Based Hydrogels.","authors":"Nathan Wood, Esther I Doria, Taieba Tuba Rahman, Wanhe Li, Zhijian Pei, Hongmin Qin","doi":"10.3390/biomimetics10010040","DOIUrl":"10.3390/biomimetics10010040","url":null,"abstract":"<p><p>In this preliminary study, the long-term effects of calcium chloride crosslinking concentration on viability of 16HBE14o- human bronchial epithelial cells embedded in alginate-extracellular matrix (ECM) or alginate-methylcellulose-ECM hydrogels have been investigated. There is currently a limited understanding regarding the effects of crosslinking solution concentration on lung epithelial cells embedded in hydrogel. Furthermore, the effects of calcium chloride concentration in crosslinking solutions on other cell types have not been reported regarding whether the addition of viscosity and stiffness tuning agents such as methylcellulose will alter the responses of cells to changes in calcium chloride concentration in crosslinking solutions. While there were no significant effects of calcium chloride concentration on cell viability in alginate-ECM hydrogels, there is a decrease in cell viability in alginate-methylcellulose-ECM hydrogels crosslinked with 300 mM calcium chloride crosslinking solution. These findings have implications in the maintenance of 16HBE14o- 3D cultures with respect to the gelation of alginate with high concentrations of ionic crosslinking solution.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Terminological Resources for Biologically Inspired Design and Biomimetics: Evaluation of the Potential for Ontology Reuse.
IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2025-01-09 DOI: 10.3390/biomimetics10010039
Dilek Yargan, Ludger Jansen

Biomimetics aims to learn from living systems to develop innovative technical artefacts. As it transcends disciplinary boundaries and needs to integrate both biological and technological knowledge, a domain ontology for biomimetics would be highly desirable. So far, several terminological resources have been designed to support the biomimetic development process. This paper examines nine resources for Biologically Inspired Design and biomimetics, including taxonomies, thesauri, and ontologies. Their benefits and limitations for structuring or organising biomimetic knowledge are evaluated against nine criteria, including availability, clarity, and machine readability. Our analysis shows that existing terminological resources have little to no potential for reuse due to inconsistent structure, ambiguous class labels, lack of standardisation, and lack of availability. Furthermore, no resource adequately represents biomimetic knowledge, as all resources suffer from limitations in content representation, reusability, or infrastructure. In particular, an adequate domain ontology for supporting biomimetic development is lacking; we discuss the desiderata for such an ontology.

{"title":"Terminological Resources for Biologically Inspired Design and Biomimetics: Evaluation of the Potential for Ontology Reuse.","authors":"Dilek Yargan, Ludger Jansen","doi":"10.3390/biomimetics10010039","DOIUrl":"10.3390/biomimetics10010039","url":null,"abstract":"<p><p>Biomimetics aims to learn from living systems to develop innovative technical artefacts. As it transcends disciplinary boundaries and needs to integrate both biological and technological knowledge, a domain ontology for biomimetics would be highly desirable. So far, several terminological resources have been designed to support the biomimetic development process. This paper examines nine resources for Biologically Inspired Design and biomimetics, including taxonomies, thesauri, and ontologies. Their benefits and limitations for structuring or organising biomimetic knowledge are evaluated against nine criteria, including availability, clarity, and machine readability. Our analysis shows that existing terminological resources have little to no potential for reuse due to inconsistent structure, ambiguous class labels, lack of standardisation, and lack of availability. Furthermore, no resource adequately represents biomimetic knowledge, as all resources suffer from limitations in content representation, reusability, or infrastructure. In particular, an adequate domain ontology for supporting biomimetic development is lacking; we discuss the desiderata for such an ontology.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762366/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth Propagation of Liquid Spawn on Non-Woven Hemp Mats to Inform Digital Biofabrication of Mycelium-Based Composites.
IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2025-01-08 DOI: 10.3390/biomimetics10010033
Andreas Biront, Mart Sillen, Patrick Van Dijck, Jan Wurm

Mycelium-based composites (MBCs) are highly valued for their ability to transform low-value organic materials into sustainable building materials, offering significant potential for decarbonizing the construction sector. The properties of MBCs are influenced by factors such as the mycelium species, substrate materials, fabrication growth parameters, and post-processing. Traditional fabrication methods involve combining grain spawn with loose substrates in a mold to achieve specific single functional properties, such as strength, acoustic absorption, or thermal insulation. However, recent advancements have focused on digital biofabrication to optimize MBC properties and expand their application scope. Despite these developments, existing research predominantly explores the use of grain spawn inoculation, with little focus on liquid spawn. Liquid spawn, however, holds significant potential, particularly in digital biofabrication, due to its ease of deposition and greater precision compared with grains. This paper, part of a digital biofabrication framework, investigates the growth kinetics of Ganoderma lucidum and Pleurotus ostreatus on hemp non-woven mats, offering flexibility and mold-free fabrication using liquid inoculation. By integrating mycelium growth kinetics into digital biofabricated materials, researchers can develop more sustainable, efficient, and specialized solutions using fewer resources, enhancing the adaptability and functionality of MBCs. The experiment involved pre-cultivating P. ostreatus and G. lucidum in yeast peptone dextrose (YPD) and complete yeast media (CYM) under static (ST) and shaking (SH) conditions. Four dilutions (1:10, 1:2, 1:1, and 2:1) were prepared and analyzed through imagery to assess growth kinetics. Results showed that lower dilutions promoted faster growth with full coverage, while higher dilutions offered slower growth with partial coverage. SH conditions resulted in slightly higher coverage and faster growth. To optimize the control of material properties within the digital biofabrication system, it is recommended to use CYM ST for P. ostreatus and YPD SH for G. lucidum, as their growth curves show clear separation between dilutions, reflecting distinct growth efficiencies and speeds that can be selected for desired outcomes.

{"title":"Growth Propagation of Liquid Spawn on Non-Woven Hemp Mats to Inform Digital Biofabrication of Mycelium-Based Composites.","authors":"Andreas Biront, Mart Sillen, Patrick Van Dijck, Jan Wurm","doi":"10.3390/biomimetics10010033","DOIUrl":"10.3390/biomimetics10010033","url":null,"abstract":"<p><p>Mycelium-based composites (MBCs) are highly valued for their ability to transform low-value organic materials into sustainable building materials, offering significant potential for decarbonizing the construction sector. The properties of MBCs are influenced by factors such as the mycelium species, substrate materials, fabrication growth parameters, and post-processing. Traditional fabrication methods involve combining grain spawn with loose substrates in a mold to achieve specific single functional properties, such as strength, acoustic absorption, or thermal insulation. However, recent advancements have focused on digital biofabrication to optimize MBC properties and expand their application scope. Despite these developments, existing research predominantly explores the use of grain spawn inoculation, with little focus on liquid spawn. Liquid spawn, however, holds significant potential, particularly in digital biofabrication, due to its ease of deposition and greater precision compared with grains. This paper, part of a digital biofabrication framework, investigates the growth kinetics of <i>Ganoderma lucidum</i> and <i>Pleurotus ostreatus</i> on hemp non-woven mats, offering flexibility and mold-free fabrication using liquid inoculation. By integrating mycelium growth kinetics into digital biofabricated materials, researchers can develop more sustainable, efficient, and specialized solutions using fewer resources, enhancing the adaptability and functionality of MBCs. The experiment involved pre-cultivating <i>P. ostreatus</i> and <i>G. lucidum</i> in yeast peptone dextrose (YPD) and complete yeast media (CYM) under static (ST) and shaking (SH) conditions. Four dilutions (1:10, 1:2, 1:1, and 2:1) were prepared and analyzed through imagery to assess growth kinetics. Results showed that lower dilutions promoted faster growth with full coverage, while higher dilutions offered slower growth with partial coverage. SH conditions resulted in slightly higher coverage and faster growth. To optimize the control of material properties within the digital biofabrication system, it is recommended to use CYM ST for <i>P. ostreatus</i> and YPD SH for <i>G. lucidum</i>, as their growth curves show clear separation between dilutions, reflecting distinct growth efficiencies and speeds that can be selected for desired outcomes.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762511/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biomimetics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1