K. Trush, A. Eliašová, M. D. Monje-Rueda, V. Kolarčik, M. Betti, P. Paľove-Balang
Plants are often exposed to different abiotic and biotic stresses that induce multigene response, resulting in specific modulations in primary and secondary metabolite accumulation (Zhao et al. 2005). Low molecular mass compounds absent in healthy tissues or present only in insignificant amounts are produced by plants in significant quantities as a response to biotic stresses (mainly to attack by fungi or bacteria) are collectively called phytoalexins. They take part in an intricate defence system which enables plants to control invading patogens (Jeandet et al. 2014). Phytoalexins have been described in number of plants belonging to different families including those of economic importance such as Brassicaceae, Fabaceae, Solanaceae, Vitaceae, and Poaceae (Ahuja et al. 2012).
{"title":"Chitosan is involved in elicitation of vestitol production in Lotus japonicus","authors":"K. Trush, A. Eliašová, M. D. Monje-Rueda, V. Kolarčik, M. Betti, P. Paľove-Balang","doi":"10.32615/bp.2023.007","DOIUrl":"https://doi.org/10.32615/bp.2023.007","url":null,"abstract":"Plants are often exposed to different abiotic and biotic stresses that induce multigene response, resulting in specific modulations in primary and secondary metabolite accumulation (Zhao et al. 2005). Low molecular mass compounds absent in healthy tissues or present only in insignificant amounts are produced by plants in significant quantities as a response to biotic stresses (mainly to attack by fungi or bacteria) are collectively called phytoalexins. They take part in an intricate defence system which enables plants to control invading patogens (Jeandet et al. 2014). Phytoalexins have been described in number of plants belonging to different families including those of economic importance such as Brassicaceae, Fabaceae, Solanaceae, Vitaceae, and Poaceae (Ahuja et al. 2012).","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49355705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Kyrychenko, H. Snihur, T. Shevchenko, I. Shcherbatenko, H. Korotieieva, O. Andriichuk
Alliaria petiolata (Alliaria petiolata, (M. Bieb.) Cavara & Grande, named also Alliaria officinalis Andrz. ex. Bieb.), known as “Alliaria” or garlic mustard is a biennial herbaceous plant belonging to the mustard family (Brassicaceae). The genus Alliaria, in addition to garlic mustard includes two other species – Alliaria auriculata Kom. and Alliaria brachycarpa M. Bieb. (http://www. theplantlist.org/tpl1.1/search?q=Alliaria). A. petiolata is
{"title":"Cucumber mosaic virus and turnip mosaic virus occurrence in garlic mustard in Ukraine","authors":"A. Kyrychenko, H. Snihur, T. Shevchenko, I. Shcherbatenko, H. Korotieieva, O. Andriichuk","doi":"10.32615/bp.2023.006","DOIUrl":"https://doi.org/10.32615/bp.2023.006","url":null,"abstract":"Alliaria petiolata (Alliaria petiolata, (M. Bieb.) Cavara & Grande, named also Alliaria officinalis Andrz. ex. Bieb.), known as “Alliaria” or garlic mustard is a biennial herbaceous plant belonging to the mustard family (Brassicaceae). The genus Alliaria, in addition to garlic mustard includes two other species – Alliaria auriculata Kom. and Alliaria brachycarpa M. Bieb. (http://www. theplantlist.org/tpl1.1/search?q=Alliaria). A. petiolata is","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44285308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Chen, W. Mao, W.Y. Li, H. Han, X. Zhang, X. Gan
Abbreviations : AQY - apparent quantum yield; CCP - carbon dioxide compensation point; CE - carboxylation efficiency; C i - intercellular CO 2 concentration; C iast - saturation point of carbon dioxide; E - transpiration rate; FE - forest edge; FG - forest gap; g s - stomatal conductance; H - high altitude; L - low altitude; LA - leaf area; LCP - light compensation point; LL - leaf length; LM - leaf mass; LSP - light saturation point; LW - leaf width; M - middle altitude; MT - mature individuals of T. sinense ; P N - net photosynthetic rate; P Nmax - the maximum net photosynthetic rate of the P N
{"title":"The photosynthetic eco-physiological adaptability of the endangered plant Tetracentron sinense to different habitats and altitudes","authors":"R. Chen, W. Mao, W.Y. Li, H. Han, X. Zhang, X. Gan","doi":"10.32615/bp.2023.005","DOIUrl":"https://doi.org/10.32615/bp.2023.005","url":null,"abstract":"Abbreviations : AQY - apparent quantum yield; CCP - carbon dioxide compensation point; CE - carboxylation efficiency; C i - intercellular CO 2 concentration; C iast - saturation point of carbon dioxide; E - transpiration rate; FE - forest edge; FG - forest gap; g s - stomatal conductance; H - high altitude; L - low altitude; LA - leaf area; LCP - light compensation point; LL - leaf length; LM - leaf mass; LSP - light saturation point; LW - leaf width; M - middle altitude; MT - mature individuals of T. sinense ; P N - net photosynthetic rate; P Nmax - the maximum net photosynthetic rate of the P N","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48448468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. B. Wang, Y. Q. Liu, L. L. Chen, LI X.Q., HA N.H., T. X. Hoang, LI X.H., X. Chen
Ascorbic acid (AsA) and glutathione (GSH) contribute to defense responses under abiotic stresses. The present study explored the ascorbate-glutathione cycle and ascorbate regeneration under high concentration (30 mM) of cadmium in the tea plant ( Camellia sinensis L.). The tea leaves showed speckles and necrosis from the third day of Cd treatment. The content of superoxide anion (O 2 . - ) and hydrogen peroxide (H 2 O 2 ) in the leaves were significantly higher until the seventh day after Cd treatment. The content of O 2 . - and H 2 O 2 were the highest on the fifth day (212.7 and 153.6 % of the control, respectively). The AsA content increased (86.9 %) on the first day after Cd treatment and decreased significantly in the subsequent days, while GSH showed a reverse trend. The enzymatic activity assays showed that dehydroascorbate reductase (DHAR) and glutathione reductase (GR) involved in AsA regeneration were downregulated considerably after Cd foliar application. In contrast, the activities of ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) increased on the first day and then declined. Reverse-transcription quantitative PCR showed upregulation of glutathione synthetase (CsGSHS), γ-glutamylcysteine synthetase (Csγ-ECS), and CsMDHAR of the AsA regeneration pathway and downregulation of CsDHAR and CsGR. The expressions of GDP-L-galactose phosphorylase (CsGGP), L-galactose-1-phosphate phosphatase (CsGPP), and L-galactono-1,4-lactone dehydrogenase (CsGaILDH) of the L-galactose pathway were also downregulated. The results indicated that AsA, which can respond to Cd stress of plants by increasing antioxidant ability, was consumed to scavenge ROS; moreover, Cd stress inhibited AsA synthesis and regeneration, which made that tea plants suffering severe damage.
{"title":"The impact of cadmium stress on the ascorbate-glutathione pathway and ascorbate regeneration in tea plants","authors":"H. B. Wang, Y. Q. Liu, L. L. Chen, LI X.Q., HA N.H., T. X. Hoang, LI X.H., X. Chen","doi":"10.32615/bp.2023.002","DOIUrl":"https://doi.org/10.32615/bp.2023.002","url":null,"abstract":"Ascorbic acid (AsA) and glutathione (GSH) contribute to defense responses under abiotic stresses. The present study explored the ascorbate-glutathione cycle and ascorbate regeneration under high concentration (30 mM) of cadmium in the tea plant ( Camellia sinensis L.). The tea leaves showed speckles and necrosis from the third day of Cd treatment. The content of superoxide anion (O 2 . - ) and hydrogen peroxide (H 2 O 2 ) in the leaves were significantly higher until the seventh day after Cd treatment. The content of O 2 . - and H 2 O 2 were the highest on the fifth day (212.7 and 153.6 % of the control, respectively). The AsA content increased (86.9 %) on the first day after Cd treatment and decreased significantly in the subsequent days, while GSH showed a reverse trend. The enzymatic activity assays showed that dehydroascorbate reductase (DHAR) and glutathione reductase (GR) involved in AsA regeneration were downregulated considerably after Cd foliar application. In contrast, the activities of ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) increased on the first day and then declined. Reverse-transcription quantitative PCR showed upregulation of glutathione synthetase (CsGSHS), γ-glutamylcysteine synthetase (Csγ-ECS), and CsMDHAR of the AsA regeneration pathway and downregulation of CsDHAR and CsGR. The expressions of GDP-L-galactose phosphorylase (CsGGP), L-galactose-1-phosphate phosphatase (CsGPP), and L-galactono-1,4-lactone dehydrogenase (CsGaILDH) of the L-galactose pathway were also downregulated. The results indicated that AsA, which can respond to Cd stress of plants by increasing antioxidant ability, was consumed to scavenge ROS; moreover, Cd stress inhibited AsA synthesis and regeneration, which made that tea plants suffering severe damage.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44053113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LI S.-S., Z. C. Yang, D. Wang, L. S, K. Zhu, Y. Zhai
Owing to cold resistance and a lack of heat resistance in spinach ( Spinacea oleracea L.), heat is the primary constraint that limits its production in summer. This study examined the auxiliary effects of spinach rhizosphere microbes on improving the heat resistance of spinach. A strain isolated from the rhizosphere soil of heat-stressed spinach was identified as Bacillus subtilis and designated B. subtilis BE-L21. It produces indoleacetic acid, amylase
{"title":"Role of Bacillus subtilis BE-L21 in enhancing the heat tolerance of spinach seedlings","authors":"LI S.-S., Z. C. Yang, D. Wang, L. S, K. Zhu, Y. Zhai","doi":"10.32615/bp.2023.001","DOIUrl":"https://doi.org/10.32615/bp.2023.001","url":null,"abstract":"Owing to cold resistance and a lack of heat resistance in spinach ( Spinacea oleracea L.), heat is the primary constraint that limits its production in summer. This study examined the auxiliary effects of spinach rhizosphere microbes on improving the heat resistance of spinach. A strain isolated from the rhizosphere soil of heat-stressed spinach was identified as Bacillus subtilis and designated B. subtilis BE-L21. It produces indoleacetic acid, amylase","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42592756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Shibuya, C. Kataoka, K. Nishio, R. Endo, Y. Kitaya, Y. Shinto, K. Mishiba, Y. Iwata
Plants exhibit morphological plasticity in response to changes in the proportion of far-red radiation (FR). However, little is known about the response to a sudden increase of FR component. Cucumber seedlings were acclimatized to radiation without FR (FR-) for 1 - 5 d after germination, and then transferred to radiation containing FR (FR+) at levels similar to those in natural sunlight. Other seedlings were acclimatized to FR-or FR+, which was maintained continuously. The sudden increase in FR damaged the cotyledons and the first true leaf, especially when radiation was changed from FR-to FR+ at days 3 or 4 after germination. Necrosis of the damaged leaves may have resulted from inhibition of water flow in leaf xylem, because wilting and decreased stomatal conductance were observed simultaneously with leaf necrosis. Plants in the treatment groups that showed the most frequent damage showed two peaks in cotyledon elongation. This suggests that the leaves that had been acclimatized to FR-were easily damaged by the sudden promotion of leaf expansion caused by FR+.
{"title":"Cucumber leaf necrosis caused by radiation with abrupt increase of far-red component","authors":"T. Shibuya, C. Kataoka, K. Nishio, R. Endo, Y. Kitaya, Y. Shinto, K. Mishiba, Y. Iwata","doi":"10.32615/bp.2022.039","DOIUrl":"https://doi.org/10.32615/bp.2022.039","url":null,"abstract":"Plants exhibit morphological plasticity in response to changes in the proportion of far-red radiation (FR). However, little is known about the response to a sudden increase of FR component. Cucumber seedlings were acclimatized to radiation without FR (FR-) for 1 - 5 d after germination, and then transferred to radiation containing FR (FR+) at levels similar to those in natural sunlight. Other seedlings were acclimatized to FR-or FR+, which was maintained continuously. The sudden increase in FR damaged the cotyledons and the first true leaf, especially when radiation was changed from FR-to FR+ at days 3 or 4 after germination. Necrosis of the damaged leaves may have resulted from inhibition of water flow in leaf xylem, because wilting and decreased stomatal conductance were observed simultaneously with leaf necrosis. Plants in the treatment groups that showed the most frequent damage showed two peaks in cotyledon elongation. This suggests that the leaves that had been acclimatized to FR-were easily damaged by the sudden promotion of leaf expansion caused by FR+.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41563620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Preventing extinction is one of the greatest challenges facing the global community. Nursery stock breeding is an effective means to restore endangered species, such as Horsfieldia hainanensis Merr., with difficulty in natural regeneration period. In this study, we investigated the optimum combination of irradiance and nitrogen for the cultivation of H. hainanensis seedlings by comparing twenty treatments with different combinations of irradiances (100, 67.5, 45.7, 15.6 % of full natural irradiance) and five levels of N supply (0, 1.8, 3.6, 5.4, 7.2 g plant -1 ). We found that the growth and photosynthetic efficiency of seedlings under full irradiance were significantly inhibited compared with shaded seedlings. Under full irradiance, a lack of N resulted in reduced chlorophyll (Chl) synthesis, causing lower photosynthetic efficiency and an imbalance in metabolism. Proper shading (67.5 and 45.7 % of natural irradiance) and N addition (1.8 - 5.4 g plant -1 ) promoted root development, increase Chl content and photosynthesis, and ultimately the accumulation of larger amount of biomass. The biomass of the shaded seedlings was mainly distributed to aboveground tissues, while seedlings exposed to stronger radiation accumulated greater root biomass. Therefore, the best seedling management for this species is a combination of 67.5 % of natural irradiance and moderate N supply (4.6 g plant -1 ).
{"title":"Irradiation and nitrogen regulate growth and physiology in Horsfieldia hainanensis seedlings","authors":"W. Luo, Y. Wang, L. Wang","doi":"10.32615/bp.2022.038","DOIUrl":"https://doi.org/10.32615/bp.2022.038","url":null,"abstract":"Preventing extinction is one of the greatest challenges facing the global community. Nursery stock breeding is an effective means to restore endangered species, such as Horsfieldia hainanensis Merr., with difficulty in natural regeneration period. In this study, we investigated the optimum combination of irradiance and nitrogen for the cultivation of H. hainanensis seedlings by comparing twenty treatments with different combinations of irradiances (100, 67.5, 45.7, 15.6 % of full natural irradiance) and five levels of N supply (0, 1.8, 3.6, 5.4, 7.2 g plant -1 ). We found that the growth and photosynthetic efficiency of seedlings under full irradiance were significantly inhibited compared with shaded seedlings. Under full irradiance, a lack of N resulted in reduced chlorophyll (Chl) synthesis, causing lower photosynthetic efficiency and an imbalance in metabolism. Proper shading (67.5 and 45.7 % of natural irradiance) and N addition (1.8 - 5.4 g plant -1 ) promoted root development, increase Chl content and photosynthesis, and ultimately the accumulation of larger amount of biomass. The biomass of the shaded seedlings was mainly distributed to aboveground tissues, while seedlings exposed to stronger radiation accumulated greater root biomass. Therefore, the best seedling management for this species is a combination of 67.5 % of natural irradiance and moderate N supply (4.6 g plant -1 ).","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41518801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. O. S. Tjia, K. Meitha, P. Septiani, R. Awaludin, D. Sumardi
The capacity of extracellular self-DNA (esDNA) to inhibit growth is getting more research attention as this could be explored for several purposes, including the development of specific bioherbicides. While the inhibitory effect has been studied in several dicotyledon species, little is known about the effects and subsequent signaling processes in monocots. Here, we measured the growth, counted the number of lateral and crown roots, determined greenness index, quantified the production of O 2.- and H 2 O 2 , and determined the expressions of genes encoding antioxidant enzymes ( SOD s and CAT s) in rice ( Oryza sativa L.), a model plant of monocots. After 7 d of germination, rice roots were exposed to 0, 75, and 150 µg cm -3 of esDNA. Inhibitory effect was found to be negatively correlated to esDNA concentration, as indicated by the length of primary roots. Interestingly, this negative effect was only observed in the directly exposed organ (root) but not in the length of shoot or fresh mass of the whole seedling. The percentage of greenness index of leaves and number of crown and lateral roots were also similar across treatments. However, esDNA exposure to root increased production of O 2.- and H 2 O 2 in the root. At the molecular level, the response was characterized by the decreased expression of the antioxidant genes SOD 3, CAT B, and CAT C. These findings suggest that esDNA inhibits rice growth locally in, e.g. in treated roots, and the responses involve increased production of ROS and suppression of antioxidants. This study could be the basis for determining the combination of concentration and period of exposure that might significantly inhibit total growth of monocot weeds with a minimum effect on the crop.
{"title":"Extracellular self-DNA induces local inhibition of growth, regulates production of reactive oxygen species, and gene expression in rice roots","authors":"T. O. S. Tjia, K. Meitha, P. Septiani, R. Awaludin, D. Sumardi","doi":"10.32615/bp.2022.037","DOIUrl":"https://doi.org/10.32615/bp.2022.037","url":null,"abstract":"The capacity of extracellular self-DNA (esDNA) to inhibit growth is getting more research attention as this could be explored for several purposes, including the development of specific bioherbicides. While the inhibitory effect has been studied in several dicotyledon species, little is known about the effects and subsequent signaling processes in monocots. Here, we measured the growth, counted the number of lateral and crown roots, determined greenness index, quantified the production of O 2.- and H 2 O 2 , and determined the expressions of genes encoding antioxidant enzymes ( SOD s and CAT s) in rice ( Oryza sativa L.), a model plant of monocots. After 7 d of germination, rice roots were exposed to 0, 75, and 150 µg cm -3 of esDNA. Inhibitory effect was found to be negatively correlated to esDNA concentration, as indicated by the length of primary roots. Interestingly, this negative effect was only observed in the directly exposed organ (root) but not in the length of shoot or fresh mass of the whole seedling. The percentage of greenness index of leaves and number of crown and lateral roots were also similar across treatments. However, esDNA exposure to root increased production of O 2.- and H 2 O 2 in the root. At the molecular level, the response was characterized by the decreased expression of the antioxidant genes SOD 3, CAT B, and CAT C. These findings suggest that esDNA inhibits rice growth locally in, e.g. in treated roots, and the responses involve increased production of ROS and suppression of antioxidants. This study could be the basis for determining the combination of concentration and period of exposure that might significantly inhibit total growth of monocot weeds with a minimum effect on the crop.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43585648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lintao Cai, Xin-Yan Ji, Mei Hou, Yi Hao, Q. Wu, Lili Song
,
,
{"title":"The influence of ABA on the photosynthesis of the rare and endangered Emmenopterys henryi under salt stress","authors":"Lintao Cai, Xin-Yan Ji, Mei Hou, Yi Hao, Q. Wu, Lili Song","doi":"10.32615/bp.2022.036","DOIUrl":"https://doi.org/10.32615/bp.2022.036","url":null,"abstract":",","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43155721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
X. Gao, Y. Qiao, J. Lyu, X. Xiao, HU L.-L., Yu J.H.
The family of pyrabactin resistance 1 (PYR1)/PYR1-like (PYL) regulatory components of ABA receptors (RCAR) play a vital role in the initial step of ABA signaling. To understand the expression mode of PYL genes in response to various abiotic stresses in Chinese cabbage ( Brassica rapa ssp. pekinensis ), the members of BrPYL gene family were first identified with the relevant bioinformatics software. And then, the relative expressions of identified BrPYLs after heat, cold, drought, and salt treatments for 0, 24, 48, and 72 h were determined via real-time quantitative PCR. Here, we identified 24 PYLs in the B. rapa genome. Based on the phylogenetic analysis, these BrPYL genes were divided into three classes and distributed on ten chromosomes in Chinese cabbage. Most of BrPYL genes in the same group have similar gene structures and intron numbers. There were seven genes ( BrPYL 5, BrPYL8 , BrPYL22 , BrPYL3 , BrPYL18 , BrPYL11 , and BrPYL21 ) from Group A with two introns and one gene ( BrPYL19 ) from Group D with one intron. Analysis of conserved motifs suggested that every group contained motif 2 containing the Polyketide_cyc2 domain. Subsequently, the prediction of cis -acting elements indicated that BrPYL genes had 5 stress-related elements and 5 hormone-related elements, among which the number of MYC (dehydration reaction) was the highest, suggesting that BrPYL genes could respond to hormones and abiotic stresses. Expression patterns under four abiotic stresses showed that the expressions of BrPYL4 , BrPYL11 , BrPYL21 , and BrPYL23 responded to these stresses at different time points. To conclude, we identified the BrPYL genes and build the BrPYLs expression mode in response to various abiotic stresses. This study provides a theoretical basis for stress-resistance breeding of Chinese cabbage.
{"title":"Genome-wide identification of the PYL gene family and expression of PYL genes under abiotic stresses in Chinese cabbage","authors":"X. Gao, Y. Qiao, J. Lyu, X. Xiao, HU L.-L., Yu J.H.","doi":"10.32615/bp.2022.033","DOIUrl":"https://doi.org/10.32615/bp.2022.033","url":null,"abstract":"The family of pyrabactin resistance 1 (PYR1)/PYR1-like (PYL) regulatory components of ABA receptors (RCAR) play a vital role in the initial step of ABA signaling. To understand the expression mode of PYL genes in response to various abiotic stresses in Chinese cabbage ( Brassica rapa ssp. pekinensis ), the members of BrPYL gene family were first identified with the relevant bioinformatics software. And then, the relative expressions of identified BrPYLs after heat, cold, drought, and salt treatments for 0, 24, 48, and 72 h were determined via real-time quantitative PCR. Here, we identified 24 PYLs in the B. rapa genome. Based on the phylogenetic analysis, these BrPYL genes were divided into three classes and distributed on ten chromosomes in Chinese cabbage. Most of BrPYL genes in the same group have similar gene structures and intron numbers. There were seven genes ( BrPYL 5, BrPYL8 , BrPYL22 , BrPYL3 , BrPYL18 , BrPYL11 , and BrPYL21 ) from Group A with two introns and one gene ( BrPYL19 ) from Group D with one intron. Analysis of conserved motifs suggested that every group contained motif 2 containing the Polyketide_cyc2 domain. Subsequently, the prediction of cis -acting elements indicated that BrPYL genes had 5 stress-related elements and 5 hormone-related elements, among which the number of MYC (dehydration reaction) was the highest, suggesting that BrPYL genes could respond to hormones and abiotic stresses. Expression patterns under four abiotic stresses showed that the expressions of BrPYL4 , BrPYL11 , BrPYL21 , and BrPYL23 responded to these stresses at different time points. To conclude, we identified the BrPYL genes and build the BrPYLs expression mode in response to various abiotic stresses. This study provides a theoretical basis for stress-resistance breeding of Chinese cabbage.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48296559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}