Pub Date : 2020-02-17DOI: 10.1088/1748-605X/ab5f9c
Eline-Claire Grosfeld, Brandon T Smith, Marco Santoro, Irene Lodoso-Torrecilla, John A Jansen, Dietmar Jo Ulrich, Anthony J Melchiorri, David W Scott, Antonios G Mikos, Jeroen J J P van den Beucken
Here, we demonstrate the in vivo efficacy of glucose microparticles (GMPs) to serve as porogens within calcium phosphate cements (CPCs) to obtain a fast-degrading bone substitute material. Composites were fabricated incorporating 20 wt% GMPs at two different GMP size ranges (100-150 μm (GMP-S) and 150-300 μm (GMP-L)), while CPC containing 20 wt% poly(lactic-co-glycolic acid) microparticles (PLGA) and plain CPC served as controls. After 2 and 8 weeks implantation in a rat femoral condyle defect model, specimens were retrieved and analyzed for material degradation and bone formation. Histologically, no adverse tissue response to any of the CPC-formulations was observed. All CPC-porogen formulations showed faster degradation compared to plain CPC control, but only GMP-containing formulations showed higher amounts of new bone formation compared to plain CPC controls. After 8 weeks, only CPC-porogen formulations with GMP-S or PLGA porogens showed higher degradation compared to plain CPC controls. Overall, the inclusion of GMPs into CPCs resulted in a macroporous structure that initially accelerated the generation of new bone. These findings highlight the efficacy of a novel approach that leverages simple porogen properties to generate porous CPCs with distinct degradation and bone regeneration profiles.
{"title":"Fast dissolving glucose porogens for early calcium phosphate cement degradation and bone regeneration.","authors":"Eline-Claire Grosfeld, Brandon T Smith, Marco Santoro, Irene Lodoso-Torrecilla, John A Jansen, Dietmar Jo Ulrich, Anthony J Melchiorri, David W Scott, Antonios G Mikos, Jeroen J J P van den Beucken","doi":"10.1088/1748-605X/ab5f9c","DOIUrl":"10.1088/1748-605X/ab5f9c","url":null,"abstract":"<p><p>Here, we demonstrate the in vivo efficacy of glucose microparticles (GMPs) to serve as porogens within calcium phosphate cements (CPCs) to obtain a fast-degrading bone substitute material. Composites were fabricated incorporating 20 wt% GMPs at two different GMP size ranges (100-150 μm (GMP-S) and 150-300 μm (GMP-L)), while CPC containing 20 wt% poly(lactic-co-glycolic acid) microparticles (PLGA) and plain CPC served as controls. After 2 and 8 weeks implantation in a rat femoral condyle defect model, specimens were retrieved and analyzed for material degradation and bone formation. Histologically, no adverse tissue response to any of the CPC-formulations was observed. All CPC-porogen formulations showed faster degradation compared to plain CPC control, but only GMP-containing formulations showed higher amounts of new bone formation compared to plain CPC controls. After 8 weeks, only CPC-porogen formulations with GMP-S or PLGA porogens showed higher degradation compared to plain CPC controls. Overall, the inclusion of GMPs into CPCs resulted in a macroporous structure that initially accelerated the generation of new bone. These findings highlight the efficacy of a novel approach that leverages simple porogen properties to generate porous CPCs with distinct degradation and bone regeneration profiles.</p>","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":"025002"},"PeriodicalIF":3.7,"publicationDate":"2020-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7683932/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42812554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study addresses the fabrication of an extracellular matrix material of the acellular sheep periosteum and the systematic evaluation of its biocompatibility to explore its potential application in guided bone regeneration. Sheep periosteum was harvested and decellularized by a combined decellularization protocol. The effectiveness of cell removal was proved and residual α-Gal antigen was also quantitatively detected. Then, mouse MC3T3-E1 cells were seeded onto the acellular periosteum. A scanning electron microscope (SEM) was used to record the whole process of cell adhesion. The CCK-8 assay suggested that the acellular periosteum not only had zero toxic effect on pre-osteoblasts, but played a positive role in cell proliferation. We also tested whether the acellular periosteum possesses favorable osteogenesis induction activity using an alkaline phosphatase (ALP) assay and a quantitative real-time PCR (Col I, Runx2, OCN) assay. An in vivo study of a subcutaneous implantation test using Sprague Dawley (SD) rats was performed to detect the changes in IL-2, IFN-γ and IL-4 in serum and elucidate the host's local response to acellular periosteum through hematoxylin and eosin (HE) and immunohistochemical staining. The results show that acellular sheep periosteum did not elicit a severe immunogenic response via the Th1 pathway, unlike fresh sheep periosteum. In conclusion, acellular sheep periosteum possesses favorable biocompatibility to be employed for guided bone regeneration.
本研究旨在制备脱细胞羊骨膜细胞外基质材料,并对其生物相容性进行系统评价,以探索其在引导骨再生中的潜在应用。采集羊骨膜,采用联合脱细胞方法进行脱细胞。证实了细胞去除的有效性,并定量检测了残留的α-Gal抗原。然后,将小鼠MC3T3-E1细胞接种到脱细胞骨膜上。用扫描电镜(SEM)记录了细胞粘附的全过程。CCK-8实验表明,脱细胞骨膜不仅对成骨前细胞无毒性作用,而且对细胞增殖有积极作用。我们还使用碱性磷酸酶(ALP)测定和实时荧光定量PCR (Col I, Runx2, OCN)测定测试了脱细胞骨膜是否具有良好的成骨诱导活性。采用SD (Sprague Dawley)大鼠皮下植入试验,通过苏木精伊红(HE)和免疫组化染色,检测血清中IL-2、IFN-γ和IL-4的变化,阐明宿主对脱细胞骨膜的局部反应。结果表明,与新鲜羊骨膜不同,脱细胞羊骨膜没有通过Th1途径引起严重的免疫原性反应。综上所述,脱细胞羊骨膜具有良好的生物相容性,可用于引导骨再生。
{"title":"In vitro and in vivo biocompatibility study on acellular sheep periosteum for guided bone regeneration.","authors":"Jing He, Zhenning Li, Tianhao Yu, Weizuo Wang, Meihan Tao, Shilin Wang, Yizhan Ma, Jun Fan, Xiaohong Tian, Xiaohong Wang, Rabia Javed, Qiang Ao","doi":"10.1088/1748-605X/ab597f","DOIUrl":"10.1088/1748-605X/ab597f","url":null,"abstract":"<p><p>This study addresses the fabrication of an extracellular matrix material of the acellular sheep periosteum and the systematic evaluation of its biocompatibility to explore its potential application in guided bone regeneration. Sheep periosteum was harvested and decellularized by a combined decellularization protocol. The effectiveness of cell removal was proved and residual α-Gal antigen was also quantitatively detected. Then, mouse MC3T3-E1 cells were seeded onto the acellular periosteum. A scanning electron microscope (SEM) was used to record the whole process of cell adhesion. The CCK-8 assay suggested that the acellular periosteum not only had zero toxic effect on pre-osteoblasts, but played a positive role in cell proliferation. We also tested whether the acellular periosteum possesses favorable osteogenesis induction activity using an alkaline phosphatase (ALP) assay and a quantitative real-time PCR (Col I, Runx2, OCN) assay. An in vivo study of a subcutaneous implantation test using Sprague Dawley (SD) rats was performed to detect the changes in IL-2, IFN-γ and IL-4 in serum and elucidate the host's local response to acellular periosteum through hematoxylin and eosin (HE) and immunohistochemical staining. The results show that acellular sheep periosteum did not elicit a severe immunogenic response via the Th1 pathway, unlike fresh sheep periosteum. In conclusion, acellular sheep periosteum possesses favorable biocompatibility to be employed for guided bone regeneration.</p>","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":"015013"},"PeriodicalIF":3.7,"publicationDate":"2020-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43734328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-02-13DOI: 10.1088/1748-605X/ab5e52
Haktan Altinova, Sebastian Hammes, Moniek Palm, Pascal Achenbach, Jose Gerardo-Nava, Ronald Deumens, Tobias Führmann, Sabien G A van Neerven, Emmanuel Hermans, Joachim Weis, Gary A Brook
Severe spinal cord injury (SCI) results in permanent functional deficits, which despite pre-clinical advances, remain untreatable. Combinational approaches, including the implantation of bioengineered scaffolds are likely to promote significant tissue repair. However, this critically depends on the extent to which host tissue can integrate with the implant. In the present paper, blood vessel formation and maturation were studied within and around implanted micro-structured type-I collagen scaffolds at 10 weeks post implantation in adult rat mid-cervical spinal cord lateral funiculotomy injuries. Morphometric analysis revealed that blood vessel density within the scaffold was similar to that of the lateral white matter tracts that the implant replaced. However, immunohistochemistry for zonula occludens-1 (ZO-1) and endothelial barrier antigen revealed that scaffold microvessels remained largely immature, suggesting poor blood-spinal cord barrier (BSB) reformation. Furthermore, a band of intense ZO-1-immunoreactive fibroblast-like cells isolated the implant. Spinal cord vessels outside the ZO-1-band demonstrated BSB-formation, while vessels within the scaffold generally did not. The formation of a double-layered fibrotic and astroglial scar around the collagen scaffold might explain the relatively poor implant-host integration and suggests a mechanism for failed microvessel maturation. Targeted strategies that improve implant-host integration for such biomaterials will be vital for future tissue engineering and regenerative medicine approaches for traumatic SCI.
{"title":"Dense fibroadhesive scarring and poor blood vessel-maturation hamper the integration of implanted collagen scaffolds in an experimental model of spinal cord injury.","authors":"Haktan Altinova, Sebastian Hammes, Moniek Palm, Pascal Achenbach, Jose Gerardo-Nava, Ronald Deumens, Tobias Führmann, Sabien G A van Neerven, Emmanuel Hermans, Joachim Weis, Gary A Brook","doi":"10.1088/1748-605X/ab5e52","DOIUrl":"10.1088/1748-605X/ab5e52","url":null,"abstract":"<p><p>Severe spinal cord injury (SCI) results in permanent functional deficits, which despite pre-clinical advances, remain untreatable. Combinational approaches, including the implantation of bioengineered scaffolds are likely to promote significant tissue repair. However, this critically depends on the extent to which host tissue can integrate with the implant. In the present paper, blood vessel formation and maturation were studied within and around implanted micro-structured type-I collagen scaffolds at 10 weeks post implantation in adult rat mid-cervical spinal cord lateral funiculotomy injuries. Morphometric analysis revealed that blood vessel density within the scaffold was similar to that of the lateral white matter tracts that the implant replaced. However, immunohistochemistry for zonula occludens-1 (ZO-1) and endothelial barrier antigen revealed that scaffold microvessels remained largely immature, suggesting poor blood-spinal cord barrier (BSB) reformation. Furthermore, a band of intense ZO-1-immunoreactive fibroblast-like cells isolated the implant. Spinal cord vessels outside the ZO-1-band demonstrated BSB-formation, while vessels within the scaffold generally did not. The formation of a double-layered fibrotic and astroglial scar around the collagen scaffold might explain the relatively poor implant-host integration and suggests a mechanism for failed microvessel maturation. Targeted strategies that improve implant-host integration for such biomaterials will be vital for future tissue engineering and regenerative medicine approaches for traumatic SCI.</p>","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":"015012"},"PeriodicalIF":3.7,"publicationDate":"2020-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45809985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-02-13DOI: 10.1088/1748-605X/ab591d
Elizabeth Norris, Carolina Ramos-Rivera, Gowsihan Poologasundarampillai, Joshua P Clark, Qun Ju, Akiko Obata, John V Hanna, Toshihiro Kasuga, Christopher A Mitchell, Gavin Jell, Julian R Jones
An electrospinning technique was used to produce three-dimensional (3D) bioactive glass fibrous scaffolds, in the SiO2-CaO sol-gel system, for wound healing applications. Previously, it was thought that 3D cotton wool-like structures could only be produced from sol-gel when the sol contained calcium nitrate, implying that the Ca2+ and its electronic charge had a significant effect on the structure produced. Here, fibres with a 3D appearance were also electrospun from compositions containing only silica. A polymer binding agent was added to inorganic sol-gel solutions, enabling electrospinning prior to bioactive glass network formation and the polymer was removed by calcination. While the addition of Ca2+ contributes to the 3D morphology, here we show that other factors, such as relative humidity, play an important role in producing the 3D cotton-wool-like macrostructure of the fibres. A human dermal fibroblast cell line (CD-18CO) was exposed to dissolution products of the samples. Cell proliferation and metabolic activity tests were carried out and a VEGF ELISA showed a significant increase in VEGF production in cells exposed to the bioactive glass samples compared to control in DMEM. A novel SiO2-CaO nanofibrous scaffold was created that showed tailorable physical and dissolution properties, the control and composition of these release products are important for directing desirable wound healing interactions.
{"title":"Electrospinning 3D bioactive glasses for wound healing.","authors":"Elizabeth Norris, Carolina Ramos-Rivera, Gowsihan Poologasundarampillai, Joshua P Clark, Qun Ju, Akiko Obata, John V Hanna, Toshihiro Kasuga, Christopher A Mitchell, Gavin Jell, Julian R Jones","doi":"10.1088/1748-605X/ab591d","DOIUrl":"10.1088/1748-605X/ab591d","url":null,"abstract":"<p><p>An electrospinning technique was used to produce three-dimensional (3D) bioactive glass fibrous scaffolds, in the SiO<sub>2</sub>-CaO sol-gel system, for wound healing applications. Previously, it was thought that 3D cotton wool-like structures could only be produced from sol-gel when the sol contained calcium nitrate, implying that the Ca<sup>2+</sup> and its electronic charge had a significant effect on the structure produced. Here, fibres with a 3D appearance were also electrospun from compositions containing only silica. A polymer binding agent was added to inorganic sol-gel solutions, enabling electrospinning prior to bioactive glass network formation and the polymer was removed by calcination. While the addition of Ca<sup>2+</sup> contributes to the 3D morphology, here we show that other factors, such as relative humidity, play an important role in producing the 3D cotton-wool-like macrostructure of the fibres. A human dermal fibroblast cell line (CD-18CO) was exposed to dissolution products of the samples. Cell proliferation and metabolic activity tests were carried out and a VEGF ELISA showed a significant increase in VEGF production in cells exposed to the bioactive glass samples compared to control in DMEM. A novel SiO<sub>2</sub>-CaO nanofibrous scaffold was created that showed tailorable physical and dissolution properties, the control and composition of these release products are important for directing desirable wound healing interactions.</p>","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":"015014"},"PeriodicalIF":3.7,"publicationDate":"2020-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46162474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Because the collagen membrane lacks osteoinductivity, it must be modified with bioactive components to trigger rapid bone regeneration. In this study, we aimed to evaluate the bone regeneration effects of a collagen membrane chemically conjugated with stromal cell-derived factor-1 alpha (SDF-1α) in rat models. To this end, different collagen membranes from four groups including a control group with a Bio-Oss bone substitute + collagen membrane; physical adsorption group with Bio-Oss + SDF-1α physically adsorbed on the collagen membrane; chemical cross-linking group with Bio-Oss + SDF-1α chemically cross-linked to the collagen membrane; and cell-seeding group with Bio-Oss + bone marrow mesenchymal stem cells (BMSCs) seeded onto the collagen membrane were placed in critical-sized defect models using a guided bone regeneration technique. At 4 and 8 weeks, the specimens were analyzed by scanning electron microscopy, energy-dispersive x-ray spectroscopy, micro-computed tomography, and histomorphology analyzes. Furthermore, ectopic osteogenesis was examined by histological analysis with Von Kossa staining, with the samples counterstained by hematoxylin and eosin and immunohistochemical staining. The results showed that in the chemical cross-linking group and cell-seeding group, the bone volume fraction, bone surface area fraction, and trabecular number were significantly increased and showed more new bone formation compared to the control and physical adsorption groups. Von Kossa-stained samples counterstained with hematoxylin and eosin and subjected to immunohistochemical staining of 4-week implanted membranes revealed that the chemical cross-linking group had the largest number of microvessels. The collagen membrane chemically conjugated with SDF-1α to significantly promote new bone and microvessel formation compared to SDF-1α physical adsorption and showed similar effects on new bone formation as a BMSC seeding method. This study provided a cell-free approach for shortening the bone healing time and improving the success rate of guided bone regeneration.
{"title":"Evaluation of bone-regeneration effects and ectopic osteogenesis of collagen membrane chemically conjugated with stromal cell-derived factor-1 in vivo.","authors":"Xiaolin Yu, Haipeng Sun, Jiamin Yang, Yun Liu, Zhengchuan Zhang, Jinming Wang, Feilong Deng","doi":"10.1088/1748-605X/ab52da","DOIUrl":"10.1088/1748-605X/ab52da","url":null,"abstract":"<p><p>Because the collagen membrane lacks osteoinductivity, it must be modified with bioactive components to trigger rapid bone regeneration. In this study, we aimed to evaluate the bone regeneration effects of a collagen membrane chemically conjugated with stromal cell-derived factor-1 alpha (SDF-1α) in rat models. To this end, different collagen membranes from four groups including a control group with a Bio-Oss bone substitute + collagen membrane; physical adsorption group with Bio-Oss + SDF-1α physically adsorbed on the collagen membrane; chemical cross-linking group with Bio-Oss + SDF-1α chemically cross-linked to the collagen membrane; and cell-seeding group with Bio-Oss + bone marrow mesenchymal stem cells (BMSCs) seeded onto the collagen membrane were placed in critical-sized defect models using a guided bone regeneration technique. At 4 and 8 weeks, the specimens were analyzed by scanning electron microscopy, energy-dispersive x-ray spectroscopy, micro-computed tomography, and histomorphology analyzes. Furthermore, ectopic osteogenesis was examined by histological analysis with Von Kossa staining, with the samples counterstained by hematoxylin and eosin and immunohistochemical staining. The results showed that in the chemical cross-linking group and cell-seeding group, the bone volume fraction, bone surface area fraction, and trabecular number were significantly increased and showed more new bone formation compared to the control and physical adsorption groups. Von Kossa-stained samples counterstained with hematoxylin and eosin and subjected to immunohistochemical staining of 4-week implanted membranes revealed that the chemical cross-linking group had the largest number of microvessels. The collagen membrane chemically conjugated with SDF-1α to significantly promote new bone and microvessel formation compared to SDF-1α physical adsorption and showed similar effects on new bone formation as a BMSC seeding method. This study provided a cell-free approach for shortening the bone healing time and improving the success rate of guided bone regeneration.</p>","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":"015009"},"PeriodicalIF":3.7,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48814622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-09DOI: 10.1088/1748-605X/ab52e2
Soumen Jana, Federico Franchi, Amir Lerman
A tissue-engineered heart valve can be an alternative to current mechanical or bioprosthetic valves that face limitations, especially in pediatric patients. However, it remains challenging to produce a functional tissue-engineered heart valve with three leaflets mimicking the trilayered, oriented structure of a native valve leaflet. In our previous study, a flat, trilayered nanofibrous substrate mimicking the orientations of three layers in a native leaflet-circumferential, random and radial orientations in fibrosa, spongiosa and ventricularis layers, respectively, was developed through electrospinning. In this study, we sought to develop a trilayered tissue structure mimicking the orientations of a native valve leaflet through in vivo tissue engineering, a practical regenerative medicine technology that can be used to develop an autologous heart valve. Thus, the nanofibrous substrate was placed inside the closed trileaflet-shaped cavity of a mold and implanted subcutaneously in a rat model for in vivo tissue engineering. After two months, the explanted tissue construct had a trilayered structure mimicking the orientations of a native valve leaflet. The infiltrated cells and their deposited collagen fibrils were oriented along the nanofibers in each layer of the substrate. Besides collagen, presence of glycosaminoglycans and elastin in the construct was observed.
{"title":"Trilayered tissue structure with leaflet-like orientations developed through in vivo tissue engineering.","authors":"Soumen Jana, Federico Franchi, Amir Lerman","doi":"10.1088/1748-605X/ab52e2","DOIUrl":"10.1088/1748-605X/ab52e2","url":null,"abstract":"<p><p>A tissue-engineered heart valve can be an alternative to current mechanical or bioprosthetic valves that face limitations, especially in pediatric patients. However, it remains challenging to produce a functional tissue-engineered heart valve with three leaflets mimicking the trilayered, oriented structure of a native valve leaflet. In our previous study, a flat, trilayered nanofibrous substrate mimicking the orientations of three layers in a native leaflet-circumferential, random and radial orientations in fibrosa, spongiosa and ventricularis layers, respectively, was developed through electrospinning. In this study, we sought to develop a trilayered tissue structure mimicking the orientations of a native valve leaflet through in vivo tissue engineering, a practical regenerative medicine technology that can be used to develop an autologous heart valve. Thus, the nanofibrous substrate was placed inside the closed trileaflet-shaped cavity of a mold and implanted subcutaneously in a rat model for in vivo tissue engineering. After two months, the explanted tissue construct had a trilayered structure mimicking the orientations of a native valve leaflet. The infiltrated cells and their deposited collagen fibrils were oriented along the nanofibers in each layer of the substrate. Besides collagen, presence of glycosaminoglycans and elastin in the construct was observed.</p>","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":"015004"},"PeriodicalIF":3.7,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7370991/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42088339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The interaction of proteins with implantable metallic surfaces has a great influence on the bioactivity and biodegradation of orthopaedic implants. Initial osseointegration is known to be critical for the long term success of orthopaedic implants. The surface properties of the implant and electrochemical milieu of the surrounding solution such as electrostatic, hydrophobic, and hydrogen bonding interactions significantly modulate protein adsorption by implants. Magnesium (Mg) is considered to improve the adhesion of osteoblasts via ligand binding of the integrin receptors. Mg-based composites, reinforced with hydroxyapatite (HA), are potential candidates for temporary orthopaedic implants. However, their clinical translation requires enhanced degradation resistance in physiological environment so that it is in sync with the healing rate of the bone. The present study deals with the protein adsorption characteristics and degradation behaviour of Mg-HA-based biodegradable implants. Quantitative analysis of apatite inducing ability of composites was evaluated in terms of mass gain in simulated body fluid (SBF) as well as in foetal bovine serum (FBS), by an in vitro immersion study. Incorporation of 5 and 15 wt% HA to Mg-3Zn improved apatite formation up to 35% and 66%, respectively, after 14 days of immersion in SBF. Compared to FBS, SBF is found to be significantly more effective in precipitating apatite on a Mg-HA surface. However, FBS offered more corrosion resistance to Mg-HA than SBF did, as evident from the significant differences in the protein adhesion capabilities of the composite surface when incubated separately in these two mediums. The addition of 15 wt% HA enhanced the protein adsorption capability by ∼35%. These studies highlight the possibility of modulating the degradation and bioactivity of Mg-based composite by tailoring the composition of HA. These findings, in turn, warrant the suitability of Mg-HA composite in orthopaedic application.
{"title":"Differential in vitro degradation and protein adhesion behaviour of spark plasma sintering fabricated magnesium-based temporary orthopaedic implant in serum and simulated body fluid.","authors":"Satish Jaiswal, Anshu Dubey, Swati Haldar, Partha Roy, Debrupa Lahiri","doi":"10.1088/1748-605X/ab4f8b","DOIUrl":"10.1088/1748-605X/ab4f8b","url":null,"abstract":"<p><p>The interaction of proteins with implantable metallic surfaces has a great influence on the bioactivity and biodegradation of orthopaedic implants. Initial osseointegration is known to be critical for the long term success of orthopaedic implants. The surface properties of the implant and electrochemical milieu of the surrounding solution such as electrostatic, hydrophobic, and hydrogen bonding interactions significantly modulate protein adsorption by implants. Magnesium (Mg) is considered to improve the adhesion of osteoblasts via ligand binding of the integrin receptors. Mg-based composites, reinforced with hydroxyapatite (HA), are potential candidates for temporary orthopaedic implants. However, their clinical translation requires enhanced degradation resistance in physiological environment so that it is in sync with the healing rate of the bone. The present study deals with the protein adsorption characteristics and degradation behaviour of Mg-HA-based biodegradable implants. Quantitative analysis of apatite inducing ability of composites was evaluated in terms of mass gain in simulated body fluid (SBF) as well as in foetal bovine serum (FBS), by an in vitro immersion study. Incorporation of 5 and 15 wt% HA to Mg-3Zn improved apatite formation up to 35% and 66%, respectively, after 14 days of immersion in SBF. Compared to FBS, SBF is found to be significantly more effective in precipitating apatite on a Mg-HA surface. However, FBS offered more corrosion resistance to Mg-HA than SBF did, as evident from the significant differences in the protein adhesion capabilities of the composite surface when incubated separately in these two mediums. The addition of 15 wt% HA enhanced the protein adsorption capability by ∼35%. These studies highlight the possibility of modulating the degradation and bioactivity of Mg-based composite by tailoring the composition of HA. These findings, in turn, warrant the suitability of Mg-HA composite in orthopaedic application.</p>","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":"015006"},"PeriodicalIF":3.7,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47515598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-09DOI: 10.1088/1748-605X/ab52db
J. Musilkova, E. Filová, J. Pala, R. Matějka, D. Hadraba, David Vondrášek, Ondřej Kaplan, T. Riedel, E. Brynda, Johanka Kučerová, M. Konarik, F. Lopot, Jan Pirk, L. Bačáková
Decellularized human pericardium is under study as an allogenic material for cardiovascular applications. The effects of crosslinking on the mechanical properties of decellularized pericardium were determined with a uniaxial tensile test, and the effects of crosslinking on the collagen structure of decellularized pericardium were determined by multiphoton microscopy. The viability of human umbilical vein endothelial cells seeded on decellularized human pericardium and on pericardium strongly and weakly crosslinked with glutaraldehyde and with genipin was evaluated by means of an MTS assay. The viability of the cells, measured by their metabolic activity, decreased considerably when the pericardium was crosslinked with glutaraldehyde. Conversely, the cell viability increased when the pericardium was crosslinked with genipin. Coating both non-modified pericardium and crosslinked pericardium with a fibrin mesh or with a mesh containing attached heparin and/or fibronectin led to a significant increase in cell viability. The highest degree of viability was attained for samples that were weakly crosslinked with genipin and modified by means of a fibrin and fibronectin coating. The results indicate a method by which in vivo endothelialization of human cardiac allografts or xenografts could potentially be encouraged.
{"title":"Human decellularized and crosslinked pericardium coated with bioactive molecular assemblies","authors":"J. Musilkova, E. Filová, J. Pala, R. Matějka, D. Hadraba, David Vondrášek, Ondřej Kaplan, T. Riedel, E. Brynda, Johanka Kučerová, M. Konarik, F. Lopot, Jan Pirk, L. Bačáková","doi":"10.1088/1748-605X/ab52db","DOIUrl":"https://doi.org/10.1088/1748-605X/ab52db","url":null,"abstract":"Decellularized human pericardium is under study as an allogenic material for cardiovascular applications. The effects of crosslinking on the mechanical properties of decellularized pericardium were determined with a uniaxial tensile test, and the effects of crosslinking on the collagen structure of decellularized pericardium were determined by multiphoton microscopy. The viability of human umbilical vein endothelial cells seeded on decellularized human pericardium and on pericardium strongly and weakly crosslinked with glutaraldehyde and with genipin was evaluated by means of an MTS assay. The viability of the cells, measured by their metabolic activity, decreased considerably when the pericardium was crosslinked with glutaraldehyde. Conversely, the cell viability increased when the pericardium was crosslinked with genipin. Coating both non-modified pericardium and crosslinked pericardium with a fibrin mesh or with a mesh containing attached heparin and/or fibronectin led to a significant increase in cell viability. The highest degree of viability was attained for samples that were weakly crosslinked with genipin and modified by means of a fibrin and fibronectin coating. The results indicate a method by which in vivo endothelialization of human cardiac allografts or xenografts could potentially be encouraged.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":"15 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab52db","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41401164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-09DOI: 10.1088/1748-605X/ab5509
Narges Ahmadi, Mahshid Kharaziha, Sheyda Labbaf
The goal of this research was to promote the bioactivity and osteogenic characteristics of polyvinylidene fluoride(PVDF) fibrous membrane, while preserving its piezoelectric property for bone regeneration. In this regard, core-shell fibrous membrane of PVDF-Ba0.9Ca0.1TiO3/polyvinyl alcohol(PVA) was developed via emulsion electrospinning approach. While PVA was in the outer layer of fibers with thickness of 53 ± 18 nm, the Ba0.9Ca0.1TiO3 nanoparticles was uniformly dispersed in the PVDF core. The formation of PVA shell resulted in significant improvement of its hydrophilicity (3 times) and degradation rate, while piezoelectricity did noticeably modulate. In addition, incorporation of Ba0.9Ca0.1TiO3 nanopowder remarkably improved bioactivity, protein adsorption and mechanical properties of PVDF/PVA fibrous membranes. Finally, the osteogenic differentiation of mesenchymal stem cells on the nanocomposite fibrous membranes, in the absence of osteogenic supplements, was also observed. Overall, the results confirmed the promising potential of PVDF-Ba0.9Ca0.1TiO3/PVA fibrous membrane containing 1-2 wt% nanopowder for bone regeneration.
{"title":"Core-shell fibrous membranes of PVDF-Ba<sub>0.9</sub>Ca<sub>0.1</sub>TiO<sub>3</sub>/PVA with osteogenic and piezoelectric properties for bone regeneration.","authors":"Narges Ahmadi, Mahshid Kharaziha, Sheyda Labbaf","doi":"10.1088/1748-605X/ab5509","DOIUrl":"10.1088/1748-605X/ab5509","url":null,"abstract":"<p><p>The goal of this research was to promote the bioactivity and osteogenic characteristics of polyvinylidene fluoride(PVDF) fibrous membrane, while preserving its piezoelectric property for bone regeneration. In this regard, core-shell fibrous membrane of PVDF-Ba<sub>0.9</sub>Ca<sub>0.1</sub>TiO<sub>3</sub>/polyvinyl alcohol(PVA) was developed via emulsion electrospinning approach. While PVA was in the outer layer of fibers with thickness of 53 ± 18 nm, the Ba<sub>0.9</sub>Ca<sub>0.1</sub>TiO<sub>3</sub> nanoparticles was uniformly dispersed in the PVDF core. The formation of PVA shell resulted in significant improvement of its hydrophilicity (3 times) and degradation rate, while piezoelectricity did noticeably modulate. In addition, incorporation of Ba<sub>0.9</sub>Ca<sub>0.1</sub>TiO<sub>3</sub> nanopowder remarkably improved bioactivity, protein adsorption and mechanical properties of PVDF/PVA fibrous membranes. Finally, the osteogenic differentiation of mesenchymal stem cells on the nanocomposite fibrous membranes, in the absence of osteogenic supplements, was also observed. Overall, the results confirmed the promising potential of PVDF-Ba<sub>0.9</sub>Ca<sub>0.1</sub>TiO<sub>3</sub>/PVA fibrous membrane containing 1-2 wt% nanopowder for bone regeneration.</p>","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":"015007"},"PeriodicalIF":3.7,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43643387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Using three-dimensional (3D) bone engineering to fabricate bone segments is a better choice for repairing bone defects than using autologous bone. However, biomaterials for bone engineering are burdened with some clinical safety concerns. In this study, we layered commonly found clinical materials, hemostatic gelatin sponges, in a novel manner to create a 3D scaffold for bone engineering purposes. We further examined the comparable benefits of our design with both closed- and open-bottom holders. Cells in stacked layer disc systems were examined after a week of growth and differentiation. Osteoblasts in the outer layers of both closed- and open-bottom holder systems displayed gradually increased alkaline phosphatase (ALP) activity but decreased osteopontin (OPN) expression. Further, cell proliferation assays and LIVE/DEAD staining revealed decreased viable cell counts in the top layer with increased incubation time. However, while layered disc systems with closed-bottom holders underwent differentiation, they kept more differentiated cells alive within the gelatin sponge disc scaffold after 28 d of culturing. Whether cells were inoculated into the top, middle, or bottom portions of the layered disc stack, osteoblasts showed a preference for migrating to the top layer, in keeping with the oxygen and nutrients gradients. Regarding practical application, this study offers valuable information to promote the use of hemostatic gelatin sponges for bone engineering.
{"title":"Cell migration of preosteoblast cells on a clinical gelatin sponge for 3D bone tissue engineering.","authors":"Chi-Yun Wang, Zong-Keng Kuo, Ming-Kai Hsieh, Ling-Yi Ke, Chih-Chen Chen, Chao-Min Cheng, Po-Liang Lai","doi":"10.1088/1748-605X/ab4fb5","DOIUrl":"10.1088/1748-605X/ab4fb5","url":null,"abstract":"<p><p>Using three-dimensional (3D) bone engineering to fabricate bone segments is a better choice for repairing bone defects than using autologous bone. However, biomaterials for bone engineering are burdened with some clinical safety concerns. In this study, we layered commonly found clinical materials, hemostatic gelatin sponges, in a novel manner to create a 3D scaffold for bone engineering purposes. We further examined the comparable benefits of our design with both closed- and open-bottom holders. Cells in stacked layer disc systems were examined after a week of growth and differentiation. Osteoblasts in the outer layers of both closed- and open-bottom holder systems displayed gradually increased alkaline phosphatase (ALP) activity but decreased osteopontin (OPN) expression. Further, cell proliferation assays and LIVE/DEAD staining revealed decreased viable cell counts in the top layer with increased incubation time. However, while layered disc systems with closed-bottom holders underwent differentiation, they kept more differentiated cells alive within the gelatin sponge disc scaffold after 28 d of culturing. Whether cells were inoculated into the top, middle, or bottom portions of the layered disc stack, osteoblasts showed a preference for migrating to the top layer, in keeping with the oxygen and nutrients gradients. Regarding practical application, this study offers valuable information to promote the use of hemostatic gelatin sponges for bone engineering.</p>","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":"015005"},"PeriodicalIF":3.7,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47147103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}