首页 > 最新文献

Biomedical materials最新文献

英文 中文
Promoting in-vivo bone regeneration using facile engineered load-bearing 3D bioactive scaffold 利用简易工程负重3D生物活性支架促进体内骨再生
IF 4 3区 医学 Q2 Engineering Pub Date : 2022-02-25 DOI: 10.1088/1748-605X/ac58d6
Saumya Dash, Pinky, Varun Arora, Kunj Sachdeva, Harshita Sharma, A. Dinda, A. Agrawal, M. Jassal, S. Mohanty
The worldwide incidence of bone disorders has trended steeply upward and is expected to get doubled by 2030. The biological mechanism of bone repair involves both osteoconductivity and osteoinductivity. Despite the self-healing functionality after injury, bone tissue faces a multitude of pathological challenges. Several innovative approaches have been developed to prepare biomaterial-based bone grafts. To design a suitable bone material, the freeze-drying technique has achieved significant importance among the other conventional methods. However, the functionality of the polymeric freeze-dried scaffold in in-vivo osteogenesis is in a nascent stage. In this study facile, freeze-dried, biomaterial-based load-bearing three-dimensional porous composite scaffolds have been prepared. The biocompatible scaffolds have been made by using chitosan (C), polycaprolactone (P), hydroxyapatite (H), glass ionomer (G), and graphene (gr). Scaffolds of eight different groups (C, P, CP, CPH, CPHG, CPHGgr1, CPHGgr2, CPHGgr3) have been designed and characterized to evaluate their applicability in orthopedics. To evaluate the efficacy of the scaffolds a series of physio-chemical, morphological, and in-vitro and in-vivo biological experiments have been performed. From the obtained results it was observed that the CPHGgr1 is the ideal compatible material for Wharton’s jelly-derived mesenchymal stem cells (MSCs) and the blood cells. The in-vitro bone-specific gene expression study revealed that the scaffold assists MSCs osteogenic differentiation. Additionally, the in-vivo study on the mice model was also performed for a period of four and eight weeks. The subcutaneous implantation of the designed scaffolds did not show any altered physiological condition in the animals, which indicated the in-vivo biocompatibility of the designed material. The histopathological study revealed that after eight weeks of implantation, the CPHGgr1 scaffold supported significantly better collagen deposition and calcification. The facile designing of the CPHGgr1 multicomponent nanocomposite provided an osteo-regenerative biomaterial with desired mechanical strength as an ideal regenerative material for cancellous bone tissue regeneration.
全球骨疾病发病率呈急剧上升趋势,预计到2030年将翻一番。骨修复的生物学机制包括骨传导和骨诱导。尽管骨组织在损伤后具有自愈功能,但骨组织面临着许多病理挑战。已经开发了几种创新的方法来制备基于生物材料的骨移植物。为了设计合适的骨材料,冷冻干燥技术在其他常规方法中具有重要意义。然而,聚合物冻干支架在体内成骨中的功能尚处于初级阶段。在这项研究中,制备了易于使用的、冷冻干燥的、基于生物材料的三维多孔复合材料承重支架。采用壳聚糖(C)、聚己内酯(P)、羟基磷灰石(H)、玻璃离聚体(G)和石墨烯(gr)制备了生物相容性支架。设计并表征了8种不同类型的支架(C、P、CP、CPH、CPHG、CPHGgr1、CPHGgr2、CPHGgr3),以评价其在骨科中的适用性。为了评估支架的功效,我们进行了一系列的理化、形态学、体外和体内生物学实验。结果表明,CPHGgr1是沃顿氏凝胶源间充质干细胞(MSCs)和血细胞的理想相容性材料。体外骨特异性基因表达研究表明,该支架有助于MSCs成骨分化。此外,还对小鼠模型进行了为期4周和8周的体内研究。所设计的支架皮下植入后,动物的生理状况未发生任何改变,表明所设计材料具有良好的体内生物相容性。组织病理学研究显示,植入8周后,CPHGgr1支架支持的胶原沉积和钙化明显改善。CPHGgr1多组分纳米复合材料的简单设计提供了一种具有理想机械强度的骨再生生物材料,是一种理想的松质骨组织再生材料。
{"title":"Promoting in-vivo bone regeneration using facile engineered load-bearing 3D bioactive scaffold","authors":"Saumya Dash, Pinky, Varun Arora, Kunj Sachdeva, Harshita Sharma, A. Dinda, A. Agrawal, M. Jassal, S. Mohanty","doi":"10.1088/1748-605X/ac58d6","DOIUrl":"https://doi.org/10.1088/1748-605X/ac58d6","url":null,"abstract":"The worldwide incidence of bone disorders has trended steeply upward and is expected to get doubled by 2030. The biological mechanism of bone repair involves both osteoconductivity and osteoinductivity. Despite the self-healing functionality after injury, bone tissue faces a multitude of pathological challenges. Several innovative approaches have been developed to prepare biomaterial-based bone grafts. To design a suitable bone material, the freeze-drying technique has achieved significant importance among the other conventional methods. However, the functionality of the polymeric freeze-dried scaffold in in-vivo osteogenesis is in a nascent stage. In this study facile, freeze-dried, biomaterial-based load-bearing three-dimensional porous composite scaffolds have been prepared. The biocompatible scaffolds have been made by using chitosan (C), polycaprolactone (P), hydroxyapatite (H), glass ionomer (G), and graphene (gr). Scaffolds of eight different groups (C, P, CP, CPH, CPHG, CPHGgr1, CPHGgr2, CPHGgr3) have been designed and characterized to evaluate their applicability in orthopedics. To evaluate the efficacy of the scaffolds a series of physio-chemical, morphological, and in-vitro and in-vivo biological experiments have been performed. From the obtained results it was observed that the CPHGgr1 is the ideal compatible material for Wharton’s jelly-derived mesenchymal stem cells (MSCs) and the blood cells. The in-vitro bone-specific gene expression study revealed that the scaffold assists MSCs osteogenic differentiation. Additionally, the in-vivo study on the mice model was also performed for a period of four and eight weeks. The subcutaneous implantation of the designed scaffolds did not show any altered physiological condition in the animals, which indicated the in-vivo biocompatibility of the designed material. The histopathological study revealed that after eight weeks of implantation, the CPHGgr1 scaffold supported significantly better collagen deposition and calcification. The facile designing of the CPHGgr1 multicomponent nanocomposite provided an osteo-regenerative biomaterial with desired mechanical strength as an ideal regenerative material for cancellous bone tissue regeneration.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45238433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Aptamer-functionalized targeted siRNA delivery system for tumor immunotherapy. 用于肿瘤免疫治疗的适体功能化靶向siRNA递送系统。
IF 4 3区 医学 Q2 Engineering Pub Date : 2022-02-09 DOI: 10.1088/1748-605X/ac5382
Haiyin Lv, Tengfei Wang, F. Ma, Kunchi Zhang, Tian Gao, R. Pei, Ye Zhang
Programmed death ligand 1 (PD-L1) overexpressed on the surface of tumor cells is one of the reasons for tumor immune escape. Reducing PD-L1 expression has been proved to be an effective strategy to facilitate immune system activation and inhibit tumor progression. RNA interference (RNAi) is a promising technology for gene regulation in tumor therapy. In this study, we constructed a targeted siRNA delivery system NPs@apt to transfect PD-L1 siRNA into human non-small-cell lung carcinoma cell line (A549) for inhibiting tumor immune evasion. NPs@apt was prepared by compressing PD-L1 siRNA with cationic Lipofectamine 2000, fusing with erythrocyte membrane-derived nanovesicles, and further modifying with targeting AS1411 aptamer. The introduction of erythrocyte membrane endows the siRNA delivery system with lower cytotoxicity and the ability to escape from the phagocytosis of macrophages. The stability of NPs@apt and the protection to loaded siRNA were confirmed. In vitro studies after NPs@apt treatment demonstrated that PD-L1 siRNA was selectively delivered into A549 cells, and further resulted in PD-L1 gene knockdown, T cell activation and tumor cell growth inhibition. This study offers an alternative strategy for specific siRNA transfection for improving anti-tumor immunity.
程序性死亡配体1 (Programmed death ligand 1, PD-L1)在肿瘤细胞表面过表达是肿瘤免疫逃逸的原因之一。降低PD-L1的表达已被证明是促进免疫系统激活和抑制肿瘤进展的有效策略。RNA干扰(RNAi)是一种很有前途的肿瘤基因调控技术。本研究构建靶向siRNA传递系统NPs@apt,将PD-L1 siRNA转染人非小细胞肺癌细胞系(A549),抑制肿瘤免疫逃逸。用阳离子Lipofectamine 2000压缩PD-L1 siRNA,与红细胞膜源性纳米囊泡融合,并进一步靶向AS1411适配体修饰,制备NPs@apt。红细胞膜的引入使siRNA传递系统具有较低的细胞毒性和逃避巨噬细胞吞噬的能力。证实了NPs@apt的稳定性和对负载siRNA的保护作用。NPs@apt处理后的体外研究表明,PD-L1 siRNA被选择性地递送到A549细胞中,并进一步导致PD-L1基因敲低、T细胞活化和肿瘤细胞生长抑制。本研究为特异性siRNA转染提高抗肿瘤免疫提供了一种替代策略。
{"title":"Aptamer-functionalized targeted siRNA delivery system for tumor immunotherapy.","authors":"Haiyin Lv, Tengfei Wang, F. Ma, Kunchi Zhang, Tian Gao, R. Pei, Ye Zhang","doi":"10.1088/1748-605X/ac5382","DOIUrl":"https://doi.org/10.1088/1748-605X/ac5382","url":null,"abstract":"Programmed death ligand 1 (PD-L1) overexpressed on the surface of tumor cells is one of the reasons for tumor immune escape. Reducing PD-L1 expression has been proved to be an effective strategy to facilitate immune system activation and inhibit tumor progression. RNA interference (RNAi) is a promising technology for gene regulation in tumor therapy. In this study, we constructed a targeted siRNA delivery system NPs@apt to transfect PD-L1 siRNA into human non-small-cell lung carcinoma cell line (A549) for inhibiting tumor immune evasion. NPs@apt was prepared by compressing PD-L1 siRNA with cationic Lipofectamine 2000, fusing with erythrocyte membrane-derived nanovesicles, and further modifying with targeting AS1411 aptamer. The introduction of erythrocyte membrane endows the siRNA delivery system with lower cytotoxicity and the ability to escape from the phagocytosis of macrophages. The stability of NPs@apt and the protection to loaded siRNA were confirmed. In vitro studies after NPs@apt treatment demonstrated that PD-L1 siRNA was selectively delivered into A549 cells, and further resulted in PD-L1 gene knockdown, T cell activation and tumor cell growth inhibition. This study offers an alternative strategy for specific siRNA transfection for improving anti-tumor immunity.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42344178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Biomedical Materials 生物医学材料
IF 4 3区 医学 Q2 Engineering Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-49206-9
R. Narayan, R. Pilliar, A. Domb, Yufeng Zheng, Jianing Liu, Xili Lu
{"title":"Biomedical Materials","authors":"R. Narayan, R. Pilliar, A. Domb, Yufeng Zheng, Jianing Liu, Xili Lu","doi":"10.1007/978-3-030-49206-9","DOIUrl":"https://doi.org/10.1007/978-3-030-49206-9","url":null,"abstract":"","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-030-49206-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50965971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Protein Interactions at Material Surfaces 材料表面的蛋白质相互作用
IF 4 3区 医学 Q2 Engineering Pub Date : 2020-12-10 DOI: 10.1007/978-0-387-84872-3_8
J. McKenzie, T. Webster
{"title":"Protein Interactions at Material Surfaces","authors":"J. McKenzie, T. Webster","doi":"10.1007/978-0-387-84872-3_8","DOIUrl":"https://doi.org/10.1007/978-0-387-84872-3_8","url":null,"abstract":"","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-0-387-84872-3_8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43319732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Biomaterials for Dental Applications 牙科应用生物材料
IF 4 3区 医学 Q2 Engineering Pub Date : 2020-12-10 DOI: 10.1007/978-0-387-84872-3_11
S. Bhaduri, S. Bhaduri
{"title":"Biomaterials for Dental Applications","authors":"S. Bhaduri, S. Bhaduri","doi":"10.1007/978-0-387-84872-3_11","DOIUrl":"https://doi.org/10.1007/978-0-387-84872-3_11","url":null,"abstract":"","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-0-387-84872-3_11","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41823489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Manufacturing Issues 制造问题
IF 4 3区 医学 Q2 Engineering Pub Date : 2020-12-10 DOI: 10.1007/978-3-030-49206-9_21
Dave Hill
{"title":"Manufacturing Issues","authors":"Dave Hill","doi":"10.1007/978-3-030-49206-9_21","DOIUrl":"https://doi.org/10.1007/978-3-030-49206-9_21","url":null,"abstract":"","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43201413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metallic Biomaterials 金属生物材料
IF 4 3区 医学 Q2 Engineering Pub Date : 2020-12-10 DOI: 10.1007/978-0-387-84872-3_2
R. Pilliar
{"title":"Metallic Biomaterials","authors":"R. Pilliar","doi":"10.1007/978-0-387-84872-3_2","DOIUrl":"https://doi.org/10.1007/978-0-387-84872-3_2","url":null,"abstract":"","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-0-387-84872-3_2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45735072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Metal Corrosion 金属腐蚀
IF 4 3区 医学 Q2 Engineering Pub Date : 2020-12-10 DOI: 10.1007/978-0-387-84872-3_5
M. Marek
{"title":"Metal Corrosion","authors":"M. Marek","doi":"10.1007/978-0-387-84872-3_5","DOIUrl":"https://doi.org/10.1007/978-0-387-84872-3_5","url":null,"abstract":"","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-0-387-84872-3_5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44388170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biobased Materials for Medical Applications 用于医疗应用的生物基材料
IF 4 3区 医学 Q2 Engineering Pub Date : 2020-12-10 DOI: 10.1007/978-3-030-49206-9_4
O. Wilson
{"title":"Biobased Materials for Medical Applications","authors":"O. Wilson","doi":"10.1007/978-3-030-49206-9_4","DOIUrl":"https://doi.org/10.1007/978-3-030-49206-9_4","url":null,"abstract":"","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43416079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ophthalmic Biomaterials 眼科生物材料
IF 4 3区 医学 Q2 Engineering Pub Date : 2020-12-10 DOI: 10.1007/978-3-030-49206-9_15
Rachel L. Williams, David Wong
{"title":"Ophthalmic Biomaterials","authors":"Rachel L. Williams, David Wong","doi":"10.1007/978-3-030-49206-9_15","DOIUrl":"https://doi.org/10.1007/978-3-030-49206-9_15","url":null,"abstract":"","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47197713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Biomedical materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1