Alginate is one of the most favorable materials in many biomedical applications. The mechanical properties of alginate hydrogels can be easily tailored by adding different concentrations of divalent cations. In this work, we demonstrate that the method can also notably influence the biofouling behaviors of alginate hydrogels. A series of alginate hydrogels was prepared by tuning the concentrations of two types of divalent cation (Ca2+ or Ba2+). It was found that the biofouling behaviors of the hydrogels exhibited a 'U' curve tendency with the cation concentrations. Interestingly, we found that in optimal conditions ([Ca2+] = 0.9 mM or [Ba2+] = 0.54 mM), the resultant Ca0.9- and Ba0.54-alginate hydrogels were able to achieve negligible adhesion of the proteins and bacteria. Moreover, these two formulations were also able to prevent inflammatory responses at least 4 weeks after subcutaneous implantation in a mouse model. The findings in this work provide more insights into the design and development of appropriate alginate hydrogels for different applications.
{"title":"Influence of divalent cations on the biofouling behaviors of alginate hydrogels.","authors":"Jiamin Zhang, Jia Ke, Yingnan Zhu, Jiayin Song, Jing Yang, Chiyu Wen, Lei Zhang","doi":"10.1088/1748-605X/ab4542","DOIUrl":"10.1088/1748-605X/ab4542","url":null,"abstract":"<p><p>Alginate is one of the most favorable materials in many biomedical applications. The mechanical properties of alginate hydrogels can be easily tailored by adding different concentrations of divalent cations. In this work, we demonstrate that the method can also notably influence the biofouling behaviors of alginate hydrogels. A series of alginate hydrogels was prepared by tuning the concentrations of two types of divalent cation (Ca<sup>2+</sup> or Ba<sup>2+</sup>). It was found that the biofouling behaviors of the hydrogels exhibited a 'U' curve tendency with the cation concentrations. Interestingly, we found that in optimal conditions ([Ca<sup>2+</sup>] = 0.9 mM or [Ba<sup>2+</sup>] = 0.54 mM), the resultant Ca<sub>0.9</sub>- and Ba<sub>0.54</sub>-alginate hydrogels were able to achieve negligible adhesion of the proteins and bacteria. Moreover, these two formulations were also able to prevent inflammatory responses at least 4 weeks after subcutaneous implantation in a mouse model. The findings in this work provide more insights into the design and development of appropriate alginate hydrogels for different applications.</p>","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":"015003"},"PeriodicalIF":3.7,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42633856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-05DOI: 10.1088/1748-605X/ab5f1a
G. Molino, M. Palmieri, Giorgia Montalbano, S. Fiorilli, C. Vitale-Brovarone
In the last decades, many research groups have experimented the synthesis of hydroxyapatite (HA) for bone tissue application obtaining products with different shapes and dimensions. This review aims to summarise and critically analyse the most used methods to prepare physiologic-like nano-HA, in the form of plates or rods, similar to the HA present in the human bones. Moreover, mesoporous HA has gained increasing interest in the biomedical field due its pecualiar structural features, such as high surface area and accessible mesoporous volume, which is known to confer enhanced biological behaviour and the possibility to act as nanocarriers of functional agents for bone-related therapies. For this reason, more recent studies related to the synthesis of mesoporous HA, with physiological-like morphology, are also considered in this review. Since a wide class of surfactant molecules plays an essential role both in the shape and size control of HA crystals and in the formation of mesoporosity, a section devoted to the mechanisms of action of several surfactants is also provided.
{"title":"Biomimetic and mesoporous nano-hydroxyapatite for bone tissue application: a short review","authors":"G. Molino, M. Palmieri, Giorgia Montalbano, S. Fiorilli, C. Vitale-Brovarone","doi":"10.1088/1748-605X/ab5f1a","DOIUrl":"https://doi.org/10.1088/1748-605X/ab5f1a","url":null,"abstract":"In the last decades, many research groups have experimented the synthesis of hydroxyapatite (HA) for bone tissue application obtaining products with different shapes and dimensions. This review aims to summarise and critically analyse the most used methods to prepare physiologic-like nano-HA, in the form of plates or rods, similar to the HA present in the human bones. Moreover, mesoporous HA has gained increasing interest in the biomedical field due its pecualiar structural features, such as high surface area and accessible mesoporous volume, which is known to confer enhanced biological behaviour and the possibility to act as nanocarriers of functional agents for bone-related therapies. For this reason, more recent studies related to the synthesis of mesoporous HA, with physiological-like morphology, are also considered in this review. Since a wide class of surfactant molecules plays an essential role both in the shape and size control of HA crystals and in the formation of mesoporosity, a section devoted to the mechanisms of action of several surfactants is also provided.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab5f1a","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45984589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-29DOI: 10.1088/1748-605X/ab5d7b
C. Wolf-Brandstetter, R. Beutner, R. Hess, S. Bierbaum, Katrin Wagner, D. Scharnweber, U. Gbureck, C. Moseke
For decades, the main focus of titanium implants developed to restore bone functionality was on improved osseointegration. Additional antimicrobial properties have now become desirable, due to the risk that rising antibiotic resistance poses for implant-associated infections. To this end, the trace elements of copper and zinc were integrated into calcium phosphate based coatings by electrochemically assisted deposition. In addition to their antimicrobial activity, zinc is reported to attract bone progenitor cells through chemotaxis and thus increase osteogenic differentiation, and copper to stimulate angiogenesis. Quantities of up to 68.9 ± 0.1 μg cm−2 of copper and 56.6 ± 0.4 μg cm−2 of zinc were deposited; co-deposition of both ions did not influence the amount of zinc but slightly increased the amount of copper in the coatings. The release of deposited copper and zinc species was negligible in serum-free simulated body fluid. In protein-containing solutions, a burst release of up to 10 μg ml−1 was observed for copper, while zinc was released continuously for up to 14 days. The presence of zinc was beneficial for adhesion and growth of human mesenchymal stromal cells in a concentration-dependent manner, but cytotoxic effects were already visible for coatings with an intermediate copper content. However, co-deposited zinc could somewhat alleviate the adverse effects of copper. Antimicrobial tests with E. coli revealed a decrease in adherent bacteria on brushite without copper or zinc of 60%, but if the coating contained both ions there was almost no bacterial adhesion after 12 h. Coatings with high zinc content and intermediate copper content had the overall best multifunctional properties.
{"title":"Multifunctional calcium phosphate based coatings on titanium implants with integrated trace elements","authors":"C. Wolf-Brandstetter, R. Beutner, R. Hess, S. Bierbaum, Katrin Wagner, D. Scharnweber, U. Gbureck, C. Moseke","doi":"10.1088/1748-605X/ab5d7b","DOIUrl":"https://doi.org/10.1088/1748-605X/ab5d7b","url":null,"abstract":"For decades, the main focus of titanium implants developed to restore bone functionality was on improved osseointegration. Additional antimicrobial properties have now become desirable, due to the risk that rising antibiotic resistance poses for implant-associated infections. To this end, the trace elements of copper and zinc were integrated into calcium phosphate based coatings by electrochemically assisted deposition. In addition to their antimicrobial activity, zinc is reported to attract bone progenitor cells through chemotaxis and thus increase osteogenic differentiation, and copper to stimulate angiogenesis. Quantities of up to 68.9 ± 0.1 μg cm−2 of copper and 56.6 ± 0.4 μg cm−2 of zinc were deposited; co-deposition of both ions did not influence the amount of zinc but slightly increased the amount of copper in the coatings. The release of deposited copper and zinc species was negligible in serum-free simulated body fluid. In protein-containing solutions, a burst release of up to 10 μg ml−1 was observed for copper, while zinc was released continuously for up to 14 days. The presence of zinc was beneficial for adhesion and growth of human mesenchymal stromal cells in a concentration-dependent manner, but cytotoxic effects were already visible for coatings with an intermediate copper content. However, co-deposited zinc could somewhat alleviate the adverse effects of copper. Antimicrobial tests with E. coli revealed a decrease in adherent bacteria on brushite without copper or zinc of 60%, but if the coating contained both ions there was almost no bacterial adhesion after 12 h. Coatings with high zinc content and intermediate copper content had the overall best multifunctional properties.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2019-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab5d7b","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41703467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-15DOI: 10.1088/1748-605X/ab4e23
Shiva Asadpour, Hamid Yeganeh, Farzaneh Khademi, Hossein Ghanbari, Jafar Ai
Acellular small-caliber tissue-engineered vascular grafts (SCTEVGs) have low patency rate due to complications including thrombosis and intimal hyperplasia. Rapid endothelialization, antithrombosis and antiproliferation approaches are suitable for dispelling these complications. Nevertheless, common antithrombosis and antiproliferation techniques are usually incompatible with rapid endothelialization on vascular grafts. To overcome these obstacles, we developed nanofibrous polyurethane scaffolds loaded with resveratrol drug, which is a natural compound extracted from plants and shows multifaceted effects in cardiovascular protection. It was found that the tensile strength and Young's modulus in modified scaffolds were significantly increased by resveratrol loading into membranes. The tensile strengths and breaking strains of resveratrol-loaded scaffolds were close to that of native vessels. The resveratrol release profile from the nanofibrous scaffolds occurred in a sustained manner. The anti-thrombogenicity of resveratrol-loaded nanofibers increased compared to polyurethane alone, with the result that prolonged human blood clotting time and lower hemolysis were detected on these scaffolds. The viability of human umbilical vein endothelial cells and smooth muscle cells on resveratrol-loaded scaffolds was evaluated. Our findings demonstrated that resveratrol-loaded nanofibers resulted in not only appropriate antithrombotic properties, but the formation of a monolayer of endothelial cells on the scaffold surface and lower smooth muscle cell growth. These resveratrol-loaded nanofibers are suggested as potential scaffolds for SCTEVGs.
{"title":"Resveratrol-loaded polyurethane nanofibrous scaffold: viability of endothelial and smooth muscle cells.","authors":"Shiva Asadpour, Hamid Yeganeh, Farzaneh Khademi, Hossein Ghanbari, Jafar Ai","doi":"10.1088/1748-605X/ab4e23","DOIUrl":"10.1088/1748-605X/ab4e23","url":null,"abstract":"<p><p>Acellular small-caliber tissue-engineered vascular grafts (SCTEVGs) have low patency rate due to complications including thrombosis and intimal hyperplasia. Rapid endothelialization, antithrombosis and antiproliferation approaches are suitable for dispelling these complications. Nevertheless, common antithrombosis and antiproliferation techniques are usually incompatible with rapid endothelialization on vascular grafts. To overcome these obstacles, we developed nanofibrous polyurethane scaffolds loaded with resveratrol drug, which is a natural compound extracted from plants and shows multifaceted effects in cardiovascular protection. It was found that the tensile strength and Young's modulus in modified scaffolds were significantly increased by resveratrol loading into membranes. The tensile strengths and breaking strains of resveratrol-loaded scaffolds were close to that of native vessels. The resveratrol release profile from the nanofibrous scaffolds occurred in a sustained manner. The anti-thrombogenicity of resveratrol-loaded nanofibers increased compared to polyurethane alone, with the result that prolonged human blood clotting time and lower hemolysis were detected on these scaffolds. The viability of human umbilical vein endothelial cells and smooth muscle cells on resveratrol-loaded scaffolds was evaluated. Our findings demonstrated that resveratrol-loaded nanofibers resulted in not only appropriate antithrombotic properties, but the formation of a monolayer of endothelial cells on the scaffold surface and lower smooth muscle cell growth. These resveratrol-loaded nanofibers are suggested as potential scaffolds for SCTEVGs.</p>","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":"015001"},"PeriodicalIF":3.7,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44704246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Three-dimensional (3D) printing technologies open up new perspectives for customizing the external shape and internal architecture of bone scaffolds. In this study, an oligopeptide (SSVPT, Ser-Ser-Val-Pro-Thr) derived from bone morphogenetic protein 2 was conjugated with a dopamine coating on a 3D-printed poly(lactic acid) (PLA) scaffold to enhance osteogenesis. Cell experiments in vitro showed that the scaffold was highly osteoconductive to the adhesion and proliferation of rat marrow mesenchymal stem cells (MSCs). In addition, RT-PCR analysis showed that the scaffold was able to promote the expression of osteogenesis-related genes, such as alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), osteocalcin (OCN) and osteopontin (OPN). Images of the micro-CT 3D reconstruction from the rat cranial bone defect model showed that bone regeneration patterns occurred from one side edge towards the center of the area implanted with the prepared biomimetic peptide hydrogels, demonstrating significantly accelerated bone regeneration. This work will provide a basis to explore the application potential of bioactive scaffolds further.
{"title":"Immobilization of BMP-2-derived peptides on 3D-printed porous scaffolds for enhanced osteogenesis.","authors":"Xiashiyao Zhang, Qi Lou, Lili Wang, Shan Min, Meng Zhao, Changyun Quan","doi":"10.1088/1748-605X/ab4c78","DOIUrl":"10.1088/1748-605X/ab4c78","url":null,"abstract":"<p><p>Three-dimensional (3D) printing technologies open up new perspectives for customizing the external shape and internal architecture of bone scaffolds. In this study, an oligopeptide (SSVPT, Ser-Ser-Val-Pro-Thr) derived from bone morphogenetic protein 2 was conjugated with a dopamine coating on a 3D-printed poly(lactic acid) (PLA) scaffold to enhance osteogenesis. Cell experiments in vitro showed that the scaffold was highly osteoconductive to the adhesion and proliferation of rat marrow mesenchymal stem cells (MSCs). In addition, RT-PCR analysis showed that the scaffold was able to promote the expression of osteogenesis-related genes, such as alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), osteocalcin (OCN) and osteopontin (OPN). Images of the micro-CT 3D reconstruction from the rat cranial bone defect model showed that bone regeneration patterns occurred from one side edge towards the center of the area implanted with the prepared biomimetic peptide hydrogels, demonstrating significantly accelerated bone regeneration. This work will provide a basis to explore the application potential of bioactive scaffolds further.</p>","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":"015002"},"PeriodicalIF":3.7,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46585139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-08DOI: 10.1088/1748-605X/ab49e2
Le Jin, Wenwen Zhao, Bo Ren, Lei Li, Xiaoqing Hu, Xin Zhang, Q. Cai, Y. Ao, Xiaoping Yang
The reconstruction of osteochondral tissue remains a challenging task in clinical therapy because of its heterogeneous structure. The best way to face the challenge is to develop a biomimetic construct to mimic the multilayered gradient from cartilage, to calcified cartilage and subchondral bone. In this study, bone marrow mesenchymal stromal cells (BMSCs) were cultured on electrospun fibrous meshes and cell sheets were incubated. The fibrous meshes were composed of 50% poly(L-lactide) and 50% gelatin, displaying excellent biocompatibility, cell affinity and degradability. Differentiation of BMSC sheets on fibrous meshes was induced chondrogenically or osteogenically. In particular, the BMSC sheets were able to be efficiently induced differentiating towards calcified cartilage by using a 1:1 (v/v) mixed medium of chondrogenic and osteogenic inductive media. Thus, a gradient 3D construct was built by stacking the differently pre-differentiated cell/mesh complexes layer by layer from top to bottom to mimic the cartilage-to-bone transition. With this gradient construct being implanted in the rabbit knee osteochondral defect, it was confirmed that it could promote the tissue regeneration with intact cartilage layer formation in comparison with the multilayered construct without a gradient. The strategy of using properly pre-differentiated BMSC sheet on fibrous mesh to build the osteochondral interface was thus suggested as being feasible and effective in mimicking its hierarchical complexity, and favored the repairing of injured joint cartilage.
{"title":"Osteochondral tissue regenerated via a strategy by stacking pre-differentiated BMSC sheet on fibrous mesh in a gradient","authors":"Le Jin, Wenwen Zhao, Bo Ren, Lei Li, Xiaoqing Hu, Xin Zhang, Q. Cai, Y. Ao, Xiaoping Yang","doi":"10.1088/1748-605X/ab49e2","DOIUrl":"https://doi.org/10.1088/1748-605X/ab49e2","url":null,"abstract":"The reconstruction of osteochondral tissue remains a challenging task in clinical therapy because of its heterogeneous structure. The best way to face the challenge is to develop a biomimetic construct to mimic the multilayered gradient from cartilage, to calcified cartilage and subchondral bone. In this study, bone marrow mesenchymal stromal cells (BMSCs) were cultured on electrospun fibrous meshes and cell sheets were incubated. The fibrous meshes were composed of 50% poly(L-lactide) and 50% gelatin, displaying excellent biocompatibility, cell affinity and degradability. Differentiation of BMSC sheets on fibrous meshes was induced chondrogenically or osteogenically. In particular, the BMSC sheets were able to be efficiently induced differentiating towards calcified cartilage by using a 1:1 (v/v) mixed medium of chondrogenic and osteogenic inductive media. Thus, a gradient 3D construct was built by stacking the differently pre-differentiated cell/mesh complexes layer by layer from top to bottom to mimic the cartilage-to-bone transition. With this gradient construct being implanted in the rabbit knee osteochondral defect, it was confirmed that it could promote the tissue regeneration with intact cartilage layer formation in comparison with the multilayered construct without a gradient. The strategy of using properly pre-differentiated BMSC sheet on fibrous mesh to build the osteochondral interface was thus suggested as being feasible and effective in mimicking its hierarchical complexity, and favored the repairing of injured joint cartilage.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab49e2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41924112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-08DOI: 10.1088/1748-605X/ab49f2
C. Brennan, K. Eichholz, D. Hoey
Limitations associated with current bone grafting materials has necessitated the development of synthetic scaffolds that mimic the native tissue for bone repair. Scaffold parameters such as pore size, pore interconnectivity, fibre diameter, and fibre stiffness are crucial parameters of fibrous bone tissue engineering (BTE) scaffolds required to replicate the native environment. Optimum values vary with material, fabrication method and cell type. Melt electrowriting (MEW) provides precise control over extracellular matrix (ECM)-like fibrous scaffold architecture. The goal of this study was to fabricate and characterise poly-ε-caprolactone (PCL) fibrous scaffolds with 100, 200, and 300 μm pore sizes using MEW and determine the influence of pore size on human bone marrow stem cell (hMSC) adhesion, morphology, proliferation, mechanosignalling and osteogenesis. Each scaffold was fabricated with a fibre diameter of 4.01 ± 0.06 μm. The findings from this study highlight the enhanced osteogenic effects of controlled micro-scale fibre deposition using MEW, where the benefits of 100 μm square pores in comparison with larger pore sizes are illustrated, a pore size traditionally reported as a lower limit for osteogenesis. This suggests a lower pore size is optimal when hMSCs are seeded in a 3D ECM-like fibrous structure, with the 100 μm pore size optimal as it demonstrates the highest global stiffness, local fibre stiffness, highest seeding efficiency, maintains a spread cellular morphology, and significantly enhances hMSC collagen and mineral deposition. Similarly, this platform represents an effective in vitro model for the study of hMSC behaviour to determine the significant osteogenic benefits of controlling ECM-like fibrous BTE scaffold pore size using MEW.
{"title":"The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogenesis","authors":"C. Brennan, K. Eichholz, D. Hoey","doi":"10.1088/1748-605X/ab49f2","DOIUrl":"https://doi.org/10.1088/1748-605X/ab49f2","url":null,"abstract":"Limitations associated with current bone grafting materials has necessitated the development of synthetic scaffolds that mimic the native tissue for bone repair. Scaffold parameters such as pore size, pore interconnectivity, fibre diameter, and fibre stiffness are crucial parameters of fibrous bone tissue engineering (BTE) scaffolds required to replicate the native environment. Optimum values vary with material, fabrication method and cell type. Melt electrowriting (MEW) provides precise control over extracellular matrix (ECM)-like fibrous scaffold architecture. The goal of this study was to fabricate and characterise poly-ε-caprolactone (PCL) fibrous scaffolds with 100, 200, and 300 μm pore sizes using MEW and determine the influence of pore size on human bone marrow stem cell (hMSC) adhesion, morphology, proliferation, mechanosignalling and osteogenesis. Each scaffold was fabricated with a fibre diameter of 4.01 ± 0.06 μm. The findings from this study highlight the enhanced osteogenic effects of controlled micro-scale fibre deposition using MEW, where the benefits of 100 μm square pores in comparison with larger pore sizes are illustrated, a pore size traditionally reported as a lower limit for osteogenesis. This suggests a lower pore size is optimal when hMSCs are seeded in a 3D ECM-like fibrous structure, with the 100 μm pore size optimal as it demonstrates the highest global stiffness, local fibre stiffness, highest seeding efficiency, maintains a spread cellular morphology, and significantly enhances hMSC collagen and mineral deposition. Similarly, this platform represents an effective in vitro model for the study of hMSC behaviour to determine the significant osteogenic benefits of controlling ECM-like fibrous BTE scaffold pore size using MEW.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab49f2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43670930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-06DOI: 10.1088/1748-605X/ab54e3
Y. Sugimura, A. Chekhoeva, Kyohei Oyama, S. Nakanishi, M. Toshmatova, S. Miyahara, M. Barth, A. Assmann, A. Lichtenberg, A. Assmann, P. Akhyari
Optimized biocompatibility is crucial for the durability of cardiovascular implants. Previously, a combined coating with fibronectin (FN) and stromal cell-derived factor 1α (SDF1α) has been shown to accelerate the in vivo cellularization of synthetic vascular grafts and to reduce the calcification of biological pulmonary root grafts. In this study, we evaluate the effect of side-specific luminal SDF1α coating and adventitial FN coating on the in vivo cellularization and degeneration of decellularized rat aortic implants. Aortic arch vascular donor grafts were detergent-decellularized. The luminal graft surface was coated with SDF1α, while the adventitial surface was coated with FN. SDF1α-coated and uncoated grafts were infrarenally implanted (n = 20) in rats and followed up for up to eight weeks. Cellular intima population was accelerated by luminal SDF1α coating at two weeks (92.4 ± 2.95% versus 61.1 ± 6.51% in controls, p < 0.001). SDF1α coating inhibited neo-intimal hyperplasia, resulting in a significantly decreased intima-to-media ratio after eight weeks (0.62 ± 0.15 versus 1.35 ± 0.26 in controls, p < 0.05). Furthermore, at eight weeks, media calcification was significantly decreased in the SDF1α group as compared to the control group (area of calcification in proximal arch region 1092 ± 517 μm2 versus 11 814 ± 1883 μm2, p < 0.01). Luminal coating with SDF1α promotes early autologous intima recellularization in vivo and attenuates neo-intima hyperplasia as well as calcification of decellularized vascular grafts.
{"title":"Controlled autologous recellularization and inhibited degeneration of decellularized vascular implants by side-specific coating with stromal cell-derived factor 1α and fibronectin","authors":"Y. Sugimura, A. Chekhoeva, Kyohei Oyama, S. Nakanishi, M. Toshmatova, S. Miyahara, M. Barth, A. Assmann, A. Lichtenberg, A. Assmann, P. Akhyari","doi":"10.1088/1748-605X/ab54e3","DOIUrl":"https://doi.org/10.1088/1748-605X/ab54e3","url":null,"abstract":"Optimized biocompatibility is crucial for the durability of cardiovascular implants. Previously, a combined coating with fibronectin (FN) and stromal cell-derived factor 1α (SDF1α) has been shown to accelerate the in vivo cellularization of synthetic vascular grafts and to reduce the calcification of biological pulmonary root grafts. In this study, we evaluate the effect of side-specific luminal SDF1α coating and adventitial FN coating on the in vivo cellularization and degeneration of decellularized rat aortic implants. Aortic arch vascular donor grafts were detergent-decellularized. The luminal graft surface was coated with SDF1α, while the adventitial surface was coated with FN. SDF1α-coated and uncoated grafts were infrarenally implanted (n = 20) in rats and followed up for up to eight weeks. Cellular intima population was accelerated by luminal SDF1α coating at two weeks (92.4 ± 2.95% versus 61.1 ± 6.51% in controls, p < 0.001). SDF1α coating inhibited neo-intimal hyperplasia, resulting in a significantly decreased intima-to-media ratio after eight weeks (0.62 ± 0.15 versus 1.35 ± 0.26 in controls, p < 0.05). Furthermore, at eight weeks, media calcification was significantly decreased in the SDF1α group as compared to the control group (area of calcification in proximal arch region 1092 ± 517 μm2 versus 11 814 ± 1883 μm2, p < 0.01). Luminal coating with SDF1α promotes early autologous intima recellularization in vivo and attenuates neo-intima hyperplasia as well as calcification of decellularized vascular grafts.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2019-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab54e3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43116704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-06DOI: 10.1088/1748-605X/ab550c
A. Gostev, V. Chernonosova, I. Murashov, D. Sergeevichev, Alexander A Korobeinikov, A. Karaskov, A. Karpenko, P. Laktionov
General physicochemical properties of the vascular grafts (VGs) produced from the solutions of Tecoflex (Tec) with gelatin (GL) and bivalirudin (BV) by electrospinning are studied. The electrospun VGs of Tec-GL-BV and expanded polytetrafluoroethylene (e-PTFE) implanted in the abdominal aorta of 36 Wistar rats have been observed over different time intervals up to 24 weeks. A comparison shows that 94.5% of the Tec-GL-BV VGs and only 66.6% of e-PTFE VGs (р = 0.0438) are free of occlusions after a 6 month implantation. At the intermediate observation points, Tec-GL-BV VGs demonstrate severe neovascularization of the VG neoadventitial layer as compared with e-PTFE grafts. A histological examination demonstrates a small thickness of the neointima layer and a low level of calcification in Tec-GL-BV VGs as compared with the control grafts. Thus, polyurethane-based protein-enriched VGs have certain advantages over e-PTFE VGs, suggesting their utility in clinical studies.
{"title":"Electrospun polyurethane-based vascular grafts: physicochemical properties and functioning in vivo","authors":"A. Gostev, V. Chernonosova, I. Murashov, D. Sergeevichev, Alexander A Korobeinikov, A. Karaskov, A. Karpenko, P. Laktionov","doi":"10.1088/1748-605X/ab550c","DOIUrl":"https://doi.org/10.1088/1748-605X/ab550c","url":null,"abstract":"General physicochemical properties of the vascular grafts (VGs) produced from the solutions of Tecoflex (Tec) with gelatin (GL) and bivalirudin (BV) by electrospinning are studied. The electrospun VGs of Tec-GL-BV and expanded polytetrafluoroethylene (e-PTFE) implanted in the abdominal aorta of 36 Wistar rats have been observed over different time intervals up to 24 weeks. A comparison shows that 94.5% of the Tec-GL-BV VGs and only 66.6% of e-PTFE VGs (р = 0.0438) are free of occlusions after a 6 month implantation. At the intermediate observation points, Tec-GL-BV VGs demonstrate severe neovascularization of the VG neoadventitial layer as compared with e-PTFE grafts. A histological examination demonstrates a small thickness of the neointima layer and a low level of calcification in Tec-GL-BV VGs as compared with the control grafts. Thus, polyurethane-based protein-enriched VGs have certain advantages over e-PTFE VGs, suggesting their utility in clinical studies.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2019-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab550c","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45546655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-17DOI: 10.1088/1748-605X/ab453c
Poornima Ramburrun, Pradeep Kumar, Y. Choonara, L. D. du Toit, V. Pillay
The focus of significance in neuronal repair strategies is the design of scaffold systems capable of promoting neuronal regeneration and directional guidance via provision of a biomimetic environment resemblance of native neural tissue. The purpose of this study was to synthesize triple-cue electrospun aligned nanofibrous films (physical cue) of poly(3-hyroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) blended with magnesium-oleate (MgOl) (chemical cue) and N-acetyl-L-cysteine (NAC) (therapeutic cue) with potential incorporation into hollow nerve guidance conduits for an enhanced regenerative strategy. A Box–Behnken experimental design of 15 formulations, were analysed for crystallinity, textural properties and in vitro water-uptake, erosion, NAC-release and PC12 cell viability. Nucleating effects of MgOl provided tuning of PHBV electrospinning-induced crystallinity and mechanical properties. Tensile strengths and deformation moduli of ±12 MPa and ±7 MP, respectively, were attainable, thereby matching native nerve mechanics. Crystallinity changes ascribed differing release kinetics to NAC over 30 d: diffusion-based (42%–58% crystallinity with 33%–47% fractional release) and polymer-relaxational (59%–65% crystallinity with 60%–82% fractional release). The synergistic activity of MgOl and NAC increased PC12 proliferation by 32.6% compared to the control. MgOl produced dual actions as non-toxic plasticiser and PC12 cell proliferation-promoter via nucleation and neurotrophic-like effects, respectively. Controlled release of NAC imparted neuro-protectant effects on PC12 cells and promoted neurite extension, thus, making electrospun PHBV-MgOl nanofibrous films a versatile and promising approach for axonal guidance in peripheral nerve repair strategies.
{"title":"Design and characterisation of PHBV-magnesium oleate directional nanofibers for neurosupport","authors":"Poornima Ramburrun, Pradeep Kumar, Y. Choonara, L. D. du Toit, V. Pillay","doi":"10.1088/1748-605X/ab453c","DOIUrl":"https://doi.org/10.1088/1748-605X/ab453c","url":null,"abstract":"The focus of significance in neuronal repair strategies is the design of scaffold systems capable of promoting neuronal regeneration and directional guidance via provision of a biomimetic environment resemblance of native neural tissue. The purpose of this study was to synthesize triple-cue electrospun aligned nanofibrous films (physical cue) of poly(3-hyroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) blended with magnesium-oleate (MgOl) (chemical cue) and N-acetyl-L-cysteine (NAC) (therapeutic cue) with potential incorporation into hollow nerve guidance conduits for an enhanced regenerative strategy. A Box–Behnken experimental design of 15 formulations, were analysed for crystallinity, textural properties and in vitro water-uptake, erosion, NAC-release and PC12 cell viability. Nucleating effects of MgOl provided tuning of PHBV electrospinning-induced crystallinity and mechanical properties. Tensile strengths and deformation moduli of ±12 MPa and ±7 MP, respectively, were attainable, thereby matching native nerve mechanics. Crystallinity changes ascribed differing release kinetics to NAC over 30 d: diffusion-based (42%–58% crystallinity with 33%–47% fractional release) and polymer-relaxational (59%–65% crystallinity with 60%–82% fractional release). The synergistic activity of MgOl and NAC increased PC12 proliferation by 32.6% compared to the control. MgOl produced dual actions as non-toxic plasticiser and PC12 cell proliferation-promoter via nucleation and neurotrophic-like effects, respectively. Controlled release of NAC imparted neuro-protectant effects on PC12 cells and promoted neurite extension, thus, making electrospun PHBV-MgOl nanofibrous films a versatile and promising approach for axonal guidance in peripheral nerve repair strategies.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab453c","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46950320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}