Background: Leaves are important sites for photosynthesis and can convert inorganic substances into organic matter. Photosynthetic performance is an important factor affecting crop yield. Leaf colour is closely related to photosynthesis, and leaf colour mutants are considered an ideal material for studying photosynthesis.
Results: We obtained a yellow-green leaf mutant jym165, using ethyl methane sulfonate (EMS) mutagenesis. Physiological and biochemical analyses indicated that the contents of chlorophyll a, chlorophyll b, carotenoids, and total chlorophyll in the jym165 mutant decreased significantly compared with those in Jiyu47 (JY47). The abnormal chloroplast development of jym165 led to a decrease in net photosynthetic rate and starch content compared with that of JY47. However, quality traits analysis showed that the sum of oil and protein contents in jym165 was higher than that in JY47. In addition, the regional yield (seed spacing: 5 cm) of jym165 increased by 2.42% compared with that of JY47 under high planting density. Comparative transcriptome analysis showed that the yellow-green leaf phenotype was closely related to photosynthesis and starch and sugar metabolism pathways. Genetic analysis suggests that the yellow-green leaf phenotype is controlled by a single recessive nuclear gene. Using Mutmap sequencing, the candidate regions related of leaf colour was narrowed to 3.44 Mb on Chr 10.
Conclusions: Abnormal chloroplast development in yellow-green mutants leads to a decrease in the photosynthetic pigment content and net photosynthetic rate, which affects the soybean photosynthesis pathway and starch and sugar metabolism pathways. Moreover, it has the potentiality to increase soybean yield under dense planting conditions. This study provides a useful reference for studying the molecular mechanisms underlying photosynthesis in soybean.
{"title":"Photosynthetic characteristics and genetic mapping of a yellow-green leaf mutant jym165 in soybean.","authors":"Yu Zhao, Mengxue Zhu, Hongtao Gao, Yonggang Zhou, Wenbo Yao, Yan Zhao, Wenping Zhang, Chen Feng, Yaxin Li, Yan Jin, Keheng Xu","doi":"10.1186/s12870-024-05740-y","DOIUrl":"10.1186/s12870-024-05740-y","url":null,"abstract":"<p><strong>Background: </strong>Leaves are important sites for photosynthesis and can convert inorganic substances into organic matter. Photosynthetic performance is an important factor affecting crop yield. Leaf colour is closely related to photosynthesis, and leaf colour mutants are considered an ideal material for studying photosynthesis.</p><p><strong>Results: </strong>We obtained a yellow-green leaf mutant jym165, using ethyl methane sulfonate (EMS) mutagenesis. Physiological and biochemical analyses indicated that the contents of chlorophyll a, chlorophyll b, carotenoids, and total chlorophyll in the jym165 mutant decreased significantly compared with those in Jiyu47 (JY47). The abnormal chloroplast development of jym165 led to a decrease in net photosynthetic rate and starch content compared with that of JY47. However, quality traits analysis showed that the sum of oil and protein contents in jym165 was higher than that in JY47. In addition, the regional yield (seed spacing: 5 cm) of jym165 increased by 2.42% compared with that of JY47 under high planting density. Comparative transcriptome analysis showed that the yellow-green leaf phenotype was closely related to photosynthesis and starch and sugar metabolism pathways. Genetic analysis suggests that the yellow-green leaf phenotype is controlled by a single recessive nuclear gene. Using Mutmap sequencing, the candidate regions related of leaf colour was narrowed to 3.44 Mb on Chr 10.</p><p><strong>Conclusions: </strong>Abnormal chloroplast development in yellow-green mutants leads to a decrease in the photosynthetic pigment content and net photosynthetic rate, which affects the soybean photosynthesis pathway and starch and sugar metabolism pathways. Moreover, it has the potentiality to increase soybean yield under dense planting conditions. This study provides a useful reference for studying the molecular mechanisms underlying photosynthesis in soybean.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515216/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-26DOI: 10.1186/s12870-024-05726-w
Jie Dong, Cong Ding, Huahui Chen, Hailin Fu, Renbo Pei, Fafu Shen, Wei Wang
Background: Drought stress markedly constrains plant growth and diminishes crop productivity. Strigolactones (SLs) exert a beneficial influence on plant resilience to drought conditions. Nevertheless, the specific function of SLs in modulating cotton's response to drought stress remains to be elucidated.
Results: In this study, we assess the impact of exogenous SL (rac-GR24) administration at various concentrations (0, 1, 5, 10, 20 µM) on cotton growth during drought stress. The findings reveal that cotton seedlings treated with 5 µM exogenous SL exhibit optimal mitigation of growth suppression induced by drought stress. Treatment with 5 µM exogenous SL under drought stress conditions enhances drought tolerance in cotton seedlings by augmenting photosynthetic efficiency, facilitating stomatal closure, diminishing reactive oxygen species (ROS) generation, alleviating membrane lipid peroxidation, enhancing the activity of antioxidant enzymes, elevating the levels of osmoregulatory compounds, and upregulating the expression of drought-responsive genes. The suppression of cotton SL biosynthesis genes, MORE AXILLARY GROWTH 3 (GhMAX3) and GhMAX4b, impairs the drought tolerance of cotton. Conversely, overexpression of GhMAX3 and GhMAX4b in respective Arabidopsis mutants ameliorates the drought-sensitive phenotype in these mutants.
Conclusion: These observations underscore that SLs significantly bolster cotton's resistance to drought stress.
{"title":"Functions of exogenous strigolactone application and strigolactone biosynthesis genes GhMAX3/GhMAX4b in response to drought tolerance in cotton (Gossypium hirsutum L.).","authors":"Jie Dong, Cong Ding, Huahui Chen, Hailin Fu, Renbo Pei, Fafu Shen, Wei Wang","doi":"10.1186/s12870-024-05726-w","DOIUrl":"10.1186/s12870-024-05726-w","url":null,"abstract":"<p><strong>Background: </strong>Drought stress markedly constrains plant growth and diminishes crop productivity. Strigolactones (SLs) exert a beneficial influence on plant resilience to drought conditions. Nevertheless, the specific function of SLs in modulating cotton's response to drought stress remains to be elucidated.</p><p><strong>Results: </strong>In this study, we assess the impact of exogenous SL (rac-GR24) administration at various concentrations (0, 1, 5, 10, 20 µM) on cotton growth during drought stress. The findings reveal that cotton seedlings treated with 5 µM exogenous SL exhibit optimal mitigation of growth suppression induced by drought stress. Treatment with 5 µM exogenous SL under drought stress conditions enhances drought tolerance in cotton seedlings by augmenting photosynthetic efficiency, facilitating stomatal closure, diminishing reactive oxygen species (ROS) generation, alleviating membrane lipid peroxidation, enhancing the activity of antioxidant enzymes, elevating the levels of osmoregulatory compounds, and upregulating the expression of drought-responsive genes. The suppression of cotton SL biosynthesis genes, MORE AXILLARY GROWTH 3 (GhMAX3) and GhMAX4b, impairs the drought tolerance of cotton. Conversely, overexpression of GhMAX3 and GhMAX4b in respective Arabidopsis mutants ameliorates the drought-sensitive phenotype in these mutants.</p><p><strong>Conclusion: </strong>These observations underscore that SLs significantly bolster cotton's resistance to drought stress.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515143/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1186/s12870-024-05701-5
Adnan Arshad, Sorin Mihai Cîmpeanu, Ionuț Ovidiu Jerca, Chan Sovorn, Baber Ali, Liliana Aurelia Badulescu, Elena Maria Drăghici
The growth of plants hinges on a complex interplay of biochemical and physiological activities across various growth stages. These intricate processes dynamically adapt to different environmental conditions, shaping both plant development and productivity. This study explores the impact of greenhouse climate on the growth, yield, and biochemistry of winter-grown cherry tomatoes 'Cheramy F1'. A randomized complete block design (RCBD) under split plot arrangements (3 Rows) with three replications (3 plants from each row) was adopted. The data were collected on various dates during the period extending from December to March of two consecutive growing seasons in 2022 and 2023, and presented as averages. An analysis of variance was applied to statistically analyze the collected data at a confidence level of p < 0.05. The climatic conditions in the greenhouse were calculated as temperature ranging from a minimum of 10.5 °C to the maximum of 41.3 °C by an average of 21.2 °C during the vegetative stage and from 8.2 °C to 32.3 °C by an average of 20.9 °C during the fruit-bearing stage, with an average CO2 concentration fluctuated within the range of 385.61 ppm to 510.30 ppm and an average light intensity of 94.62 to 240.45 W/m². This study assessed various growth parameters such as plant height, leaf growth, stem diameter, leaf spacing, leaf count, leaf area, and inflorescence count per plant, and suggested the optimum range of greenhouse conditions for each stage. The key results of this study revealed the Progressive Growth Report (PGR), predicting daily potential growth rates of plants: plant height, 2.86 to 3.81 cm/day; growth rate of mature older leaf: 0.003988 m2/day; middle younger leaf: 0.008733 m2/day; top nascent leaf: 0.010722 m2/day; three to five leaves per week; and one inflorescence per week. In our accidental observation, we noticed unusual plant growth and yield responses because of the various growing postures and positions that the plants adopted in the greenhouse. An exceedingly significant difference among the inflorescences was found in view of their growth, productivity and biochemical composition. A non-significant interaction was found between the fruit keeping quality (shelf days), fruit height, fruit diameter, and inflorescence number. The present study results highlight the possible responses of greenhouse-grown cherry tomatoes to different ranges of temperature, light intensity, and CO2 concentrations, offering valuable insights for optimizing greenhouse cherry tomatoes cultivation.
{"title":"Assessing the growth, yield, and biochemical composition of greenhouse cherry tomatoes with special emphasis on the progressive growth report.","authors":"Adnan Arshad, Sorin Mihai Cîmpeanu, Ionuț Ovidiu Jerca, Chan Sovorn, Baber Ali, Liliana Aurelia Badulescu, Elena Maria Drăghici","doi":"10.1186/s12870-024-05701-5","DOIUrl":"10.1186/s12870-024-05701-5","url":null,"abstract":"<p><p>The growth of plants hinges on a complex interplay of biochemical and physiological activities across various growth stages. These intricate processes dynamically adapt to different environmental conditions, shaping both plant development and productivity. This study explores the impact of greenhouse climate on the growth, yield, and biochemistry of winter-grown cherry tomatoes 'Cheramy F1'. A randomized complete block design (RCBD) under split plot arrangements (3 Rows) with three replications (3 plants from each row) was adopted. The data were collected on various dates during the period extending from December to March of two consecutive growing seasons in 2022 and 2023, and presented as averages. An analysis of variance was applied to statistically analyze the collected data at a confidence level of p < 0.05. The climatic conditions in the greenhouse were calculated as temperature ranging from a minimum of 10.5 °C to the maximum of 41.3 °C by an average of 21.2 °C during the vegetative stage and from 8.2 °C to 32.3 °C by an average of 20.9 °C during the fruit-bearing stage, with an average CO<sub>2</sub> concentration fluctuated within the range of 385.61 ppm to 510.30 ppm and an average light intensity of 94.62 to 240.45 W/m². This study assessed various growth parameters such as plant height, leaf growth, stem diameter, leaf spacing, leaf count, leaf area, and inflorescence count per plant, and suggested the optimum range of greenhouse conditions for each stage. The key results of this study revealed the Progressive Growth Report (PGR), predicting daily potential growth rates of plants: plant height, 2.86 to 3.81 cm/day; growth rate of mature older leaf: 0.003988 m<sup>2</sup>/day; middle younger leaf: 0.008733 m<sup>2</sup>/day; top nascent leaf: 0.010722 m<sup>2</sup>/day; three to five leaves per week; and one inflorescence per week. In our accidental observation, we noticed unusual plant growth and yield responses because of the various growing postures and positions that the plants adopted in the greenhouse. An exceedingly significant difference among the inflorescences was found in view of their growth, productivity and biochemical composition. A non-significant interaction was found between the fruit keeping quality (shelf days), fruit height, fruit diameter, and inflorescence number. The present study results highlight the possible responses of greenhouse-grown cherry tomatoes to different ranges of temperature, light intensity, and CO<sub>2</sub> concentrations, offering valuable insights for optimizing greenhouse cherry tomatoes cultivation.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1186/s12870-024-05614-3
Cindy Serafim, Miguel A Ramos, Tugce Yilmaz, Nadine R Sousa, Kang Yu, Maarten Van Geel, Tobias Ceulemans, Marc Saudreau, Ben Somers, Thierry Améglio, Olivier Honnay, Paula M L Castro
Colonization by Ectomycorrhizal (EcM) fungi is key for the health and performance of plants under different stress scenarios, such as those faced by trees in urban environments. Because urban environments can be lacking EcM fungi, we here assessed the benefits of inoculating Tilia tomentosa seedlings in a pre-transplantation nursery context with the EcM fungi Lactarius deliciosus and Paxillus involutus, using substrates of different pH and facing water-stress. P. involutus had a more evident positive effect in T. tomentosa seedlings and had a good performance in both acidic and alkaline substrate. In acidic substrate the fungus increased the plant height by 0.91-fold, increased the mycorrhization rate by 3.23-fold, expansion rate by 5.03-fold and formation of secondary roots by 0.46-fold, compared to the non-inoculated control. This species also improved the phosphorus content of leaves, which revealed a promotion of nutrient uptake. In alkaline substrate P. involutus increased root dry weight by 3.92-fold and the mycorrhization parameters. In contrast, L. deliciosus only had a positive effect in the improvement of mycorrhization and expansion rates and phosphorus content in the root, effects visible only in alkaline substrate. When exposed to water-stress the increase of proline content was visible in acidic substrate for both fungi, L. deliciosus and P. involutus, and in alkaline substrate for the fungus P. involutus, a response indicative of the enhancement of defenses in stressing scenarios such as water scarcity. We conclude that fungal inoculation improves the vigour and resilience of Tilia seedlings and that it is of utmost importance to select a suitable EcM fungus and to consider the soil pH of the transplanting site. The inoculation approach can be a valuable tool to produce robust seedlings which may have a better performance when transplanted to the challenging urban environment.
{"title":"Substrate pH mediates growth promotion and resilience to water stress of Tilia tomentosa seedlings after Ectomycorrhizal inoculation.","authors":"Cindy Serafim, Miguel A Ramos, Tugce Yilmaz, Nadine R Sousa, Kang Yu, Maarten Van Geel, Tobias Ceulemans, Marc Saudreau, Ben Somers, Thierry Améglio, Olivier Honnay, Paula M L Castro","doi":"10.1186/s12870-024-05614-3","DOIUrl":"10.1186/s12870-024-05614-3","url":null,"abstract":"<p><p>Colonization by Ectomycorrhizal (EcM) fungi is key for the health and performance of plants under different stress scenarios, such as those faced by trees in urban environments. Because urban environments can be lacking EcM fungi, we here assessed the benefits of inoculating Tilia tomentosa seedlings in a pre-transplantation nursery context with the EcM fungi Lactarius deliciosus and Paxillus involutus, using substrates of different pH and facing water-stress. P. involutus had a more evident positive effect in T. tomentosa seedlings and had a good performance in both acidic and alkaline substrate. In acidic substrate the fungus increased the plant height by 0.91-fold, increased the mycorrhization rate by 3.23-fold, expansion rate by 5.03-fold and formation of secondary roots by 0.46-fold, compared to the non-inoculated control. This species also improved the phosphorus content of leaves, which revealed a promotion of nutrient uptake. In alkaline substrate P. involutus increased root dry weight by 3.92-fold and the mycorrhization parameters. In contrast, L. deliciosus only had a positive effect in the improvement of mycorrhization and expansion rates and phosphorus content in the root, effects visible only in alkaline substrate. When exposed to water-stress the increase of proline content was visible in acidic substrate for both fungi, L. deliciosus and P. involutus, and in alkaline substrate for the fungus P. involutus, a response indicative of the enhancement of defenses in stressing scenarios such as water scarcity. We conclude that fungal inoculation improves the vigour and resilience of Tilia seedlings and that it is of utmost importance to select a suitable EcM fungus and to consider the soil pH of the transplanting site. The inoculation approach can be a valuable tool to produce robust seedlings which may have a better performance when transplanted to the challenging urban environment.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1186/s12870-024-05718-w
Min Gong, Wei Han, Yawen Jiang, Xi Yang, Jiuxing He, Meng Kong, Qiuyan Huo, Guohua Lv
Salt stress is one of the most important abiotic stress factors limiting crop production. Therefore, improving the stress resistance of seeds is very important for crop growth. Our previous studies have shown that using microcapsules encapsulating bacteria (Pontibacter actiniarum DSM 19842) as seed coating for wheat can alleviate salt stress. In this study, the genes and pathways involved in the response of wheat to salt stress were researched further. The results showed that compared with the control, the coating can improve osmotic stress and decrease oxidative damage by increasing the content of proline (29.1%), the activity of superoxide dismutase (SOD) (94.2%), peroxidase (POD) (45.7%) and catalase (CAT) (3.3%), reducing the content of hydrogen peroxide (H2O2) (39.8%) and malondialdehyde (MDA) (45.9%). In addition, ribonucleic acid (RNA) sequencing data showed that 7628 differentially expressed genes (DEGs) were identified, and 4426 DEGs up-regulated, 3202 down-regulated in the coated treatment. Many DEGs related to antioxidant enzymes were up-regulated, indicating that coating can promote the expression of antioxidant enzyme-related genes and alleviate oxidative damage under salt stress. The differential gene expression analysis demonstrated up-regulation of 27 genes and down-regulation of 20 genes. Transcription factor families, mostly belonging to bHLH, MYB, B3, NAC, and WRKY. Overall, this seed coating can promote the development of sustainable agriculture in saline soil.
{"title":"Physiological and transcriptomic analysis reveals the coating of microcapsules embedded with bacteria can enhance wheat salt tolerance.","authors":"Min Gong, Wei Han, Yawen Jiang, Xi Yang, Jiuxing He, Meng Kong, Qiuyan Huo, Guohua Lv","doi":"10.1186/s12870-024-05718-w","DOIUrl":"10.1186/s12870-024-05718-w","url":null,"abstract":"<p><p>Salt stress is one of the most important abiotic stress factors limiting crop production. Therefore, improving the stress resistance of seeds is very important for crop growth. Our previous studies have shown that using microcapsules encapsulating bacteria (Pontibacter actiniarum DSM 19842) as seed coating for wheat can alleviate salt stress. In this study, the genes and pathways involved in the response of wheat to salt stress were researched further. The results showed that compared with the control, the coating can improve osmotic stress and decrease oxidative damage by increasing the content of proline (29.1%), the activity of superoxide dismutase (SOD) (94.2%), peroxidase (POD) (45.7%) and catalase (CAT) (3.3%), reducing the content of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) (39.8%) and malondialdehyde (MDA) (45.9%). In addition, ribonucleic acid (RNA) sequencing data showed that 7628 differentially expressed genes (DEGs) were identified, and 4426 DEGs up-regulated, 3202 down-regulated in the coated treatment. Many DEGs related to antioxidant enzymes were up-regulated, indicating that coating can promote the expression of antioxidant enzyme-related genes and alleviate oxidative damage under salt stress. The differential gene expression analysis demonstrated up-regulation of 27 genes and down-regulation of 20 genes. Transcription factor families, mostly belonging to bHLH, MYB, B3, NAC, and WRKY. Overall, this seed coating can promote the development of sustainable agriculture in saline soil.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515405/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1186/s12870-024-05609-0
Yashfa Tanveer, Humaira Yasmin, Asia Nosheen, Mohammad Abul Farah, Muhammad Ahsan Altaf
Drought stress imposes a serious challenge to cultivate wheat, restricting its growth. Drought reduces the capability of plant to uptake essential nutrients. This causes stunted growth, development and yield. Traditional ways to increase wheat growth under drought stress have shortcomings. Using plant-growth-promoting rhizobacteria (PGPR) has proved feasible and eco-friendly way to enhance wheat growth even under the drought stress. Combining PGPR in consortiums further boosts up their effects. In this study, we have checked the efficacy of drought-tolerant Bacillus halotolerans, Pseudomonas sihuiensis and Bacillus atrophaeus in combination. These strains were allowed to grow on PEG 6000 with concentrations (-0.15, -0.49, -0.73 and - 1.2) Mega Pascal (MPa) alone and in combination. Furthermore, Fourier transmission infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were used. Their biochemical traits such as solubilization of K, P and Zn and the synthesis of siderophore, indole acetic acid (IAA), protease, amylase, hydrogen cyanide (HCN) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase were done. In addition to this, we investigated the optimum folic acid concentration i.e 150 ppm for wheat against drought stress. We conducted a pot experiment to check the growth-enhancing and drought-mitigating effects of consortium and folic acid alone and in combination. As a result, we found a significantly increased wheat biomass, relative water content (RWC), chlorophyll content, antioxidants including glutathione reductase and total soluble sugars and protein content under all treatments. However, the combined treatment of bacterial consortium and folic acid showed maximum potential to boost wheat growth and survival even under drought. We also investigated the minerals uptake by wheat after the treatments and found maximum nutrient uptake under the co-effect of folic acid and bacterial consortium We believe this is the first study that has investigated the optimal dose of folic acid for wheat. Our research is also novel in that we seek to investigate the effects of folic acid along with a bacterial consortium comprising Bacillus halotolerans, Pseudomonas sihuiensis and Bacillus atrophaeus on wheat grown under the drought stress.
{"title":"Synergizing Bacillus halotolerans, Pseudomonas sihuiensis and Bacillus atrophaeus with folic acid for enhanced drought resistance in wheat by metabolites and antioxidants.","authors":"Yashfa Tanveer, Humaira Yasmin, Asia Nosheen, Mohammad Abul Farah, Muhammad Ahsan Altaf","doi":"10.1186/s12870-024-05609-0","DOIUrl":"10.1186/s12870-024-05609-0","url":null,"abstract":"<p><p>Drought stress imposes a serious challenge to cultivate wheat, restricting its growth. Drought reduces the capability of plant to uptake essential nutrients. This causes stunted growth, development and yield. Traditional ways to increase wheat growth under drought stress have shortcomings. Using plant-growth-promoting rhizobacteria (PGPR) has proved feasible and eco-friendly way to enhance wheat growth even under the drought stress. Combining PGPR in consortiums further boosts up their effects. In this study, we have checked the efficacy of drought-tolerant Bacillus halotolerans, Pseudomonas sihuiensis and Bacillus atrophaeus in combination. These strains were allowed to grow on PEG 6000 with concentrations (-0.15, -0.49, -0.73 and - 1.2) Mega Pascal (MPa) alone and in combination. Furthermore, Fourier transmission infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were used. Their biochemical traits such as solubilization of K, P and Zn and the synthesis of siderophore, indole acetic acid (IAA), protease, amylase, hydrogen cyanide (HCN) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase were done. In addition to this, we investigated the optimum folic acid concentration i.e 150 ppm for wheat against drought stress. We conducted a pot experiment to check the growth-enhancing and drought-mitigating effects of consortium and folic acid alone and in combination. As a result, we found a significantly increased wheat biomass, relative water content (RWC), chlorophyll content, antioxidants including glutathione reductase and total soluble sugars and protein content under all treatments. However, the combined treatment of bacterial consortium and folic acid showed maximum potential to boost wheat growth and survival even under drought. We also investigated the minerals uptake by wheat after the treatments and found maximum nutrient uptake under the co-effect of folic acid and bacterial consortium We believe this is the first study that has investigated the optimal dose of folic acid for wheat. Our research is also novel in that we seek to investigate the effects of folic acid along with a bacterial consortium comprising Bacillus halotolerans, Pseudomonas sihuiensis and Bacillus atrophaeus on wheat grown under the drought stress.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515351/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1186/s12870-024-05680-7
Jingzu Li, Botao Wang, Lei Zhang, Yaping Ma, Lihua Song, Bing Cao
Background: Wild jujube trees in Ningxia, China, demonstrate exceptional drought tolerance. The identification of quantitative trait loci (QTLs) associated with drought resistance and linked genes could significantly enhance molecular breeding efforts for this species. This study involved the measurement of nine drought resistance indicators were measured in 150 wild jujube trees from five regions in Ningxia. Genome-wide association studies (GWAS) were carried out using a range of mixed linear models to pinpoint SNP markers linked to drought resistance.
Results: The coefficients of variation for the nine leaf traits in wild jujube trees ranged from 14.76 to 62.17%, with broad-sense heritability estimates falling between 0.84 and 0.99. Through GWAS analysis, a total of 12 significant SNPs and 162 potential genes associated with drought resistance were detected. This SNPs explained phenotypic variance ranging from 20.74 to 50.37%. Gene Ontology (GO) functional annotation highlighted five crucial candidate genes‒ZjMYB44, ZjUCLOC, ZjDnaJ50, ZjUCHL22 and ZjHSFB‒linked to drought tolerance in wild jujube. These genes demonstrated a positive correlation with drought tolerance within the wild jujube population.
Conclusions: Our findings indicate that these five genes likely play a pivotal role in conferring drought tolerance in wild jujubes. This study offers new insights to support the development of drought-resistant jujube varieties, thereby contributing to sustainable agricultural practices and bolstering food security in arid regions.
{"title":"Genome-wide study of drought tolerance traits in wild jujube.","authors":"Jingzu Li, Botao Wang, Lei Zhang, Yaping Ma, Lihua Song, Bing Cao","doi":"10.1186/s12870-024-05680-7","DOIUrl":"10.1186/s12870-024-05680-7","url":null,"abstract":"<p><strong>Background: </strong>Wild jujube trees in Ningxia, China, demonstrate exceptional drought tolerance. The identification of quantitative trait loci (QTLs) associated with drought resistance and linked genes could significantly enhance molecular breeding efforts for this species. This study involved the measurement of nine drought resistance indicators were measured in 150 wild jujube trees from five regions in Ningxia. Genome-wide association studies (GWAS) were carried out using a range of mixed linear models to pinpoint SNP markers linked to drought resistance.</p><p><strong>Results: </strong>The coefficients of variation for the nine leaf traits in wild jujube trees ranged from 14.76 to 62.17%, with broad-sense heritability estimates falling between 0.84 and 0.99. Through GWAS analysis, a total of 12 significant SNPs and 162 potential genes associated with drought resistance were detected. This SNPs explained phenotypic variance ranging from 20.74 to 50.37%. Gene Ontology (GO) functional annotation highlighted five crucial candidate genes‒ZjMYB44, ZjUCLOC, ZjDnaJ50, ZjUCHL22 and ZjHSFB‒linked to drought tolerance in wild jujube. These genes demonstrated a positive correlation with drought tolerance within the wild jujube population.</p><p><strong>Conclusions: </strong>Our findings indicate that these five genes likely play a pivotal role in conferring drought tolerance in wild jujubes. This study offers new insights to support the development of drought-resistant jujube varieties, thereby contributing to sustainable agricultural practices and bolstering food security in arid regions.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Balancing nutrient application is crucial for plant growth. However, excessive fertilizer use, especially imbalanced applications of macronutrients such as phosphate (P), can hinder plant uptake of micronutrients. Balanced P and zinc (Zn) are vital for apple yield and quality, and apple trees are highly sensitive to deficiencies in these nutrients. Therefore, this study was conducted in May 2022, employed a sand culture experiment to investigate the effects of varying P and Zn levels on the growth phenotype, photosynthetic capacity, antioxidant enzyme activity, sugar composition, endogenous hormone levels, and nutrient absorption and utilization of M9-T337 seedlings. Three levels of P (low, medium, high) and three levels of Zn (low, medium, high) were combined to create a total of nine distinct treatment.
Results: The results indicate that combined P and Zn fertilization at various levels exerts either synergistic or antagonistic effects on the growth, nutrient absorption, and utilization of M9-T337 seedlings. Compared to low and medium levels of P, a combination of high P (4 mmol·L-1) and an adequate amount of Zn significantly enhanced plant growth, root system development, and the microstructure of leaves. Notably, seedlings treated with high P and low Zn (HPLZn) reached a height 1.54 times that of the medium P and medium Zn (MPMZn, control). Physiological indicators under HP conditions revealed significant increases in antioxidant enzyme activity, leaf water retention, photosynthetic pigment concentration, osmotic adjustment substances, and the contents of glucose, sucrose, fructose, endogenous hormones, as well as P and Zn accumulation in the leaves, compared to the control. However, an increase in Zn application led to a declining trend in these parameters. Specifically, the HPLZn treatment exhibited substantial increases in Net photosynthetic rate (Pn), Total chlorophyll (Chl a + b), glucose, fructose, sucrose, and Auxin(IAA), with increments of 7.12%, 27.32%, 11.40%, 23.20%, 16.67%, and 55.11%, respectively, compared to the control.
Conclusion: Based on the comprehensive ranking from principal component analysis, the combination of HP ( 4 mmol·L-1) and LZn (0.5 µmol·L-1) was found to be the most effective in enhancing the antioxidant capacity, sugar accumulation, osmotic regulation ability, photosynthetic capacity, endogenous hormone levels, as well as P and Zn nutrient absorption and utilization in M9-T337 seedlings.
背景:平衡施肥对植物生长至关重要。然而,过量施肥,尤其是磷酸盐(P)等宏量营养元素的不均衡施用,会阻碍植物对微量营养元素的吸收。均衡的磷和锌对苹果的产量和质量至关重要,而苹果树对这些营养元素的缺乏非常敏感。因此,本研究于2022年5月进行了一项沙培实验,研究不同钾和锌水平对M9-T337幼苗的生长表型、光合能力、抗氧化酶活性、糖分组成、内源激素水平以及养分吸收和利用的影响。将三个水平的磷(低、中、高)和三个水平的锌(低、中、高)结合起来,共形成九种不同的处理:结果:结果表明,不同水平的磷锌复合施肥对 M9-T337 幼苗的生长、养分吸收和利用具有协同或拮抗作用。与低浓度和中浓度相比,高浓度磷(4 mmol-L-1)和适量锌的组合能显著提高植物的生长、根系发育和叶片的微观结构。值得注意的是,经高磷低锌(HPLZn)处理的幼苗高度是中磷中锌(MPMZn,对照组)的 1.54 倍。与对照相比,HP 条件下的生理指标显示,抗氧化酶活性、叶片保水性、光合色素浓度、渗透调节物质、葡萄糖、蔗糖、果糖含量、内源激素以及叶片中 P 和 Zn 的积累均显著增加。然而,施锌量的增加导致这些参数呈下降趋势。具体而言,与对照相比,HPLZn处理的净光合速率(Pn)、总叶绿素(Chl a + b)、葡萄糖、果糖、蔗糖和叶黄素(IAA)均有显著增加,分别增加了7.12%、27.32%、11.40%、23.20%、16.67%和55.11%:根据主成分分析的综合排名,发现 HP(4 mmol-L-1)和 LZn(0.5 µmol-L-1)的组合对提高 M9-T337 幼苗的抗氧化能力、糖分积累、渗透调节能力、光合能力、内源激素水平以及 P 和 Zn 养分的吸收和利用最有效。
{"title":"Effects of combined application of phosphorus and zinc on growth and physiological characteristics of apple rootstock M9-T337 seedlings (Malus domestica Borkh.).","authors":"Xulin Xian, Wentai Sun, Zhongxing Zhang, Yanlong Gao, Cailong Li, Liang Ding, Yanxiu Wang","doi":"10.1186/s12870-024-05724-y","DOIUrl":"10.1186/s12870-024-05724-y","url":null,"abstract":"<p><strong>Background: </strong>Balancing nutrient application is crucial for plant growth. However, excessive fertilizer use, especially imbalanced applications of macronutrients such as phosphate (P), can hinder plant uptake of micronutrients. Balanced P and zinc (Zn) are vital for apple yield and quality, and apple trees are highly sensitive to deficiencies in these nutrients. Therefore, this study was conducted in May 2022, employed a sand culture experiment to investigate the effects of varying P and Zn levels on the growth phenotype, photosynthetic capacity, antioxidant enzyme activity, sugar composition, endogenous hormone levels, and nutrient absorption and utilization of M9-T337 seedlings. Three levels of P (low, medium, high) and three levels of Zn (low, medium, high) were combined to create a total of nine distinct treatment.</p><p><strong>Results: </strong>The results indicate that combined P and Zn fertilization at various levels exerts either synergistic or antagonistic effects on the growth, nutrient absorption, and utilization of M9-T337 seedlings. Compared to low and medium levels of P, a combination of high P (4 mmol·L<sup>-1</sup>) and an adequate amount of Zn significantly enhanced plant growth, root system development, and the microstructure of leaves. Notably, seedlings treated with high P and low Zn (HPLZn) reached a height 1.54 times that of the medium P and medium Zn (MPMZn, control). Physiological indicators under HP conditions revealed significant increases in antioxidant enzyme activity, leaf water retention, photosynthetic pigment concentration, osmotic adjustment substances, and the contents of glucose, sucrose, fructose, endogenous hormones, as well as P and Zn accumulation in the leaves, compared to the control. However, an increase in Zn application led to a declining trend in these parameters. Specifically, the HPLZn treatment exhibited substantial increases in Net photosynthetic rate (Pn), Total chlorophyll (Chl a + b), glucose, fructose, sucrose, and Auxin(IAA), with increments of 7.12%, 27.32%, 11.40%, 23.20%, 16.67%, and 55.11%, respectively, compared to the control.</p><p><strong>Conclusion: </strong>Based on the comprehensive ranking from principal component analysis, the combination of HP ( 4 mmol·L<sup>-1</sup>) and LZn (0.5 µmol·L<sup>-1</sup>) was found to be the most effective in enhancing the antioxidant capacity, sugar accumulation, osmotic regulation ability, photosynthetic capacity, endogenous hormone levels, as well as P and Zn nutrient absorption and utilization in M9-T337 seedlings.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515599/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Brassica juncea (L.) Czern is an important oilseed crop affected by various abiotic stresses like drought, heat, and salt. These stresses have detrimental effects on the crop's overall growth, development and yield. Various Transcription factors (TFs) are involved in regulation of plant stress response by modulating expression of stress-responsive genes. The myeloblastosis (MYB) TFs is one of the largest families of TFs associated with various developmental and biological processes such as plant growth, secondary metabolism, stress response etc. However, MYB TFs and their regulation by non-coding RNAs (ncRNAs) in response to stress have not been studied in B. juncea. Thus, we performed a detailed study on the MYB TF family and their interactions with miRNAs and Long non coding RNAs.
Results: Computational investigation of genome and proteome data presented a comprehensive picture of the MYB genes and their protein architecture, including intron-exon organisation, conserved motif analysis, R2R3 MYB DNA-binding domains analysis, sub-cellular localization, protein-protein interaction and chromosomal locations. Phylogenetically, BjuMYBs were further classified into different subclades on the basis of topology and classification in Arabidopsis. A total of 751 MYBs were identified in B. juncea corresponding to 297 1R-BjuMYBs, 440 R2R3-BjuMYBs, 12 3R-BjuMYBs, and 2 4R-BjuMYBs types. We validated the transcriptional profiles of nine selected BjuMYBs under drought stress through RT-qPCR. Promoter analysis indicated the presence of drought-responsive cis-regulatory components. Additionally, the miRNA-MYB TF interactions was also studied, and most of the microRNAs (miRNAs) that target BjuMYBs were involved in abiotic stress response and developmental processes. Regulatory network analysis and expression patterns of lncRNA-miRNA-MYB indicated that selected long non-coding RNAs (lncRNAs) acted as strong endogenous target mimics (eTMs) of the miRNAs regulated expression of BjuMYBs under drought stress.
Conclusions: The present study has established preliminary groundwork of MYB TFs and their interaction with ncRNAs in B. juncea and it will help in developing drought- tolerant Brassica crops.
{"title":"MYB transcription factors, their regulation and interactions with non-coding RNAs during drought stress in Brassica juncea.","authors":"Rinku Balhara, Deepika Verma, Ravneet Kaur, Kashmir Singh","doi":"10.1186/s12870-024-05736-8","DOIUrl":"10.1186/s12870-024-05736-8","url":null,"abstract":"<p><strong>Background: </strong>Brassica juncea (L.) Czern is an important oilseed crop affected by various abiotic stresses like drought, heat, and salt. These stresses have detrimental effects on the crop's overall growth, development and yield. Various Transcription factors (TFs) are involved in regulation of plant stress response by modulating expression of stress-responsive genes. The myeloblastosis (MYB) TFs is one of the largest families of TFs associated with various developmental and biological processes such as plant growth, secondary metabolism, stress response etc. However, MYB TFs and their regulation by non-coding RNAs (ncRNAs) in response to stress have not been studied in B. juncea. Thus, we performed a detailed study on the MYB TF family and their interactions with miRNAs and Long non coding RNAs.</p><p><strong>Results: </strong>Computational investigation of genome and proteome data presented a comprehensive picture of the MYB genes and their protein architecture, including intron-exon organisation, conserved motif analysis, R2R3 MYB DNA-binding domains analysis, sub-cellular localization, protein-protein interaction and chromosomal locations. Phylogenetically, BjuMYBs were further classified into different subclades on the basis of topology and classification in Arabidopsis. A total of 751 MYBs were identified in B. juncea corresponding to 297 1R-BjuMYBs, 440 R2R3-BjuMYBs, 12 3R-BjuMYBs, and 2 4R-BjuMYBs types. We validated the transcriptional profiles of nine selected BjuMYBs under drought stress through RT-qPCR. Promoter analysis indicated the presence of drought-responsive cis-regulatory components. Additionally, the miRNA-MYB TF interactions was also studied, and most of the microRNAs (miRNAs) that target BjuMYBs were involved in abiotic stress response and developmental processes. Regulatory network analysis and expression patterns of lncRNA-miRNA-MYB indicated that selected long non-coding RNAs (lncRNAs) acted as strong endogenous target mimics (eTMs) of the miRNAs regulated expression of BjuMYBs under drought stress.</p><p><strong>Conclusions: </strong>The present study has established preliminary groundwork of MYB TFs and their interaction with ncRNAs in B. juncea and it will help in developing drought- tolerant Brassica crops.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1186/s12870-024-05722-0
Akhtar Hameed, Kashif Riaz, Sahar Jameel, Hafiz Muhammad Usman Aslam, Muhammad Waqar Alam, Muhammad Saqlain Zaheer, Muhammad Waheed Riaz, Muhammad Rizwan, Reem M Aljowaie, Mohamed S Elshikh
Gladiolus, a widely cultivated cut flower known for its aesthetically pleasing multicoloured spikes, has earned significant commercial popularity. A comprehensive understanding of the rhizosphere bacterial community associated with gladiolus is imperative for revealing its potential benefits. Molecular characterization is considered an effective method to gain insights into the structural and functional aspects of microbial populations. The soil characteristics and bacterial communities in the rhizosphere are typically influenced by quorum sensing (QS) and quorum quenching (QQ) mechanisms. This study aims to explore the niceties and diversity of rhizospheric bacterial populations linked with gladiolus corms, with a specific focus on understanding the dynamics of QS and QQ mechanisms in their complex interactions. The isolation of bacterial strains was achieved through the serial dilution method on nutrient agar (NA) media. The identification of the isolates was accomplished by amplifying 16 S rRNA gene sequences via polymerase chain reaction (PCR) via the use of universal primers. Sequence analysis was conducted via BLAST on the National Center for Biotechnology Information (NCBI) database. The characteristics of the isolated bacteria were elucidated via biosensors. This study identified three QS strains and five QQ strains. A consortium of quenchers was formulated utilizing five strains that demonstrated efficacy in mitigating the impact of disease on gladiolus and fostering growth. Among the three treatments-Scale, Descale, and Descale and Cut Half (DSC)-the DSC treatment emerged as the most effective. This treatment exhibited a broader range of variation in biological parameters over time, aligning with prevailing trends in the local market.
{"title":"Understanding rhizospheric microbial dynamics in gladiolus corms through quorum sensing and quorum quenching for disease control and growth promotion.","authors":"Akhtar Hameed, Kashif Riaz, Sahar Jameel, Hafiz Muhammad Usman Aslam, Muhammad Waqar Alam, Muhammad Saqlain Zaheer, Muhammad Waheed Riaz, Muhammad Rizwan, Reem M Aljowaie, Mohamed S Elshikh","doi":"10.1186/s12870-024-05722-0","DOIUrl":"10.1186/s12870-024-05722-0","url":null,"abstract":"<p><p>Gladiolus, a widely cultivated cut flower known for its aesthetically pleasing multicoloured spikes, has earned significant commercial popularity. A comprehensive understanding of the rhizosphere bacterial community associated with gladiolus is imperative for revealing its potential benefits. Molecular characterization is considered an effective method to gain insights into the structural and functional aspects of microbial populations. The soil characteristics and bacterial communities in the rhizosphere are typically influenced by quorum sensing (QS) and quorum quenching (QQ) mechanisms. This study aims to explore the niceties and diversity of rhizospheric bacterial populations linked with gladiolus corms, with a specific focus on understanding the dynamics of QS and QQ mechanisms in their complex interactions. The isolation of bacterial strains was achieved through the serial dilution method on nutrient agar (NA) media. The identification of the isolates was accomplished by amplifying 16 S rRNA gene sequences via polymerase chain reaction (PCR) via the use of universal primers. Sequence analysis was conducted via BLAST on the National Center for Biotechnology Information (NCBI) database. The characteristics of the isolated bacteria were elucidated via biosensors. This study identified three QS strains and five QQ strains. A consortium of quenchers was formulated utilizing five strains that demonstrated efficacy in mitigating the impact of disease on gladiolus and fostering growth. Among the three treatments-Scale, Descale, and Descale and Cut Half (DSC)-the DSC treatment emerged as the most effective. This treatment exhibited a broader range of variation in biological parameters over time, aligning with prevailing trends in the local market.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}