Yuting Wang, Xiaonan Huang, Zhen Hu, Huagang Peng, Yi Yang, Juan Chen, Jianxiong Dou, Chuan Xiao, Weilong Shang, Xiancai Rao
Membrane vesicles (MVs) are nanoscale particles secreted by living bacteria in vitro and in vivo. Bacterial MVs encapsulate various proteins, making them promising candidates for developing vaccines, drug carriers, and cancer immunotherapy agents. However, the mechanisms underlying MV secretion from Gram-positive bacteria remain unclear. Here, we showed that the subinhibitory concentration of oxacillin (OXA) stimulated MV production in Staphylococcus aureus with diverse genetic backgrounds. OXA treatment remarkably increased the expression of sle1, which encodes a main peptidoglycan hydrolase for adjusting peptidoglycan cross-linking. Deletion of sle1 decreased the OXA-mediated MV yield, whereas overexpression of sle1 considerably increased MV production. The accessory regulator SarA increased in response to OXA treatment, and SarA inactivation substantially attenuated OXA-stimulated MV production. We also demonstrated that SarA controlled sle1 expression by directly binding to its promoter region. Thus, the SarA–Sle1 regulatory axis was formed to mediate OXA-induced MV production in S. aureus. MVs derived from OXA-treated S. aureus RN4220 (MVs/OXA) exhibited a smaller particle size compared with those purified from wild-type RN4220; however, proteomic analysis revealed a comparable protein profile between MVs and MVs/OXA. Overall, our research reveals a mechanism underlying OXA-promoted S. aureus MV secretion and highlights the potential application of OXA-induced MVs.
{"title":"Oxacillin promotes membrane vesicle secretion from Staphylococcus aureus via an SarA–Sle1 regulatory cascade","authors":"Yuting Wang, Xiaonan Huang, Zhen Hu, Huagang Peng, Yi Yang, Juan Chen, Jianxiong Dou, Chuan Xiao, Weilong Shang, Xiancai Rao","doi":"10.1039/d4nr04321a","DOIUrl":"https://doi.org/10.1039/d4nr04321a","url":null,"abstract":"Membrane vesicles (MVs) are nanoscale particles secreted by living bacteria in vitro and in vivo. Bacterial MVs encapsulate various proteins, making them promising candidates for developing vaccines, drug carriers, and cancer immunotherapy agents. However, the mechanisms underlying MV secretion from Gram-positive bacteria remain unclear. Here, we showed that the subinhibitory concentration of oxacillin (OXA) stimulated MV production in Staphylococcus aureus with diverse genetic backgrounds. OXA treatment remarkably increased the expression of sle1, which encodes a main peptidoglycan hydrolase for adjusting peptidoglycan cross-linking. Deletion of sle1 decreased the OXA-mediated MV yield, whereas overexpression of sle1 considerably increased MV production. The accessory regulator SarA increased in response to OXA treatment, and SarA inactivation substantially attenuated OXA-stimulated MV production. We also demonstrated that SarA controlled sle1 expression by directly binding to its promoter region. Thus, the SarA–Sle1 regulatory axis was formed to mediate OXA-induced MV production in S. aureus. MVs derived from OXA-treated S. aureus RN4220 (MVs/OXA) exhibited a smaller particle size compared with those purified from wild-type RN4220; however, proteomic analysis revealed a comparable protein profile between MVs and MVs/OXA. Overall, our research reveals a mechanism underlying OXA-promoted S. aureus MV secretion and highlights the potential application of OXA-induced MVs.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"22 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silver cluster-assembled materials (SCAMs) are well-defined crystalline extended materials hallmarked by their unique geometric structures, atomically precise designability and functional modularity. The precise structural features of SCAMs are intrinsically linked to their unique functionalities, and understanding this correlation helps in optimizing their performance and predicting their behavior. In this study, we report for the first time the synthesis of a (3,6)-connected three-dimensional (3D) SCAM, [Ag12(StBu)6(CF3COO)6(TPMA)6]n (designated as TUS 6), TPMA=tris(pyridine-4-ylmethyl)amine by assembling Ag12 cluster nodes with the help of a tridentate linker TPMA. Besides, we also prepared a two-dimensional (2D) SCAM, [Ag12(StBu)6(CF3COO)6(TPEB)6]n (described as TUS 7), TPEB = 1,3,5-tris(pyridine-4-ylethynyl)benzene by reticulating Ag12 nodes with tridentate linker TPEB. This work highlights the influence of flexibility of organic linkers in dictating the spatially extended structures of SCAMs and the properties arising thereof. Characterized by microscopic and diffraction analyses, the SCAMs revealed distinct morphologies, structural robustness, and phase purity.
{"title":"Designed construction of two new atom-precise three-dimensional and two-dimensional Ag12 cluster-assembled materials","authors":"Riki Nakatani, Jin Sakai, Aishik Saha, Ayumu Kondo, Rina Tomioka, Tokuhisa Kawawaki, Saikat Das, Yuichi Negishi","doi":"10.1039/d4nr03992k","DOIUrl":"https://doi.org/10.1039/d4nr03992k","url":null,"abstract":"Silver cluster-assembled materials (SCAMs) are well-defined crystalline extended materials hallmarked by their unique geometric structures, atomically precise designability and functional modularity. The precise structural features of SCAMs are intrinsically linked to their unique functionalities, and understanding this correlation helps in optimizing their performance and predicting their behavior. In this study, we report for the first time the synthesis of a (3,6)-connected three-dimensional (3D) SCAM, [Ag12(StBu)6(CF3COO)6(TPMA)6]n (designated as TUS 6), TPMA=tris(pyridine-4-ylmethyl)amine by assembling Ag12 cluster nodes with the help of a tridentate linker TPMA. Besides, we also prepared a two-dimensional (2D) SCAM, [Ag12(StBu)6(CF3COO)6(TPEB)6]n (described as TUS 7), TPEB = 1,3,5-tris(pyridine-4-ylethynyl)benzene by reticulating Ag12 nodes with tridentate linker TPEB. This work highlights the influence of flexibility of organic linkers in dictating the spatially extended structures of SCAMs and the properties arising thereof. Characterized by microscopic and diffraction analyses, the SCAMs revealed distinct morphologies, structural robustness, and phase purity.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"12 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matheus de Souza Lima Mendes, Gautier Duroux, Anthony Boudier, Piyanan Pranee, Yutaka Okazaki, Thierry Buffeteau, Stephane Massip, Sylvain Nlate, Reiko Oda, Elizabeth A. Hillard, Emilie Pouget
In this paper, we demonstrate that chiral J-aggregates of porphyrins are able to detect minute chiral impurities, in this case, the presence of right-handed quartz in acid-activated K10 montmorillonite clay. Aggregation and symmetry breaking of 5,10,15,20-(tetra-4-carboxyphenyl) porphyrin (TCPP) and 5,10,15,20-(tetra-4-sulfonatophenyl) porphyrin (TPPS) were observed during their interaction with acid-activated montmorillonite clay (MMT-K10). A panel of characterization techniques, including UV-visible, electronic circular dichroism, IR, and vibrational circular dichroism spectroscopies, as well as X-ray scattering, were employed to investigate the aggregation of the confined TPPS and TCPP. An intriguing and persistent negative exciton effect was detected in the electronic circular dichroism spectra at the early stages of J-aggregation. The enrichment of a right-handed quartz impurity in the clay detected by vibrational circular dichroism may explain the symmetry breaking in the porphyrin assemblies. As a result, we propose that chiral porphyrin aggregates could serve as innovative probes for detecting subtle chirality in inorganic nanomaterials.
{"title":"Porphyrin J-aggregates as a probe for chiral impurities as demonstrated by their symmetry breaking by confinement in montmorillonite clay","authors":"Matheus de Souza Lima Mendes, Gautier Duroux, Anthony Boudier, Piyanan Pranee, Yutaka Okazaki, Thierry Buffeteau, Stephane Massip, Sylvain Nlate, Reiko Oda, Elizabeth A. Hillard, Emilie Pouget","doi":"10.1039/d4nr03728f","DOIUrl":"https://doi.org/10.1039/d4nr03728f","url":null,"abstract":"In this paper, we demonstrate that chiral J-aggregates of porphyrins are able to detect minute chiral impurities, in this case, the presence of right-handed quartz in acid-activated K10 montmorillonite clay. Aggregation and symmetry breaking of 5,10,15,20-(tetra-4-carboxyphenyl) porphyrin (TCPP) and 5,10,15,20-(tetra-4-sulfonatophenyl) porphyrin (TPPS) were observed during their interaction with acid-activated montmorillonite clay (MMT-K10). A panel of characterization techniques, including UV-visible, electronic circular dichroism, IR, and vibrational circular dichroism spectroscopies, as well as X-ray scattering, were employed to investigate the aggregation of the confined TPPS and TCPP. An intriguing and persistent negative exciton effect was detected in the electronic circular dichroism spectra at the early stages of J-aggregation. The enrichment of a right-handed quartz impurity in the clay detected by vibrational circular dichroism may explain the symmetry breaking in the porphyrin assemblies. As a result, we propose that chiral porphyrin aggregates could serve as innovative probes for detecting subtle chirality in inorganic nanomaterials.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"1 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinmin Lin, Zerui Chen, Wei Zhao, Junwei Han, Bo Chen, Yao Chen, Qianqian Liu, Hao Bin Wu
To enable the practical application of lithium metal batteries, it is crucial to address the challenges of dendrite growth and volume expansion in lithium metal anodes. A 3D framework offers an effective solution to regulate the lithium plating/stripping process. In this work, we present a 3D mixed ion-electron conducting (MIEC) framework as a lithium metal anode, achieved by conformally coating carbon nanotubes (CNTs) onto Li0.5La0.5TiO3 (LLTO) particles. The synergy between LLTO’s lithiophilicity and CNTs' high electron conductivity ensures uniform lithium deposition and mitigates volume changes, thereby enhancing the electrochemical performance. As a result, the LLTO@CNT anode demonstrates a high Coulombic efficiency of 99.24% for 400 cycles at 1 mA cm−2 in a half-cell, along with. excellent cycling stability and prolonged lifespan.
{"title":"3D mixed ion-electron conducting framework for dendrite-free lithium metal anode","authors":"Jinmin Lin, Zerui Chen, Wei Zhao, Junwei Han, Bo Chen, Yao Chen, Qianqian Liu, Hao Bin Wu","doi":"10.1039/d4nr04455j","DOIUrl":"https://doi.org/10.1039/d4nr04455j","url":null,"abstract":"To enable the practical application of lithium metal batteries, it is crucial to address the challenges of dendrite growth and volume expansion in lithium metal anodes. A 3D framework offers an effective solution to regulate the lithium plating/stripping process. In this work, we present a 3D mixed ion-electron conducting (MIEC) framework as a lithium metal anode, achieved by conformally coating carbon nanotubes (CNTs) onto Li0.5La0.5TiO3 (LLTO) particles. The synergy between LLTO’s lithiophilicity and CNTs' high electron conductivity ensures uniform lithium deposition and mitigates volume changes, thereby enhancing the electrochemical performance. As a result, the LLTO@CNT anode demonstrates a high Coulombic efficiency of 99.24% for 400 cycles at 1 mA cm−2 in a half-cell, along with. excellent cycling stability and prolonged lifespan.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"6 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The plasmonic properties of gold nanoparticle (AuNP) assemblies are critically influenced by the nanogaps between particles. Here, we demonstrate that plasma treatment effectively narrows these nanogaps and ultimately merges the nanoparticles. This process induces a sequential redshift, weakening, broadening, and eventual blueshift of the plasmon coupling peak in UV–vis spectra, indicating transitions from classical to quantum regimes and finally to contact modes. Surface-enhanced Raman spectroscopy reveals an initial increase in intensity as the nanogaps narrow, followed by a decline as linker molecules are removed. Transmission electron microscopy images further show significant deformation of AuNPs after 5 min of plasma treatment. Based on these combined observations, we propose that oxidative desorption of thiol linkers causes the collapse of self-assembled monolayers, leading to the gradual narrowing of nanogaps and eventual particle fusion. This plasma-induced transformation also enables the creation of novel AuNP shapes, such as nano-snowmen and particles with protruding morphologies, by merging heterodimers or core-satellite structures. Our findings not only deepen the understanding of plasma effects on nanoparticle assemblies but also expand the utility of plasma treatment for controlling nanogap distances and fabricating exotic nanoparticle shapes.
{"title":"Plasma-Induced Nanogap Narrowing and Morphological Transformation in Gold Nanoparticle Assemblies","authors":"Jeongmin Han, Hoa Duc Trinh, Sangwoon Yoon","doi":"10.1039/d4nr03929g","DOIUrl":"https://doi.org/10.1039/d4nr03929g","url":null,"abstract":"The plasmonic properties of gold nanoparticle (AuNP) assemblies are critically influenced by the nanogaps between particles. Here, we demonstrate that plasma treatment effectively narrows these nanogaps and ultimately merges the nanoparticles. This process induces a sequential redshift, weakening, broadening, and eventual blueshift of the plasmon coupling peak in UV–vis spectra, indicating transitions from classical to quantum regimes and finally to contact modes. Surface-enhanced Raman spectroscopy reveals an initial increase in intensity as the nanogaps narrow, followed by a decline as linker molecules are removed. Transmission electron microscopy images further show significant deformation of AuNPs after 5 min of plasma treatment. Based on these combined observations, we propose that oxidative desorption of thiol linkers causes the collapse of self-assembled monolayers, leading to the gradual narrowing of nanogaps and eventual particle fusion. This plasma-induced transformation also enables the creation of novel AuNP shapes, such as nano-snowmen and particles with protruding morphologies, by merging heterodimers or core-satellite structures. Our findings not only deepen the understanding of plasma effects on nanoparticle assemblies but also expand the utility of plasma treatment for controlling nanogap distances and fabricating exotic nanoparticle shapes.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"169 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Songyang Chang, Wentao Hou, Amanda Conde-Delmoral, Irfan Ullah, Jose Fernando Florez Gomez, Gerardo Morell, Xianyong Wu
Aqueous trivalent metal batteries are promising options for energy storage, owing to their ability to transfer three electrons during redox reactions. However, advances in this field have been limited by challenges such as incompatible M3+/M electrode potentials and salt hydrolysis. Herein, we identify trivalent indium metal as a viable candidate and demonstrate a high-performance indium-Prussian blue hybrid battery using a K+/In3+ mixture electrolyte. Interestingly, there exists a synergistic interaction between K+ and In3+ ions, which enhances the Coulombic efficiency and prolongs the cycling life. Specifically, the addition of K+ elevates the In3+/In plating efficiency from 99.3% to 99.6%, due to the decreased electrolyte acidity and enlarged indium particle size. Simultaneously, the presence of In3+ creates an inherently acidic environment (pH~3.1), which effectively stabilizes K+ insertion into the Prussian blue framework. Consequently, this hybrid battery delivered a high capacity of 130 mAh g-1, an exceptional rate of 96 A g-1 (~740 C), and extraordinary cycling life of 48,000 cycles. This work offers an innovative approach to develop high-performance hybrid metal batteries.
{"title":"A High-Efficiency and Long-Cycling Aqueous Indium Metal Battery Enabled by Synergistic In3+/K+ Interactions","authors":"Songyang Chang, Wentao Hou, Amanda Conde-Delmoral, Irfan Ullah, Jose Fernando Florez Gomez, Gerardo Morell, Xianyong Wu","doi":"10.1039/d4nr02905d","DOIUrl":"https://doi.org/10.1039/d4nr02905d","url":null,"abstract":"Aqueous trivalent metal batteries are promising options for energy storage, owing to their ability to transfer three electrons during redox reactions. However, advances in this field have been limited by challenges such as incompatible M3+/M electrode potentials and salt hydrolysis. Herein, we identify trivalent indium metal as a viable candidate and demonstrate a high-performance indium-Prussian blue hybrid battery using a K+/In3+ mixture electrolyte. Interestingly, there exists a synergistic interaction between K+ and In3+ ions, which enhances the Coulombic efficiency and prolongs the cycling life. Specifically, the addition of K+ elevates the In3+/In plating efficiency from 99.3% to 99.6%, due to the decreased electrolyte acidity and enlarged indium particle size. Simultaneously, the presence of In3+ creates an inherently acidic environment (pH~3.1), which effectively stabilizes K+ insertion into the Prussian blue framework. Consequently, this hybrid battery delivered a high capacity of 130 mAh g-1, an exceptional rate of 96 A g-1 (~740 C), and extraordinary cycling life of 48,000 cycles. This work offers an innovative approach to develop high-performance hybrid metal batteries.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"1 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hai Li, Ming Sheng, Kailin Luo, Min Liu, Qiuyang Tan, Sijing Chen, Li Zhong, Litao Sun
Nanostructured body-centered cubic (BCC) metals exhibit remarkable mechanical properties under various stress fields, making them promising candidates for novel micro/nanoelectromechanical systems (M/NEMS). A deep understanding of their mechanical behaviors, particularly at the atomic scale, is essential for optimizing their properties and expanding their applications at the nanoscale. Newly developed nanomechanical testing techniques inside the transmission electron microscopes (TEM) provide powerful tools for uncovering the atomic-scale microstructural evolution of nanostructured BCC materials under external forces. This article reviews recent progresses in the experimental methods used in the in situ TEM nanomechanical testing, and the achievements of these techniques in understanding the deformation mechanisms of BCC nanomaterials. By outlining the current challenges and future research directions, this review aims to inspire continued exploration in the nanomechanics of BCC metals, contributing to the development of advanced BCC nanomaterials with tailored mechanical properties.
纳米结构体心立方(BCC)金属在各种应力场下表现出卓越的机械性能,使它们成为新型微/纳米机电系统(M/NEMS)的理想候选材料。深入了解它们的机械行为,尤其是原子尺度上的机械行为,对于优化它们的性能和扩大它们在纳米尺度上的应用至关重要。在透射电子显微镜(TEM)内新开发的纳米力学测试技术为揭示纳米结构北京赛车材料在外力作用下的原子尺度微结构演变提供了强有力的工具。本文回顾了原位 TEM 纳米力学测试实验方法的最新进展,以及这些技术在理解 BCC 纳米材料变形机制方面取得的成就。通过概述当前面临的挑战和未来的研究方向,本综述旨在激励人们继续探索 BCC 金属的纳米力学,为开发具有定制力学性能的先进 BCC 纳米材料做出贡献。
{"title":"In situ transmission electron microscopy insights into nanoscale deformation mechanisms of body-centered cubic metals","authors":"Hai Li, Ming Sheng, Kailin Luo, Min Liu, Qiuyang Tan, Sijing Chen, Li Zhong, Litao Sun","doi":"10.1039/d4nr04007d","DOIUrl":"https://doi.org/10.1039/d4nr04007d","url":null,"abstract":"Nanostructured body-centered cubic (BCC) metals exhibit remarkable mechanical properties under various stress fields, making them promising candidates for novel micro/nanoelectromechanical systems (M/NEMS). A deep understanding of their mechanical behaviors, particularly at the atomic scale, is essential for optimizing their properties and expanding their applications at the nanoscale. Newly developed nanomechanical testing techniques inside the transmission electron microscopes (TEM) provide powerful tools for uncovering the atomic-scale microstructural evolution of nanostructured BCC materials under external forces. This article reviews recent progresses in the experimental methods used in the in situ TEM nanomechanical testing, and the achievements of these techniques in understanding the deformation mechanisms of BCC nanomaterials. By outlining the current challenges and future research directions, this review aims to inspire continued exploration in the nanomechanics of BCC metals, contributing to the development of advanced BCC nanomaterials with tailored mechanical properties.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"6 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pengbo Ding, Dezhang Chen, Pui Kei Ko, Memoona Qammar, Pai Geng, Liang Guo, Jonathan Eugene Halpert
Quantum information science has garnered significant attention due to its potential in solving problems that are beyond the capabilities of classical computations based on integrated circuits. At the heart of quantum information science is the quantum bit or qubit, which is used to carry information. Achieving large-scale and high-fidelity quantum bits requires the optimization of materials with trap-free characteristics and long coherence times. Nanomaterials have emerged as promising candidates for building qubits due to their inherent quantum confinement effect, enabling the manipulation and addressing of individual spins within nanostructures. In this comprehensive review, we focus on quantum bits based on nanomaterials, including 0D quantum dots, 1D nanotubes and nanowires, and 2D nanoplatelets and nanolayers. We also consider other localized systems, such as defect centers. Our review aims to bridge the gap between nanotechnology and quantum information science, with a particular emphasis on material science aspects such as material selection, properties, and synthesis. By providing insights into these areas, we contribute to the understanding and advancement of nanomaterial-based quantum information science.
{"title":"Nanomaterials for spin-based quantum information","authors":"Pengbo Ding, Dezhang Chen, Pui Kei Ko, Memoona Qammar, Pai Geng, Liang Guo, Jonathan Eugene Halpert","doi":"10.1039/d4nr04012k","DOIUrl":"https://doi.org/10.1039/d4nr04012k","url":null,"abstract":"Quantum information science has garnered significant attention due to its potential in solving problems that are beyond the capabilities of classical computations based on integrated circuits. At the heart of quantum information science is the quantum bit or qubit, which is used to carry information. Achieving large-scale and high-fidelity quantum bits requires the optimization of materials with trap-free characteristics and long coherence times. Nanomaterials have emerged as promising candidates for building qubits due to their inherent quantum confinement effect, enabling the manipulation and addressing of individual spins within nanostructures. In this comprehensive review, we focus on quantum bits based on nanomaterials, including 0D quantum dots, 1D nanotubes and nanowires, and 2D nanoplatelets and nanolayers. We also consider other localized systems, such as defect centers. Our review aims to bridge the gap between nanotechnology and quantum information science, with a particular emphasis on material science aspects such as material selection, properties, and synthesis. By providing insights into these areas, we contribute to the understanding and advancement of nanomaterial-based quantum information science.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"154 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chirality is an intriguing property of molecules, and an exciting area of study involves the generation of chirality in nanographene (NGs), also known as graphene quantum dots. Unlike those synthesized through stepwise carbon-carbon bond formation by organic reactions (bottom-up method), NGs are obtained by cutting parent carbons (top-down method) pose challenges in precisely regulating their three-dimensional structures by post-synthesis. This includes the incorporation of non-hexagonal rings and helicene-like structures in carbon frameworks. Currently, edge functionalization is the only method for generating chirality in NGs produced by the top-down method. While various chiral NGs have been synthesized through organic methods, examples of chemical modification remain rare due to limited structural information and the substantial size of NGs. However, these problems can be mitigated by disclosing the structures of NGs, particularly their edge structures. This minireview focuses on recently published papers that address the structural characterization of NGs and their chirality generation by edge modification. Comparing these NGs with those synthesized by organic synthesis will help to develop reasonable strategies for creating sophisticated chiral NGs. We hope this mini-review contributes to the advancement of NG-organic hybrid materials.
手性是分子的一种引人入胜的特性,一个令人兴奋的研究领域涉及纳米石墨烯(NGs)(也称为石墨烯量子点)中手性的产生。与通过有机反应逐步形成碳-碳键(自下而上法)合成的纳米石墨烯不同,纳米石墨烯是通过切割母碳(自上而下法)获得的,这给通过后合成法精确调节其三维结构带来了挑战。这包括在碳框架中加入非六角环和类螺旋结构。目前,边缘功能化是在自上而下法生产的 NG 中产生手性的唯一方法。虽然已经通过有机方法合成了各种手性 NG,但由于结构信息有限和 NG 体积庞大,化学修饰的例子仍然很少。不过,这些问题可以通过公开 NG 的结构,尤其是其边缘结构得到缓解。本微综述重点介绍最近发表的论文,这些论文探讨了伍德气体的结构特征以及通过边缘修饰产生手性的问题。将这些 NG 与通过有机合成方法合成的 NG 进行比较,将有助于制定合理的策略来制造复杂的手性 NG。我们希望这篇微型综述能为促进吴-有机杂化材料的发展做出贡献。
{"title":"Chirality Generation on Carbon Nanosheets by Chemical Modification","authors":"Ryo Sekiya, Saki Arimura, Haruka Moriguchi, Takeharu Haino","doi":"10.1039/d4nr02952f","DOIUrl":"https://doi.org/10.1039/d4nr02952f","url":null,"abstract":"Chirality is an intriguing property of molecules, and an exciting area of study involves the generation of chirality in nanographene (NGs), also known as graphene quantum dots. Unlike those synthesized through stepwise carbon-carbon bond formation by organic reactions (bottom-up method), NGs are obtained by cutting parent carbons (top-down method) pose challenges in precisely regulating their three-dimensional structures by post-synthesis. This includes the incorporation of non-hexagonal rings and helicene-like structures in carbon frameworks. Currently, edge functionalization is the only method for generating chirality in NGs produced by the top-down method. While various chiral NGs have been synthesized through organic methods, examples of chemical modification remain rare due to limited structural information and the substantial size of NGs. However, these problems can be mitigated by disclosing the structures of NGs, particularly their edge structures. This minireview focuses on recently published papers that address the structural characterization of NGs and their chirality generation by edge modification. Comparing these NGs with those synthesized by organic synthesis will help to develop reasonable strategies for creating sophisticated chiral NGs. We hope this mini-review contributes to the advancement of NG-organic hybrid materials.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"37 4 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Au25(SG)18 (SG: glutathione) nanoclusters, characterized by their atomically precise structures, exhibit near-infrared II (NIR-II) fluorescence emission and excellent biocompatibilit, making them highly promising for imaging applications. However, their comparatively low photoluminescence quantum yield (QY) in aqueous solutions limits their further development. In this study, taking advantage of the molecular-like property of the Au25(SG)18 nanocluster, we employ a Schiff base reaction to improve their NIR-II emission for the first time. The formation of a Schiff base chemical bond restricts intramolecular motion of surface ligands on the Au25(SG)18 nanocluster, reduces the nonradiative rate, and increases the radiative transition rate. Consequently, the luminescence quantum yield of PDA-Au25(SG)18 (PDA: 2,6-pyridinedicarboxaldehyde) nanoclusters is enhanced to 3.26%. Moreover, the reaction between amino and aldehyde groups occurs at the single cluster level, ensuring that these PDA-Au25(SG)18 nanoclusters remain discrete with an ultrasmall size of 2.6 nm, facilitating rapid excretion via the renal system and also showing excellent photostability and biocompatibility.
{"title":"Molecular engineering of the Au25(SG)18 nanocluster at the single cluster level to brighten the NIR-II fluorescence","authors":"Hailiang Zhang, Jing Wang, Wenxiu Han, Pei Jiang","doi":"10.1039/d4nr03047h","DOIUrl":"https://doi.org/10.1039/d4nr03047h","url":null,"abstract":"Au25(SG)18 (SG: glutathione) nanoclusters, characterized by their atomically precise structures, exhibit near-infrared II (NIR-II) fluorescence emission and excellent biocompatibilit, making them highly promising for imaging applications. However, their comparatively low photoluminescence quantum yield (QY) in aqueous solutions limits their further development. In this study, taking advantage of the molecular-like property of the Au25(SG)18 nanocluster, we employ a Schiff base reaction to improve their NIR-II emission for the first time. The formation of a Schiff base chemical bond restricts intramolecular motion of surface ligands on the Au25(SG)18 nanocluster, reduces the nonradiative rate, and increases the radiative transition rate. Consequently, the luminescence quantum yield of PDA-Au25(SG)18 (PDA: 2,6-pyridinedicarboxaldehyde) nanoclusters is enhanced to 3.26%. Moreover, the reaction between amino and aldehyde groups occurs at the single cluster level, ensuring that these PDA-Au25(SG)18 nanoclusters remain discrete with an ultrasmall size of 2.6 nm, facilitating rapid excretion via the renal system and also showing excellent photostability and biocompatibility.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"75 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}