首页 > 最新文献

Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)最新文献

英文 中文
Microflow Switching using Artificial Cilia for On-Demand Particle Manipulation 基于人工纤毛的微流开关按需粒子操作
IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-11-18 DOI: 10.1002/aisy.70144
Prashant Kishor Sharma, Po-Wei Wei, Dineshkumar Loganathan, Yueh-Hsun Lu, Chia-Yuan Chen

Magnetically Actuated Artificial Cilia

A magnetically actuated artificial cilia (MAAC) platform is developed for reversible microflow switching and particle manipulation. By modulating the beating frequencies via external magnetic fields, the system enables shear-driven particle trapping, directional release, and in situ microfluidic mixing. This strategy offers a promising, adaptive and versatile alternative for superior microscale flow control in robotics, biological processing, and lab-on-a-chip technologies. More details can be found in the Research Article by Chia-Yuan Chen and co-workers (DOI: 10.1002/aisy.202500431).

磁驱动人工纤毛(MAAC)是一种用于可逆微流开关和粒子操纵的磁驱动人工纤毛平台。通过外部磁场调节振动频率,该系统可以实现剪切驱动的颗粒捕获、定向释放和原位微流体混合。该策略为机器人技术、生物处理和芯片实验室技术中的卓越微尺度流量控制提供了一种有前途的、自适应的和通用的替代方案。更多细节可以在陈佳媛及其同事的研究文章中找到(DOI: 10.1002/aisy.202500431)。
{"title":"Microflow Switching using Artificial Cilia for On-Demand Particle Manipulation","authors":"Prashant Kishor Sharma,&nbsp;Po-Wei Wei,&nbsp;Dineshkumar Loganathan,&nbsp;Yueh-Hsun Lu,&nbsp;Chia-Yuan Chen","doi":"10.1002/aisy.70144","DOIUrl":"https://doi.org/10.1002/aisy.70144","url":null,"abstract":"<p><b>Magnetically Actuated Artificial Cilia</b></p><p>A magnetically actuated artificial cilia (MAAC) platform is developed for reversible microflow switching and particle manipulation. By modulating the beating frequencies via external magnetic fields, the system enables shear-driven particle trapping, directional release, and in situ microfluidic mixing. This strategy offers a promising, adaptive and versatile alternative for superior microscale flow control in robotics, biological processing, and lab-on-a-chip technologies. More details can be found in the Research Article by Chia-Yuan Chen and co-workers (DOI: 10.1002/aisy.202500431).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 11","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.70144","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145537974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shape Morphing Programmable Systems for Enhanced Control in Low-Velocity Flow Applications 形状变形可编程系统增强控制在低速流的应用
IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-11-18 DOI: 10.1002/aisy.70141
Jin-Tae Kim, Taegeun Kim, Heesung Jung, Yu-Ting Huang, Youngmin Jeon, Fei Liu, Shyuan Cheng, Jaehong Park, Jeonhyeong Park, Ben Jeffery, Taehoon Kim, Xiaoyue Ni, Namjung Kim, Donghyun You, Leonardo P. Chamorro, Xinchen Ni, John A. Rogers

Soft Electronics

A Lorentz-force-driven, liquid metal–embedded surface delivers rapid, reversible 3D shape morphing for precise low-velocity flow control. With minimal power, it modulates near-wall flows in real time, offering versatile, programmable actuation for small UAVs, bio-inspired aerodynamics, and environmental sensing—bridging soft electronics with advanced fluid dynamics. More details can be found in the Research Article by Donghyun You, Leonardo P. Chamorro, Xinchen Ni, John A. Rogers, and co-workers (DOI: 10.1002/aisy.202500457).

软电子:洛伦兹力驱动的液态金属嵌入表面提供快速,可逆的3D形状变形,以实现精确的低速流动控制。它以最小的功率实时调节近壁流,为小型无人机、生物空气动力学和环境传感桥接软电子设备提供多功能、可编程的驱动,具有先进的流体动力学。更多细节可以在Donghyun You, Leonardo P. Chamorro, Xinchen Ni, John A. Rogers及其同事的研究文章中找到(DOI: 10.1002/aisy.202500457)。
{"title":"Shape Morphing Programmable Systems for Enhanced Control in Low-Velocity Flow Applications","authors":"Jin-Tae Kim,&nbsp;Taegeun Kim,&nbsp;Heesung Jung,&nbsp;Yu-Ting Huang,&nbsp;Youngmin Jeon,&nbsp;Fei Liu,&nbsp;Shyuan Cheng,&nbsp;Jaehong Park,&nbsp;Jeonhyeong Park,&nbsp;Ben Jeffery,&nbsp;Taehoon Kim,&nbsp;Xiaoyue Ni,&nbsp;Namjung Kim,&nbsp;Donghyun You,&nbsp;Leonardo P. Chamorro,&nbsp;Xinchen Ni,&nbsp;John A. Rogers","doi":"10.1002/aisy.70141","DOIUrl":"https://doi.org/10.1002/aisy.70141","url":null,"abstract":"<p><b>Soft Electronics</b></p><p>A Lorentz-force-driven, liquid metal–embedded surface delivers rapid, reversible 3D shape morphing for precise low-velocity flow control. With minimal power, it modulates near-wall flows in real time, offering versatile, programmable actuation for small UAVs, bio-inspired aerodynamics, and environmental sensing—bridging soft electronics with advanced fluid dynamics. More details can be found in the Research Article by Donghyun You, Leonardo P. Chamorro, Xinchen Ni, John A. Rogers, and co-workers (DOI: 10.1002/aisy.202500457).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 11","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.70141","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145537951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Soft Wearable Modular Assistive Glove Based on Novel Miniature Foldable Pouch Motor Unit 一种基于新型微型可折叠袋马达单元的柔软可穿戴模块化辅助手套
IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-11-18 DOI: 10.1002/aisy.70142
Tianyu Zhang, Kaiwen Zheng, Haiquan Tao, Jianbin Liu

Soft Wearable Glove

A soft wearable modular assistive glove, driven by miniature foldable pouch motor unit (MFPMU), is developed for hand rehabilitation and daily assistance. The MFPMU combine bending and elongation to naturally adapt to finger joint motion, achieving a fingertip force of 2.34 N at 50 kPa. The actuators generate a maximum torque of 240 mN·m and can be replaced within 30 seconds, offering high adaptability and user convenience. More details can be found in the Research Article by Jianbin Liu and co-workers (Doi: 10.1002/aisy.202500274).

软性可穿戴式手套一种由微型可折叠袋运动单元(MFPMU)驱动的软性可穿戴模块化辅助手套,用于手部康复和日常辅助。MFPMU结合弯曲和伸长率,自然适应手指关节运动,在50 kPa下实现2.34 N的指尖力。执行器最大扭矩可达240 mN·m, 30秒内即可更换,适应性强,使用方便。更多细节可以在刘建斌及其同事的研究文章中找到(Doi: 10.1002/aisy.202500274)。
{"title":"A Soft Wearable Modular Assistive Glove Based on Novel Miniature Foldable Pouch Motor Unit","authors":"Tianyu Zhang,&nbsp;Kaiwen Zheng,&nbsp;Haiquan Tao,&nbsp;Jianbin Liu","doi":"10.1002/aisy.70142","DOIUrl":"https://doi.org/10.1002/aisy.70142","url":null,"abstract":"<p><b>Soft Wearable Glove</b></p><p>A soft wearable modular assistive glove, driven by miniature foldable pouch motor unit (MFPMU), is developed for hand rehabilitation and daily assistance. The MFPMU combine bending and elongation to naturally adapt to finger joint motion, achieving a fingertip force of 2.34 N at 50 kPa. The actuators generate a maximum torque of 240 mN·m and can be replaced within 30 seconds, offering high adaptability and user convenience. More details can be found in the Research Article by Jianbin Liu and co-workers (Doi: 10.1002/aisy.202500274).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 11","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.70142","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145537967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RanBALL: An Ensemble Machine Learning Framework for Accurate Subtype Identification of Pediatric B-Cell Acute Lymphoblastic Leukemia. RanBALL:一个用于儿科b细胞急性淋巴细胞白血病准确亚型识别的集成机器学习框架。
IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-10-30 DOI: 10.1002/aisy.202500965
Lusheng Li, Hanyu Xiao, Xinchao Wu, Zhenya Tang, Joseph D Khoury, Jieqiong Wang, Shibiao Wan

As the most common pediatric malignancy, B-cell acute lymphoblastic leukemia (B-ALL) has multiple distinct subtypes characterized by recurrent and sporadic somatic and germline genetic alterations. Identifying B-ALL subtypes can facilitate risk stratification and enable tailored therapeutic design. Existing methods for B-ALL subtyping primarily depend on immunophenotyping, cytogenetic tests, and genomic profiling, which can be costly, complicated, and laborious. To overcome these challenges, RanBALL (an ensemble random projection-based model for identifying B-ALL subtypes) is presented, an accurate and cost-effective model for B-ALL subtype identification. By leveraging random projection (RP) and ensemble learning, RanBALL can preserve patient-to-patient distances after dimension reduction and yield robustly accurate classification performance for B-ALL subtyping. Benchmarking results based on >1700 B-ALL patients demonstrate that RanBALL achieves remarkable performance (accuracy: 0.93, F1-score: 0.93, and Matthews correlation coefficient: 0.93), significantly outperforming state-of-the-art methods like ALLSorts in terms of all performance metrics. In addition, RanBALL performs better than t-SNE in terms of visualizing B-ALL subtype information. We believe RanBALL will facilitate the discovery of B-ALL subtype-specific marker genes and therapeutic targets to have consequential positive impacts on downstream risk stratification and tailored treatment design is believed. To extend its applicability and impacts, a Python-based RanBALL package is available at https://github.com/wan-mlab/RanBALL.

作为最常见的儿科恶性肿瘤,b细胞急性淋巴细胞白血病(B-ALL)具有多种不同的亚型,其特征是复发性和散发性体细胞和种系遗传改变。确定B-ALL亚型可以促进风险分层和定制治疗设计。现有的B-ALL亚型分型方法主要依赖于免疫表型、细胞遗传学测试和基因组谱分析,这些方法可能昂贵、复杂且费力。为了克服这些挑战,本文提出了RanBALL(基于集合随机投影的B-ALL亚型识别模型),这是一种准确且经济有效的B-ALL亚型识别模型。通过利用随机投影(RP)和集成学习,RanBALL可以保留降维后患者与患者之间的距离,并对B-ALL亚型产生稳健准确的分类性能。基于bb0 1700 B-ALL患者的基准测试结果表明,RanBALL取得了显著的性能(准确率:0.93,f1评分:0.93,Matthews相关系数:0.93),在所有性能指标方面都明显优于ALLSorts等最先进的方法。此外,RanBALL在B-ALL亚型信息的可视化方面优于t-SNE。我们相信RanBALL将有助于发现B-ALL亚型特异性标记基因和治疗靶点,从而对下游风险分层产生相应的积极影响,并相信有针对性的治疗设计。为了扩展其适用性和影响,可以在https://github.com/wan-mlab/RanBALL上获得基于python的RanBALL包。
{"title":"RanBALL: An Ensemble Machine Learning Framework for Accurate Subtype Identification of Pediatric B-Cell Acute Lymphoblastic Leukemia.","authors":"Lusheng Li, Hanyu Xiao, Xinchao Wu, Zhenya Tang, Joseph D Khoury, Jieqiong Wang, Shibiao Wan","doi":"10.1002/aisy.202500965","DOIUrl":"10.1002/aisy.202500965","url":null,"abstract":"<p><p>As the most common pediatric malignancy, B-cell acute lymphoblastic leukemia (B-ALL) has multiple distinct subtypes characterized by recurrent and sporadic somatic and germline genetic alterations. Identifying B-ALL subtypes can facilitate risk stratification and enable tailored therapeutic design. Existing methods for B-ALL subtyping primarily depend on immunophenotyping, cytogenetic tests, and genomic profiling, which can be costly, complicated, and laborious. To overcome these challenges, RanBALL (an ensemble random projection-based model for identifying B-ALL subtypes) is presented, an accurate and cost-effective model for B-ALL subtype identification. By leveraging random projection (RP) and ensemble learning, RanBALL can preserve patient-to-patient distances after dimension reduction and yield robustly accurate classification performance for B-ALL subtyping. Benchmarking results based on >1700 B-ALL patients demonstrate that RanBALL achieves remarkable performance (accuracy: 0.93, F1-score: 0.93, and Matthews correlation coefficient: 0.93), significantly outperforming state-of-the-art methods like ALLSorts in terms of all performance metrics. In addition, RanBALL performs better than t-SNE in terms of visualizing B-ALL subtype information. We believe RanBALL will facilitate the discovery of B-ALL subtype-specific marker genes and therapeutic targets to have consequential positive impacts on downstream risk stratification and tailored treatment design is believed. To extend its applicability and impacts, a Python-based RanBALL package is available at https://github.com/wan-mlab/RanBALL.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12614072/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145544341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning Elucidates Population Density-Dependent Morphological Phenotypic Changes of Macrophages 机器学习阐明巨噬细胞种群密度依赖的形态表型变化
IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-10-26 DOI: 10.1002/aisy.202500551
Tiffany Thanhtruc Pham,  Kenry

Macrophages play a central role in modulating different biological and physiological events. The behaviors and functions of macrophages may be regulated by a host of factors, including their viability, proliferation rate, and population density. Specifically, the population density of macrophages has been increasingly reported to be correlated with their activities. It is, however, still unclear if changes in macrophage population density will alter the biophysical attributes of these cells, notably their morphology. Herein, label-free phase-contrast microscopy is coupled with machine learning to interrogate the relationship between the population density and morphological features of macrophages. Through a systematic approach, variations in the morphological phenotypes of macrophages, which are dependent on their population density, are revealed. In parallel, through unsupervised clustering, the presence of single-cell morphological heterogeneity within each macrophage population and subpopulation is elucidated. Next, discriminative morphological attributes which can be leveraged to distinguish between macrophages from different groups are identified through feature scoring. Finally, high-performing explainable supervised machine learning algorithms that can be employed to predict the population density of macrophages based on their size and shape features are identified. This work is anticipated to offer a deeper understanding of the association between macrophage population density and morphologyas well as the potential use of morphological attributes as predictive metrics for analyzing cell populations.

巨噬细胞在调节不同的生物和生理事件中发挥核心作用。巨噬细胞的行为和功能可能受到一系列因素的调节,包括它们的生存能力、增殖率和种群密度。具体来说,巨噬细胞的种群密度越来越多地被报道与其活性相关。然而,目前尚不清楚巨噬细胞种群密度的变化是否会改变这些细胞的生物物理属性,特别是它们的形态。在这里,无标记相差显微镜结合机器学习来询问巨噬细胞的种群密度和形态特征之间的关系。通过系统的方法,巨噬细胞的形态学表型的变化,这是依赖于他们的人口密度,揭示。同时,通过无监督聚类,阐明了每个巨噬细胞群体和亚群体中单细胞形态异质性的存在。接下来,通过特征评分识别可用于区分不同组巨噬细胞的鉴别形态学属性。最后,确定了高性能可解释的监督机器学习算法,该算法可用于根据巨噬细胞的大小和形状特征预测巨噬细胞的种群密度。这项工作有望为巨噬细胞种群密度和形态之间的关系提供更深入的理解,以及形态学属性作为分析细胞种群的预测指标的潜在用途。
{"title":"Machine Learning Elucidates Population Density-Dependent Morphological Phenotypic Changes of Macrophages","authors":"Tiffany Thanhtruc Pham,&nbsp; Kenry","doi":"10.1002/aisy.202500551","DOIUrl":"https://doi.org/10.1002/aisy.202500551","url":null,"abstract":"<p>Macrophages play a central role in modulating different biological and physiological events. The behaviors and functions of macrophages may be regulated by a host of factors, including their viability, proliferation rate, and population density. Specifically, the population density of macrophages has been increasingly reported to be correlated with their activities. It is, however, still unclear if changes in macrophage population density will alter the biophysical attributes of these cells, notably their morphology. Herein, label-free phase-contrast microscopy is coupled with machine learning to interrogate the relationship between the population density and morphological features of macrophages. Through a systematic approach, variations in the morphological phenotypes of macrophages, which are dependent on their population density, are revealed. In parallel, through unsupervised clustering, the presence of single-cell morphological heterogeneity within each macrophage population and subpopulation is elucidated. Next, discriminative morphological attributes which can be leveraged to distinguish between macrophages from different groups are identified through feature scoring. Finally, high-performing explainable supervised machine learning algorithms that can be employed to predict the population density of macrophages based on their size and shape features are identified. This work is anticipated to offer a deeper understanding of the association between macrophage population density and morphologyas well as the potential use of morphological attributes as predictive metrics for analyzing cell populations.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 12","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202500551","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145751342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating Social Immunity in Swarming Locusts via a Triple Animal–Robot–Pathogen Hybrid Interaction 通过动物-机器人-病原体三重杂交相互作用研究蝗群的社会免疫
IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-10-23 DOI: 10.1002/aisy.70132
Donato Romano, Cesare Stefanini

Animal-Robot Interaction

The cover illustrates a gregarious locust interacting with a biomimetic agent inoculated with Beauveria bassiana on an robotic experimental platform, highlighting the dynamics of social immunity and pathogen information spread within the swarm, as explored through innovative biohybrid method of this study. More details can be found in article 2400763 by Donato Romano and Cesare Stefanini.

动物与机器人的互动封面展示了一只群居蝗虫在机器人实验平台上与接种了球孢白僵菌的仿生制剂的互动,突出了本研究通过创新的生物杂交方法探索的群体内社会免疫和病原体信息传播的动态。更多细节可以在Donato Romano和Cesare Stefanini的文章2400763中找到。
{"title":"Investigating Social Immunity in Swarming Locusts via a Triple Animal–Robot–Pathogen Hybrid Interaction","authors":"Donato Romano,&nbsp;Cesare Stefanini","doi":"10.1002/aisy.70132","DOIUrl":"https://doi.org/10.1002/aisy.70132","url":null,"abstract":"<p><b>Animal-Robot Interaction</b></p><p>The cover illustrates a gregarious locust interacting with a biomimetic agent inoculated with Beauveria bassiana on an robotic experimental platform, highlighting the dynamics of social immunity and pathogen information spread within the swarm, as explored through innovative biohybrid method of this study. More details can be found in article 2400763 by Donato Romano and Cesare Stefanini.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 10","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.70132","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145341900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-Time Guidewire Tip Tracking Using a Siamese Network for Image-Guided Endovascular Procedures 使用Siamese网络进行图像引导血管内手术的实时导丝尖端跟踪
IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-10-23 DOI: 10.1002/aisy.70133
Tianliang Yao, Zhiqiang Pei, Yong Li, Yixuan Yuan, Peng Qi

Siamese Network

This paper proposed a novel AI framework that enhances guidewire tip tracking in image-guided therapy for vascular diseases. Combining a Siamese network with attention mechanisms ensures robust tracking despite visual ambiguities and tissue deformations. Validated on clinical angiography sequences and robotic platforms, it improves diagnostic and therapeutic precision in endovascular interventions. More details can be found in the Research Article by Peng Qi and co-workers (DOI: 10.1002/aisy.202500425).

本文提出了一种新的人工智能框架,增强了血管疾病图像引导治疗中导丝尖端的跟踪。将暹罗网络与注意机制相结合,可以确保尽管视觉模糊和组织变形,但仍能进行稳健的跟踪。经过临床血管造影序列和机器人平台的验证,它提高了血管内介入的诊断和治疗精度。更多细节可以在彭琦及其同事的研究文章中找到(DOI: 10.1002/aisy.202500425)。
{"title":"Real-Time Guidewire Tip Tracking Using a Siamese Network for Image-Guided Endovascular Procedures","authors":"Tianliang Yao,&nbsp;Zhiqiang Pei,&nbsp;Yong Li,&nbsp;Yixuan Yuan,&nbsp;Peng Qi","doi":"10.1002/aisy.70133","DOIUrl":"https://doi.org/10.1002/aisy.70133","url":null,"abstract":"<p><b>Siamese Network</b></p><p>This paper proposed a novel AI framework that enhances guidewire tip tracking in image-guided therapy for vascular diseases. Combining a Siamese network with attention mechanisms ensures robust tracking despite visual ambiguities and tissue deformations. Validated on clinical angiography sequences and robotic platforms, it improves diagnostic and therapeutic precision in endovascular interventions. More details can be found in the Research Article by Peng Qi and co-workers (DOI: 10.1002/aisy.202500425).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 10","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.70133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145341644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autonomous Navigation of Bio-Intelligent Cyborg Insect Based on Insect Visual Perception 基于昆虫视觉感知的生物智能半机械昆虫自主导航
IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-10-23 DOI: 10.1002/aisy.70131
Chowdhury Mohammad Masum Refat, Mochammad Ariyanto, Ryo Tanaka, Kotaro Yamamoto, Keisuke Morishima

Bio-Intelligent Cyborg Insect

The cover image features a Bio-Intelligent Cyborg Insect (BCI) guided by non-invasive ultraviolet (UV) stimulation. A lightweight wireless backpack and UV helmet enable real-time feedback control based on the insect’s natural sensory perception, achieving autonomous navigation in complex environments. This work highlights the integration of biological intelligence with engineered systems for advanced biohybrid robotics. More details can be found in article 10.1002/aisy.202400838 by Keisuke Morishima and co-workers.

生物智能半机械人昆虫封面图像的特征是一个生物智能半机械人昆虫(BCI)由非侵入性紫外线(UV)刺激引导。轻型无线背包和紫外线头盔可以根据昆虫的自然感官感知进行实时反馈控制,在复杂环境中实现自主导航。这项工作强调了生物智能与先进生物混合机器人工程系统的集成。更多细节可在第10.1002/aisy条中找到。202400838森岛圭介及其同事。
{"title":"Autonomous Navigation of Bio-Intelligent Cyborg Insect Based on Insect Visual Perception","authors":"Chowdhury Mohammad Masum Refat,&nbsp;Mochammad Ariyanto,&nbsp;Ryo Tanaka,&nbsp;Kotaro Yamamoto,&nbsp;Keisuke Morishima","doi":"10.1002/aisy.70131","DOIUrl":"https://doi.org/10.1002/aisy.70131","url":null,"abstract":"<p><b>Bio-Intelligent Cyborg Insect</b></p><p>The cover image features a Bio-Intelligent Cyborg Insect (BCI) guided by non-invasive ultraviolet (UV) stimulation. A lightweight wireless backpack and UV helmet enable real-time feedback control based on the insect’s natural sensory perception, achieving autonomous navigation in complex environments. This work highlights the integration of biological intelligence with engineered systems for advanced biohybrid robotics. More details can be found in article 10.1002/aisy.202400838 by Keisuke Morishima and co-workers.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 10","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.70131","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145341643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-hybrids: When Robots Come Alive 生物混合:当机器人复活
IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-10-23 DOI: 10.1002/aisy.202500822
Miriam Filippi, Robert K. Katzschmann
<p>Bio-hybrid robots are engineered systems that integrate living biological components (such as cells, tissues, or microorganisms) with synthetic structures to enable sensing, actuation, and adaptive behaviors beyond the reach of conventional machines. This merging of the animate and the artificial blurs boundaries, crafting systems where biology is not merely mimicked, but embodied and active. Bio-hybrid robotics invites life itself into the circuit, creating entities that sense, grow, adapt, and participate. These systems take heterogeneous forms, from muscle cells that contract to drive motion in bio-actuators to microbial communities that serve as engines of locomotion or computation. What began as scientific curiosity has become a field reshaping our notions of intelligence, adaptability, and materiality, where the robot becomes more than a machine: it becomes a host for biological intelligence, a platform for co-evolution, and a mirror reflecting our evolving concepts of agency, autonomy, and design.</p><p>The contributions featured in this special issue, <i>“Bio-hybrids: When Robots Come Alive,”</i> showcase the diversity and ingenuity of bio-hybrid robotics, from microrobots animated by bacterial activity to proprioceptive muscle-driven actuators and insect-machine cyborgs. Together, these works paint a compelling picture of an emerging class of biointelligent systems: responsive, adaptive, and alive in more ways than one.</p><p>At the heart of this issue are several breakthroughs in skeletal muscle-based bioactuators, which embody the promise of integrating contractile tissue with synthetic frameworks for soft, life-like motion. <b>Bartolucci A. et al. (</b>10.1002/aisy.202400989) presented a <i>monolithic biohybrid flexure mechanism</i>, consisting of a tubular biohybrid flexure mechanism powered by bioengineered skeletal muscle tissue which demonstrated the potential for compact, muscle-powered robotic systems with integrated actuation and compliance. In this study, the soft silicone structure converts muscle contractions into bending motion, aided by integrated cylindrical pillars for effective force transmission. As proved by performance tests and simulations, such a design offers enhanced contractility and scalability, especially with reduced diameters, providing a simple, robust solution for advancing next-generation, miniaturized biohybrid robots.</p><p><b>Lai S. et al.</b> (10.1002/aisy.202400407) introduced a soft bioactuator combining 3D-bioengineered skeletal muscle with organic transistor-based sensors for real-time force monitoring. The system converts muscle contractions into electrical signals, enabling precise performance tracking. Unlike traditional sensors, the transistor-based design offers tunable sensitivity via gate voltage modulation. Moreover, to advance proprioceptive sensing and enable dynamic feedback control, we introduced a soft, fiber-shaped piezoresistive sensor that integrates with engineered skeletal mus
生物混合机器人是一种工程系统,它将活的生物成分(如细胞、组织或微生物)与合成结构集成在一起,以实现传统机器无法实现的传感、驱动和自适应行为。这种生物和人工的融合模糊了界限,创造了生物不仅仅是模仿的系统,而是具体化和活跃的系统。生物混合机器人将生命本身引入回路,创造出能够感知、成长、适应和参与的实体。这些系统形式各异,从收缩的肌肉细胞驱动生物致动器的运动,到作为运动或计算引擎的微生物群落。最初的科学好奇已经成为一个领域,重塑了我们对智能、适应性和物质性的概念,机器人不仅仅是一台机器:它成为生物智能的宿主,共同进化的平台,以及反映我们不断发展的代理、自主和设计概念的镜子。本期特刊《生物混合:当机器人复活》展示了生物混合机器人的多样性和独创性,从细菌活动驱动的微型机器人到本体感觉肌肉驱动的驱动器和昆虫机器半机械人。总之,这些作品描绘了一幅引人注目的新兴生物智能系统的画面:反应灵敏,适应性强,并以多种方式活着。这个问题的核心是基于骨骼肌的生物致动器的几个突破,它们体现了将可收缩组织与合成框架整合在一起的希望,以实现柔软、逼真的运动。Bartolucci a . etal . (10.1002/aisy.202400989)提出了一种单片生物混合弯曲机构,包括由生物工程骨骼肌组织驱动的管状生物混合弯曲机构,这表明具有集成驱动和顺应性的紧凑、肌肉驱动的机器人系统的潜力。在这项研究中,柔软的硅胶结构将肌肉收缩转化为弯曲运动,并辅以集成的圆柱形支柱进行有效的力传递。性能测试和模拟证明,这种设计具有增强的收缩性和可扩展性,特别是直径减小,为推进下一代小型化生物混合机器人提供了简单,强大的解决方案。Lai S.等人(10.1002/aisy.202400407)介绍了一种将3d生物工程骨骼肌与基于有机晶体管的传感器相结合的软生物致动器,用于实时力监测。该系统将肌肉收缩转化为电信号,从而实现精确的运动跟踪。与传统传感器不同,基于晶体管的设计通过栅极电压调制提供可调谐的灵敏度。此外,为了推进本体感觉感知和实现动态反馈控制,我们引入了一种柔软的纤维状压阻传感器,该传感器与工程骨骼肌组织集成,可以实时感知电刺激下的低应变收缩(10.1002/ ais.202400413)。通过将这些感官数据输入控制系统,我们展示了第一个能够自主响应其收缩状态的本体感觉生物混合机器人。这一进展标志着向具有决策能力的智能生物混合系统迈出了重要一步,为生物医学模型、植入式设备和下一代软机器人技术开辟了新的可能性。要真正推动生物机器人技术的发展,必须超越单纯的驱动,探索诸如稳态调节和自适应环境感知等功能,这些功能在我们的身体中是通过皮肤等系统无缝协调的。为了扩展功能整合的范例,另一组研究人员提出了一种覆盖皮肤的生物杂交机器人手指,该手指具有双层渗透性支撑,可维持组织水合作用,强调了生理环境对维持工程系统内生物功能的重要性(10.1002/aisy.202400871)。通过穿孔的3d打印骨骼层和海绵状PVA水凝胶,可以在空气暴露的条件下保持培养皮肤组织的水合作用,从而提高机械强度,保持水分和营养物质扩散。该方法显著提高了皮肤覆盖生物混合机器人的耐用性和实际适用性。这期特刊还探讨了无脊椎生物杂交的世界。Fraga C. J.等人的综述强调了生物杂交无脊椎动物机器人技术的进展,其中昆虫、水母和海蛞蝓等生物被整合到机器人系统中,以增强运动和传感能力(10.1002/aisy.202401105)。这些机器人在能源效率、适应性和低成本部署方面具有优势,可用于环境监测和搜救等任务。然而,由于生物限制,在控制、电力输送和可靠性方面仍然存在挑战。 作者概述了目前的解决方案和未来的方向,以提高可控性,可持续性和生物混合系统的使用寿命。一个突出的例子是创造出具有自主导航功能的半机械昆虫,利用昆虫自己的视觉系统来控制运动。Refat C. M. M.等人介绍了一种利用仿生昆虫对紫外线的天然厌恶来进行无创控制的方法(10.1002/aisy.202400838)。一个可穿戴的紫外线头盔刺激复眼触发定向转向,实现可靠的指导,无需习惯。这种方法降低了刺激频率,并利用了自然行为,为传统的电方法提供了一种有希望的替代方案。这些“生物智能”代理指向了一个自然感官系统不再被复制而是被直接利用的未来。此外,机器人-昆虫-病原体相互作用的研究揭示了机器人替代品如何融入动物群体以探索社会免疫,提供了一个连接生物学,行为和疾病生态学的模型系统(10.1002/aisy.202400763)。在微观尺度上,仿生和生物混合机器人采用了不同的形式。单细胞生物(如细菌)的运动行为为小型化可控系统提供了丰富的生物灵感来源。对仿生、自组装微型机器人的贡献展示了受生物系统启发的集体运动,为分布式智能和可编程物质提供了一条前进的道路(10.1002/ aisi .202400839)。本研究展示了由催化银和被动硅球组成的双态微游泳体的形状依赖性趋化性。这些游泳者通过将化学能转化为定向运动来自主导航过氧化氢梯度,粒子形态在指导它们的行为中起着关键作用。该研究在没有复杂制造的情况下证明了积极的趋化性,为智能微游泳者的设计提供了一种简化的方法。此外,虽然细菌在很大程度上被认为是单独的生物混合机器人系统,但它们也有可能构建更大规模的生物混合系统。Krauss T.等人开发了毫米级的磁性软机器人,封装了益生菌,用于靶向癌症治疗(10.1002/aisy.202500257)。通过将细菌限制在水凝胶基质中,该系统可以在保持细菌活力和治疗功能的同时进行精确的磁引导输送。该平台展示了在复杂环境中有效的肿瘤球体破坏和移动性,为安全和浓缩的细菌癌症治疗提供了一种有前途的新方法,并为生物杂交的治疗应用提供了一瞥,能够导航到肿瘤并通过靶向微生物运输增强药物递送。除了技术进步,迈克尔·莱文在本期发表的一篇发人深省的观点文章提醒我们,生物混合系统可能不仅是功能性的,而且是哲学上的,从而提供了理解智能本身的新模式,分布在基质和物种之间(10.1002/aisy.202401034)。这项工作认为,目前关于人工智能的辩论忽视了来自不同智能、合成形态学和发育生物学的关键见解。它强调,理解人工智能需要重新思考什么是“存在”,因为未来的智能代理可能会以不熟悉的形式出现。因此,作者呼吁一个更广泛的、基于生物学的视角来应对智能进化带来的伦理和生存挑战。总之,本期特刊中的文章强调了机器人技术的深刻转变,从仿生模仿到真正的生物整合,从命令和控制范式到与生命系统的动态协作。当我们开始设计机器人的肌肉组织搏动,通过细胞传感器进行感知,并像生物体一样生长或适应时,我们被邀请重新思考工程智能的基本含义。智能不再局限于电路和代码,而是以混合形式出现,与生物学交织在一起,受到进化的影响,并对流动的、往往不可预测的生命节奏做出反应。在这个新的前沿领域,机器人不仅仅是制造机器:它还关乎培养与生命本身的伙伴关系。生物杂交时代不仅标志着技术上的突破,而且标志着哲学上的突破:机器人开始活了起来,我们必须准备好在新的条件下迎接它们。我们希望这期特刊能为那些被生物学和机器人技术融合所吸引的跨学科读者提供灵感和见解。随着合成生物学、工程学、计算机科学和哲学领域的研究人
{"title":"Bio-hybrids: When Robots Come Alive","authors":"Miriam Filippi,&nbsp;Robert K. Katzschmann","doi":"10.1002/aisy.202500822","DOIUrl":"https://doi.org/10.1002/aisy.202500822","url":null,"abstract":"&lt;p&gt;Bio-hybrid robots are engineered systems that integrate living biological components (such as cells, tissues, or microorganisms) with synthetic structures to enable sensing, actuation, and adaptive behaviors beyond the reach of conventional machines. This merging of the animate and the artificial blurs boundaries, crafting systems where biology is not merely mimicked, but embodied and active. Bio-hybrid robotics invites life itself into the circuit, creating entities that sense, grow, adapt, and participate. These systems take heterogeneous forms, from muscle cells that contract to drive motion in bio-actuators to microbial communities that serve as engines of locomotion or computation. What began as scientific curiosity has become a field reshaping our notions of intelligence, adaptability, and materiality, where the robot becomes more than a machine: it becomes a host for biological intelligence, a platform for co-evolution, and a mirror reflecting our evolving concepts of agency, autonomy, and design.&lt;/p&gt;&lt;p&gt;The contributions featured in this special issue, &lt;i&gt;“Bio-hybrids: When Robots Come Alive,”&lt;/i&gt; showcase the diversity and ingenuity of bio-hybrid robotics, from microrobots animated by bacterial activity to proprioceptive muscle-driven actuators and insect-machine cyborgs. Together, these works paint a compelling picture of an emerging class of biointelligent systems: responsive, adaptive, and alive in more ways than one.&lt;/p&gt;&lt;p&gt;At the heart of this issue are several breakthroughs in skeletal muscle-based bioactuators, which embody the promise of integrating contractile tissue with synthetic frameworks for soft, life-like motion. &lt;b&gt;Bartolucci A. et al. (&lt;/b&gt;10.1002/aisy.202400989) presented a &lt;i&gt;monolithic biohybrid flexure mechanism&lt;/i&gt;, consisting of a tubular biohybrid flexure mechanism powered by bioengineered skeletal muscle tissue which demonstrated the potential for compact, muscle-powered robotic systems with integrated actuation and compliance. In this study, the soft silicone structure converts muscle contractions into bending motion, aided by integrated cylindrical pillars for effective force transmission. As proved by performance tests and simulations, such a design offers enhanced contractility and scalability, especially with reduced diameters, providing a simple, robust solution for advancing next-generation, miniaturized biohybrid robots.&lt;/p&gt;&lt;p&gt;&lt;b&gt;Lai S. et al.&lt;/b&gt; (10.1002/aisy.202400407) introduced a soft bioactuator combining 3D-bioengineered skeletal muscle with organic transistor-based sensors for real-time force monitoring. The system converts muscle contractions into electrical signals, enabling precise performance tracking. Unlike traditional sensors, the transistor-based design offers tunable sensitivity via gate voltage modulation. Moreover, to advance proprioceptive sensing and enable dynamic feedback control, we introduced a soft, fiber-shaped piezoresistive sensor that integrates with engineered skeletal mus","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 10","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202500822","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145341907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural Entanglement Inspired Cilia-Like Soft Gripper for Rapid Adaptive Grasping 启发自然纠缠的纤毛状软爪,用于快速自适应抓取
IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-10-13 DOI: 10.1002/aisy.202500468
Zichen Xu, Yukang Yan, Xianli Wang, Yuanhe Chen, Qingsong Xu

Self-adaptive, easy-to-control, and low-cost gripper devices are indispensable in manufacturing and agriculture. However, the existing soft grippers cannot provide high response speed and firm grasping. Inspired by the natural, active entanglement behaviors of animals and plants, a rapid, cilia-like soft gripper design is proposed for grasping various objects via envelopes formed by the self-entanglement of multiple hollowed silicone tubes. The basic entanglement unit comprises a hollow, soft silicone tube with an actuation wire inside, which leads to compression and entanglement by fixing the front of the tube and drawing the actuation wire. Using multiple entanglement units enables sufficient mechanical interlocking between deformed tubes and grasped objects, avoiding the reliance on contact force control. Experimental results demonstrate that the developed soft gripper, with a cost lower than one dollar, can complete adaptive grasping within 1 s. The grasping success rate can reach 100% in grasping common irregular-shaped daily objects within the effective grasping range of the entanglement units. The design paves the way for harnessing the potential of embodied intelligence in soft robots, enabling fast and universal grasping.

自适应、易于控制和低成本的抓取装置在制造业和农业中是不可或缺的。然而,现有的软爪不能提供高响应速度和牢固的抓取。受动植物自然主动缠结行为的启发,提出了一种快速、像纤毛一样的软爪设计,通过多个中空硅胶管的自缠结形成的信封来抓取各种物体。基本缠结单元包括中空的、柔软的硅胶管,管内有一驱动丝,通过固定管的前端并拉出驱动丝来导致压缩和缠结。使用多个缠绕单元可以在变形管和抓取物体之间实现充分的机械联锁,避免依赖接触力控制。实验结果表明,所开发的软抓取器可在1 s内完成自适应抓取,成本低于1美元。在纠缠单元的有效抓取范围内,对常见不规则形状的日常物品的抓取成功率可达100%。该设计为利用软体机器人的具身智能潜力铺平了道路,实现了快速和通用的抓取。
{"title":"Natural Entanglement Inspired Cilia-Like Soft Gripper for Rapid Adaptive Grasping","authors":"Zichen Xu,&nbsp;Yukang Yan,&nbsp;Xianli Wang,&nbsp;Yuanhe Chen,&nbsp;Qingsong Xu","doi":"10.1002/aisy.202500468","DOIUrl":"https://doi.org/10.1002/aisy.202500468","url":null,"abstract":"<p>Self-adaptive, easy-to-control, and low-cost gripper devices are indispensable in manufacturing and agriculture. However, the existing soft grippers cannot provide high response speed and firm grasping. Inspired by the natural, active entanglement behaviors of animals and plants, a rapid, cilia-like soft gripper design is proposed for grasping various objects via envelopes formed by the self-entanglement of multiple hollowed silicone tubes. The basic entanglement unit comprises a hollow, soft silicone tube with an actuation wire inside, which leads to compression and entanglement by fixing the front of the tube and drawing the actuation wire. Using multiple entanglement units enables sufficient mechanical interlocking between deformed tubes and grasped objects, avoiding the reliance on contact force control. Experimental results demonstrate that the developed soft gripper, with a cost lower than one dollar, can complete adaptive grasping within 1 s. The grasping success rate can reach 100% in grasping common irregular-shaped daily objects within the effective grasping range of the entanglement units. The design paves the way for harnessing the potential of embodied intelligence in soft robots, enabling fast and universal grasping.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"8 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202500468","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146016382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1