首页 > 最新文献

Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)最新文献

英文 中文
Liquid Metal Chameleon Tongues: Modulating Surface Tension and Phase Transition to Enable Bioinspired Soft Actuators 液态金属变色龙舌头:调节表面张力和相变,实现生物启发式软致动器
IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-07-08 DOI: 10.1002/aisy.202400231
Hongda Lu, Mengqing Zhao, Qingtian Zhang, Jiayi Yang, Zexin Chen, Liping Gong, Xiangbo Zhou, Lei Deng, Haiping Du, Shiwu Zhang, Shi-Yang Tang, Weihua Li

Leveraging the unique attributes of functional soft materials to generate force and deformation, significant advancements in soft actuators are driving the evolution of smart robotics. Liquid metals (LMs), known for their high deformability and tunable morphology, demonstrate remarkable actuating capabilities through controllable surface tension. Inspired by the predation method of chameleons, this work introduces a bioinspired LM actuator (BLMA) by modulating the morphology of LM. This BLMA enables high-strain (up to 170%) actuation by precisely directing LM droplets toward an electrode. Various parameters affecting the BLMA's actuating performance are explored. Notably, the application of a reductive voltage induces rapid solidification of supercooled LM, facilitating phase transition at room temperature. The solidified LM enhances its holding force of BLMA by over 1000 times. To underscore the superior capabilities of the BLMA, diverse applications, such as a complex two-dimensional plane actuator, a stepper motor with adjustable step intervals, a phase transition-controlled relay, and a laser code lock actuation gate set, are presented. It is anticipated that the exceptional characteristics of the BLMA will propel advancements in the realms of soft robotics and mechatronics.

利用功能性软材料的独特属性产生力和形变,软致动器的重大进展正在推动智能机器人技术的发展。液态金属(LMs)以其高变形性和可调形态而著称,通过可控的表面张力展现出非凡的致动能力。受变色龙捕食方法的启发,这项研究通过调节液态金属的形态,引入了一种生物启发液态金属致动器(BLMA)。这种 BLMA 可通过精确地将 LM 液滴引向电极来实现高应变(高达 170%)致动。我们探讨了影响 BLMA 驱动性能的各种参数。值得注意的是,施加还原电压可诱导过冷 LM 快速凝固,促进室温下的相变。凝固的 LM 可将 BLMA 的保持力提高 1000 倍以上。为了突出 BLMA 的卓越性能,我们介绍了它的各种应用,如复杂的二维平面致动器、步进间隔可调的步进电机、相变控制继电器和激光密码锁致动门电路组。预计 BLMA 的卓越特性将推动软机器人和机电一体化领域的发展。
{"title":"Liquid Metal Chameleon Tongues: Modulating Surface Tension and Phase Transition to Enable Bioinspired Soft Actuators","authors":"Hongda Lu,&nbsp;Mengqing Zhao,&nbsp;Qingtian Zhang,&nbsp;Jiayi Yang,&nbsp;Zexin Chen,&nbsp;Liping Gong,&nbsp;Xiangbo Zhou,&nbsp;Lei Deng,&nbsp;Haiping Du,&nbsp;Shiwu Zhang,&nbsp;Shi-Yang Tang,&nbsp;Weihua Li","doi":"10.1002/aisy.202400231","DOIUrl":"10.1002/aisy.202400231","url":null,"abstract":"<p>Leveraging the unique attributes of functional soft materials to generate force and deformation, significant advancements in soft actuators are driving the evolution of smart robotics. Liquid metals (LMs), known for their high deformability and tunable morphology, demonstrate remarkable actuating capabilities through controllable surface tension. Inspired by the predation method of chameleons, this work introduces a bioinspired LM actuator (BLMA) by modulating the morphology of LM. This BLMA enables high-strain (up to 170%) actuation by precisely directing LM droplets toward an electrode. Various parameters affecting the BLMA's actuating performance are explored. Notably, the application of a reductive voltage induces rapid solidification of supercooled LM, facilitating phase transition at room temperature. The solidified LM enhances its holding force of BLMA by over 1000 times. To underscore the superior capabilities of the BLMA, diverse applications, such as a complex two-dimensional plane actuator, a stepper motor with adjustable step intervals, a phase transition-controlled relay, and a laser code lock actuation gate set, are presented. It is anticipated that the exceptional characteristics of the BLMA will propel advancements in the realms of soft robotics and mechatronics.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 10","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400231","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141669148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal Effects on Monolithic 3D Ferroelectric Transistors for Deep Neural Networks Performance 热效应对单片 3D 铁电晶体管深度神经网络性能的影响
IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-07-03 DOI: 10.1002/aisy.202400019
Shubham Kumar, Yogesh Singh Chauhan, Hussam Amrouch

Monolithic three-dimensional (M3D) integration advances integrated circuits by enhancing density and energy efficiency. Ferroelectric thin-film transistors (Fe-TFTs) attract attention for neuromorphic computing and back-end-of-the-line (BEOL) compatibility. However, M3D faces challenges like increased runtime temperatures due to limited heat dissipation, impacting system reliability. This work demonstrates the effect of temperature impact on single-gate (SG) Fe-TFT reliability. SG Fe-TFTs have limitations such as read-disturbance and small memory windows, constraining their use. To mitigate these, dual-gate (DG) Fe-TFTs are modeled using technology computer-aided design, comparing their performance. Compute-in-memory (CIM) architectures with SG and DG Fe-TFTs are investigated for deep neural networks (DNN) accelerators, revealing heat's detrimental effect on reliability and inference accuracy. DG Fe-TFTs exhibit about 4.6x higher throughput than SG Fe-TFTs. Additionally, thermal effects within the simulated M3D architecture are analyzed, noting reduced DNN accuracy to 81.11% and 67.85% for SG and DG Fe-TFTs, respectively. Furthermore, various cooling methods and their impact on CIM system temperature are demonstrated, offering insights for efficient thermal management strategies.

单片三维(M3D)集成通过提高密度和能效推动了集成电路的发展。铁电薄膜晶体管(Fe-TFT)因其神经形态计算和后端(BEOL)兼容性而备受关注。然而,M3D 面临着一些挑战,如由于散热受限而导致运行时温度升高,影响系统可靠性。这项工作展示了温度对单栅(SG)Fe-TFT 可靠性的影响。SG Fe-TFT 具有读取干扰和内存窗口小等局限性,限制了其使用。为了缓解这些问题,我们使用计算机辅助设计技术对双栅(DG)Fe-TFT 进行了建模,并对其性能进行了比较。针对深度神经网络(DNN)加速器,研究了采用 SG 和 DG Fe-TFT 的内存计算(CIM)架构,揭示了热量对可靠性和推理准确性的不利影响。DG Fe-TFT 的吞吐量比 SG Fe-TFT 高出约 4.6 倍。此外,还分析了模拟 M3D 架构的热效应,发现 SG 和 DG Fe-TFT 的 DNN 精确度分别降低到 81.11% 和 67.85%。此外,还展示了各种冷却方法及其对 CIM 系统温度的影响,为高效热管理策略提供了启示。
{"title":"Thermal Effects on Monolithic 3D Ferroelectric Transistors for Deep Neural Networks Performance","authors":"Shubham Kumar,&nbsp;Yogesh Singh Chauhan,&nbsp;Hussam Amrouch","doi":"10.1002/aisy.202400019","DOIUrl":"10.1002/aisy.202400019","url":null,"abstract":"<p>Monolithic three-dimensional (M3D) integration advances integrated circuits by enhancing density and energy efficiency. Ferroelectric thin-film transistors (Fe-TFTs) attract attention for neuromorphic computing and back-end-of-the-line (BEOL) compatibility. However, M3D faces challenges like increased runtime temperatures due to limited heat dissipation, impacting system reliability. This work demonstrates the effect of temperature impact on single-gate (SG) Fe-TFT reliability. SG Fe-TFTs have limitations such as read-disturbance and small memory windows, constraining their use. To mitigate these, dual-gate (DG) Fe-TFTs are modeled using technology computer-aided design, comparing their performance. Compute-in-memory (CIM) architectures with SG and DG Fe-TFTs are investigated for deep neural networks (DNN) accelerators, revealing heat's detrimental effect on reliability and inference accuracy. DG Fe-TFTs exhibit about 4.6x higher throughput than SG Fe-TFTs. Additionally, thermal effects within the simulated M3D architecture are analyzed, noting reduced DNN accuracy to 81.11% and 67.85% for SG and DG Fe-TFTs, respectively. Furthermore, various cooling methods and their impact on CIM system temperature are demonstrated, offering insights for efficient thermal management strategies.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 8","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141680984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hardware Implementation of Next Generation Reservoir Computing with RRAM-Based Hybrid Digital-Analog System 利用基于 RRAM 的数模混合系统实现下一代储层计算的硬件实现
IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-07-03 DOI: 10.1002/aisy.202400098
Danian Dong, Woyu Zhang, Yuanlu Xie, Jinshan Yue, Kuan Ren, Hongjian Huang, Xu Zheng, Wen Xuan Sun, Jin Ru Lai, Shaoyang Fan, Hongzhou Wang, Zhaoan Yu, Zhihong Yao, Xiaoxin Xu, Dashan Shang, Ming Liu

Reservoir computing (RC) possesses a simple architecture and high energy efficiency for time-series data analysis through machine learning algorithms. To date, RC has evolved into several innovative variants. The next generation reservoir computing (NGRC) variant, founded on nonlinear vector autoregression (NVAR) distinguishes itself due to its fewer hyperparameters and independence from physical random connection matrices, while yielding comparable results. However, NGRC networks struggle with massive Kronecker product calculations and matrix-vector multiplications within the read out layer, leading to substantial efficiency challenges for traditional von Neumann architectures. In this work, a hybrid digital-analog hardware system tailored for NGRC is developed. The digital part is a Kronecker product calculation unit with data filtering, which realizes transformation of nonlinear vector of the input linear vector. For matrix-vector multiplication, a computing-in-memory architecture based on resistive random access memory array offers an energy-efficient hardware solution, which markedly reduces data transfer and greatly improve computational parallelism and energy efficiency. The predictive capabilities of this hybrid NGRC system are validated through the Lorenz63 model, achieving a normalized root mean square error (NRMSE) of 0.00098 and an energy efficiency of 19.42TOPS W−1.

储层计算(RC)架构简单、能效高,可通过机器学习算法进行时间序列数据分析。迄今为止,储层计算已发展出多种创新变体。下一代水库计算(NGRC)变体建立在非线性向量自回归(NVAR)的基础上,由于超参数较少,且独立于物理随机连接矩阵,因而与众不同,同时还能产生类似的结果。然而,NGRC 网络在读出层中需要进行大量的 Kronecker 乘积计算和矩阵向量乘法,这给传统的冯-诺依曼架构带来了巨大的效率挑战。在这项工作中,开发了一种专为 NGRC 量身定制的数模混合硬件系统。数字部分是一个带有数据滤波功能的克朗克乘积计算单元,它实现了输入线性矢量的非线性矢量转换。对于矩阵-矢量乘法,基于电阻随机存取存储器阵列的内存计算架构提供了一种高能效的硬件解决方案,显著减少了数据传输,大大提高了计算的并行性和能效。通过 Lorenz63 模型验证了这种混合 NGRC 系统的预测能力,其归一化均方根误差(NRMSE)为 0.00098,能效为 19.42TOPS W-1。
{"title":"Hardware Implementation of Next Generation Reservoir Computing with RRAM-Based Hybrid Digital-Analog System","authors":"Danian Dong,&nbsp;Woyu Zhang,&nbsp;Yuanlu Xie,&nbsp;Jinshan Yue,&nbsp;Kuan Ren,&nbsp;Hongjian Huang,&nbsp;Xu Zheng,&nbsp;Wen Xuan Sun,&nbsp;Jin Ru Lai,&nbsp;Shaoyang Fan,&nbsp;Hongzhou Wang,&nbsp;Zhaoan Yu,&nbsp;Zhihong Yao,&nbsp;Xiaoxin Xu,&nbsp;Dashan Shang,&nbsp;Ming Liu","doi":"10.1002/aisy.202400098","DOIUrl":"10.1002/aisy.202400098","url":null,"abstract":"<p>Reservoir computing (RC) possesses a simple architecture and high energy efficiency for time-series data analysis through machine learning algorithms. To date, RC has evolved into several innovative variants. The next generation reservoir computing (NGRC) variant, founded on nonlinear vector autoregression (NVAR) distinguishes itself due to its fewer hyperparameters and independence from physical random connection matrices, while yielding comparable results. However, NGRC networks struggle with massive Kronecker product calculations and matrix-vector multiplications within the read out layer, leading to substantial efficiency challenges for traditional von Neumann architectures. In this work, a hybrid digital-analog hardware system tailored for NGRC is developed. The digital part is a Kronecker product calculation unit with data filtering, which realizes transformation of nonlinear vector of the input linear vector. For matrix-vector multiplication, a computing-in-memory architecture based on resistive random access memory array offers an energy-efficient hardware solution, which markedly reduces data transfer and greatly improve computational parallelism and energy efficiency. The predictive capabilities of this hybrid NGRC system are validated through the Lorenz63 model, achieving a normalized root mean square error (NRMSE) of 0.00098 and an energy efficiency of 19.42TOPS W<sup>−1</sup>.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 10","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400098","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141683671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic Regulation in Supply Chains and Production Systems 供应链和生产系统中的仿生调节
IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-07-03 DOI: 10.1002/aisy.202400049
Marc Thielen, Niclas Trube, Johannes M. Schneider, Malte von Ramin

The production industry is challenged to become more flexible and efficient while coping with a variety of disruptive events, such as natural disasters, infrastructure blockages, or economic crises. From the individual station on a production line to the global supply chain, everything is connected, making regulation and control a complex task. Biological molecular processes, such as the metabolism of living organisms or the cell cycle, are also extremely complex processes that can be compared to industrial production processes, both of which involve a series of intermediate steps and products. Thanks to (self-)regulatory mechanisms that have evolved over time, these biological mechanisms are very efficient and robust in the face of perturbations. This article proposes an explanatory representation of these complex processes, considering both biological and technical aspects. The aim is to facilitate biomimetic transfer of biological regulation mechanisms into the technical domain. It presents concepts for biomimetic regulation of production lines and sourcing strategies and introduces a workflow for generating digital twins. This workflow is inspired by the cell cycle checkpoints, which ensure that only perfect copies of DNA are passed on during cell replication. By leveraging this understanding, the production industry can potentially improve its own processes and efficiency.

在应对自然灾害、基础设施堵塞或经济危机等各种破坏性事件的同时,生产行业面临着提高灵活性和效率的挑战。从生产线上的单个工位到全球供应链,一切都是相互关联的,这使得监管和控制成为一项复杂的任务。生物分子过程,如生物体的新陈代谢或细胞周期,也是极其复杂的过程,可与工业生产过程相提并论,两者都涉及一系列中间步骤和产品。得益于长期演化的(自我)调控机制,这些生物机制在面对干扰时非常高效和稳健。本文从生物和技术两个方面,对这些复杂的过程提出了解释性的表述。其目的是促进生物调控机制向技术领域的仿生转移。文章提出了对生产线和采购策略进行生物仿真调节的概念,并介绍了生成数字孪生的工作流程。这一工作流程受到细胞周期检查点的启发,细胞周期检查点可确保在细胞复制过程中只传递完美的 DNA 副本。利用这一认识,生产行业有可能改进自身的流程和效率。
{"title":"Biomimetic Regulation in Supply Chains and Production Systems","authors":"Marc Thielen,&nbsp;Niclas Trube,&nbsp;Johannes M. Schneider,&nbsp;Malte von Ramin","doi":"10.1002/aisy.202400049","DOIUrl":"10.1002/aisy.202400049","url":null,"abstract":"<p>The production industry is challenged to become more flexible and efficient while coping with a variety of disruptive events, such as natural disasters, infrastructure blockages, or economic crises. From the individual station on a production line to the global supply chain, everything is connected, making regulation and control a complex task. Biological molecular processes, such as the metabolism of living organisms or the cell cycle, are also extremely complex processes that can be compared to industrial production processes, both of which involve a series of intermediate steps and products. Thanks to (self-)regulatory mechanisms that have evolved over time, these biological mechanisms are very efficient and robust in the face of perturbations. This article proposes an explanatory representation of these complex processes, considering both biological and technical aspects. The aim is to facilitate biomimetic transfer of biological regulation mechanisms into the technical domain. It presents concepts for biomimetic regulation of production lines and sourcing strategies and introduces a workflow for generating digital twins. This workflow is inspired by the cell cycle checkpoints, which ensure that only perfect copies of DNA are passed on during cell replication. By leveraging this understanding, the production industry can potentially improve its own processes and efficiency.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 9","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400049","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141684059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Performance Textile-Based Capacitive Strain Sensors via Enhanced Vapor Phase Polymerization of Pyrrole and Their Application to Machine Learning-Assisted Hand Gesture Recognition 通过增强吡咯气相聚合的高性能纺织品电容式应变传感器及其在机器学习辅助手势识别中的应用
IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-07-03 DOI: 10.1002/aisy.202400292
Pierre Kateb, Alice Fornaciari, Chakaveh Ahmadizadeh, Alexander Shokurov, Fabio Cicoira, Carlo Menon

Sensors based on everyday textiles are extremely promising for wearable applications. The present work focuses on high-performance textile-based capacitive strain sensors. Specifically, a conductive textile is obtained via vapor-phase polymerization of pyrrole, in which the usage of methanol co-vapor and the addition of imidazole to the iron chloride oxidant solution are shown to maximize conductivity. A technique to provide insulation and mechanical resistance using thermoplastic polyurethane and polystyrene-block-polyisoprene-block-polystyrene/barium titanate composite is developed. Such insulated conductive elastics are then used to fabricate highly sensitive twisted yarn capacitive sensors. A textile glove is subsequently embedded with such sensors. The wireless measurement and transmission system demonstrate efficacy in capturing capacitance variations upon strain and monitoring hand motions. A machine learning model to recognize 12 gestures is implemented—100% classification accuracy is obtained.

基于日常纺织品的传感器在可穿戴应用中大有可为。本研究的重点是基于纺织品的高性能电容式应变传感器。具体来说,通过吡咯的气相聚合作用获得了导电纺织品,在此过程中,使用甲醇共蒸气和在氯化铁氧化剂溶液中添加咪唑可最大限度地提高导电性。利用热塑性聚氨酯和聚苯乙烯-块状-聚异戊二烯-块状-聚苯乙烯/钛酸钡复合材料,开发了一种提供绝缘和机械阻力的技术。这种绝缘导电弹性体随后被用于制造高灵敏度的捻线电容式传感器。随后,在纺织手套中嵌入了这种传感器。无线测量和传输系统在捕捉应变时的电容变化和监测手部动作方面表现出了功效。该系统采用机器学习模型来识别 12 种手势,分类准确率达到 100%。
{"title":"High-Performance Textile-Based Capacitive Strain Sensors via Enhanced Vapor Phase Polymerization of Pyrrole and Their Application to Machine Learning-Assisted Hand Gesture Recognition","authors":"Pierre Kateb,&nbsp;Alice Fornaciari,&nbsp;Chakaveh Ahmadizadeh,&nbsp;Alexander Shokurov,&nbsp;Fabio Cicoira,&nbsp;Carlo Menon","doi":"10.1002/aisy.202400292","DOIUrl":"10.1002/aisy.202400292","url":null,"abstract":"<p>\u0000Sensors based on everyday textiles are extremely promising for wearable applications. The present work focuses on high-performance textile-based capacitive strain sensors. Specifically, a conductive textile is obtained via vapor-phase polymerization of pyrrole, in which the usage of methanol co-vapor and the addition of imidazole to the iron chloride oxidant solution are shown to maximize conductivity. A technique to provide insulation and mechanical resistance using thermoplastic polyurethane and polystyrene-block-polyisoprene-block-polystyrene/barium titanate composite is developed. Such insulated conductive elastics are then used to fabricate highly sensitive twisted yarn capacitive sensors. A textile glove is subsequently embedded with such sensors. The wireless measurement and transmission system demonstrate efficacy in capturing capacitance variations upon strain and monitoring hand motions. A machine learning model to recognize 12 gestures is implemented—100% classification accuracy is obtained.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 11","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400292","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141681439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vision-Based Online Key Point Estimation of Deformable Robots 基于视觉的可变形机器人在线关键点估计
IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-07-03 DOI: 10.1002/aisy.202400105
Hehui Zheng, Sebastian Pinzello, Barnabas Gavin Cangan, Thomas J. K. Buchner, Robert K. Katzschmann

The precise control of soft and continuum robots requires knowledge of their shape, which has, in contrast to classical rigid robots, infinite degrees of freedom. To partially reconstruct the shape, proprioceptive techniques use built-in sensors, resulting in inaccurate results and increased fabrication complexity. Exteroceptive methods so far rely on expensive tracking systems with reflective markers placed on all components, which are infeasible for deformable robots interacting with the environment due to marker occlusion and damage. Here, a regression approach is presented for three-dimensional key point estimation using a convolutional neural network. The proposed approach uses data-driven supervised learning and is capable of online markerless estimation during inference. Two images of a robotic system are captured simultaneously at 25 Hz from different perspectives and fed to the network, which returns for each pair the parameterized key point or piecewise constant curvature shape representations. The proposed approach outperforms markerless state-of-the-art methods by a maximum of 4.5% in estimation accuracy while being more robust and requiring no prior knowledge of the shape. Online evaluations on two types of soft robotic arms and a soft robotic fish demonstrate the method's accuracy and versatility on highly deformable systems.

要精确控制软体和连续机器人,就必须了解它们的形状,与传统的刚性机器人相比,它们具有无限的自由度。为部分重建形状,本体感觉技术使用内置传感器,但结果不准确,且增加了制造复杂性。迄今为止,外感知方法依赖于昂贵的跟踪系统,该系统在所有部件上都放置了反射标记,但由于标记遮挡和损坏,对于与环境交互的可变形机器人来说,这种方法是不可行的。本文介绍了一种利用卷积神经网络进行三维关键点估计的回归方法。该方法采用数据驱动的监督学习,能够在推理过程中进行无标记在线估计。以 25 Hz 的频率从不同角度同时捕捉机器人系统的两幅图像,并将其输入网络,网络会返回每对图像的参数化关键点或片断恒定曲率形状表示。所提出的方法在估计准确度方面比最先进的无标记方法高出最多 4.5%,同时更加稳健,而且不需要预先了解形状。在两种软机械臂和一种软机械鱼上进行的在线评估证明了该方法在高变形系统上的准确性和通用性。
{"title":"Vision-Based Online Key Point Estimation of Deformable Robots","authors":"Hehui Zheng,&nbsp;Sebastian Pinzello,&nbsp;Barnabas Gavin Cangan,&nbsp;Thomas J. K. Buchner,&nbsp;Robert K. Katzschmann","doi":"10.1002/aisy.202400105","DOIUrl":"10.1002/aisy.202400105","url":null,"abstract":"<p>The precise control of soft and continuum robots requires knowledge of their shape, which has, in contrast to classical rigid robots, infinite degrees of freedom. To partially reconstruct the shape, proprioceptive techniques use built-in sensors, resulting in inaccurate results and increased fabrication complexity. Exteroceptive methods so far rely on expensive tracking systems with reflective markers placed on all components, which are infeasible for deformable robots interacting with the environment due to marker occlusion and damage. Here, a regression approach is presented for three-dimensional key point estimation using a convolutional neural network. The proposed approach uses data-driven supervised learning and is capable of online markerless estimation during inference. Two images of a robotic system are captured simultaneously at 25 Hz from different perspectives and fed to the network, which returns for each pair the parameterized key point or piecewise constant curvature shape representations. The proposed approach outperforms markerless state-of-the-art methods by a maximum of 4.5% in estimation accuracy while being more robust and requiring no prior knowledge of the shape. Online evaluations on two types of soft robotic arms and a soft robotic fish demonstrate the method's accuracy and versatility on highly deformable systems.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 10","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400105","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141681144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Wireless Drive and Control Method for Robots: Multifrequency Microwaves 机器人的无线驱动和控制方法:多频微波
IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-07-03 DOI: 10.1002/aisy.202400132
Yongze Li, Jianyu Wu, Lijun Zhao, Zhiguang Xing, Jianwen Zhao

Microwave (MW)-driven strategies could potentially offer transmissivity through obstacles, selective energization, wave-focusing, and nonmechanical steering via phased-array technologies, which have unique application prospects in confined environments. Implementing multidegree of freedom (MDOF) control is the key to developing motion strategies for advanced MW-driven robots. However, the use of MWs for MDOF control of robots has so far remained a challenge. This article first presents examples of wireless driving and controlling millimeter-scale peristaltic pipeline robots (diameter, 4 mm; length, 30 mm; weight, 0.39 g) utilizing multifrequency MWs in complex nonmetal channel environments. Herein, shape memory alloy springs combined with passive wires, whose length depends on the frequencies of MWs, are adopted to form selectively controlled robot components, and silicon rubber replica technology is utilized to achieve miniaturization of the robot. The monopole antenna model is developed for the actuator, and its structure is refined using antenna theory. This allows the successfully achievement of MDOF control of the robot at several MW frequencies (2.4, 4, and 5.9 GHz). Powered by MWs from outside the pipe, the pipeline robot achieves horizontal, vertical, and curved motions in a pipe with a diameter of 5 mm.

微波(MW)驱动策略有可能通过相控阵技术提供穿透障碍物、选择性通电、波聚焦和非机械转向等功能,在狭窄环境中具有独特的应用前景。实现多自由度(MDOF)控制是为先进的微波驱动机器人开发运动策略的关键。然而,利用无线射频对机器人进行多自由度控制至今仍是一项挑战。本文首先介绍了在复杂的非金属通道环境中利用多频微波无线驱动和控制毫米级蠕动管道机器人(直径 4 毫米;长度 30 毫米;重量 0.39 克)的实例。在这里,采用形状记忆合金弹簧与无源导线(其长度取决于微波的频率)相结合,形成选择性控制机器人组件,并利用硅橡胶复制技术实现机器人的小型化。为致动器建立了单极天线模型,并利用天线理论完善了其结构。这使得机器人能够在多个兆赫频率(2.4、4 和 5.9 GHz)下成功实现 MDOF 控制。管道机器人由管道外的兆瓦提供动力,在直径为 5 毫米的管道中实现水平、垂直和弯曲运动。
{"title":"A Wireless Drive and Control Method for Robots: Multifrequency Microwaves","authors":"Yongze Li,&nbsp;Jianyu Wu,&nbsp;Lijun Zhao,&nbsp;Zhiguang Xing,&nbsp;Jianwen Zhao","doi":"10.1002/aisy.202400132","DOIUrl":"10.1002/aisy.202400132","url":null,"abstract":"<p>Microwave (MW)-driven strategies could potentially offer transmissivity through obstacles, selective energization, wave-focusing, and nonmechanical steering via phased-array technologies, which have unique application prospects in confined environments. Implementing multidegree of freedom (MDOF) control is the key to developing motion strategies for advanced MW-driven robots. However, the use of MWs for MDOF control of robots has so far remained a challenge. This article first presents examples of wireless driving and controlling millimeter-scale peristaltic pipeline robots (diameter, 4 mm; length, 30 mm; weight, 0.39 g) utilizing multifrequency MWs in complex nonmetal channel environments. Herein, shape memory alloy springs combined with passive wires, whose length depends on the frequencies of MWs, are adopted to form selectively controlled robot components, and silicon rubber replica technology is utilized to achieve miniaturization of the robot. The monopole antenna model is developed for the actuator, and its structure is refined using antenna theory. This allows the successfully achievement of MDOF control of the robot at several MW frequencies (2.4, 4, and 5.9 GHz). Powered by MWs from outside the pipe, the pipeline robot achieves horizontal, vertical, and curved motions in a pipe with a diameter of 5 mm.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 11","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400132","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141682278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the Potential: Can Machine Learning Cluster Colorimetric Images of Cold Atmospheric Plasma Treatment? 挖掘潜力:机器学习能否聚类冷大气等离子体处理的比色图像?
IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-06-27 DOI: 10.1002/aisy.202400029
Gizem Dilara Ozdemir, Mehmet Akif Ozdemir, Mustafa Sen, Utku Kürşat Ercan

In this transformative study, machine learning (ML) and t-distributed stochastic neighbor embedding (t-SNE) are employed to interpret intricate patterns in colorimetric images of cold atmospheric plasma (CAP)-treated water. The focus is on CAP's therapeutic potential, particularly its ability to generate reactive oxygen and nitrogen species (RONS) that play a crucial role in antimicrobial activity. RGB, HSV, LAB, YCrCb, and grayscale color spaces are extracted from the colorimetric expression of oxidative stress induced by RONS, and these features are used for unsupervised ML, employing density-based spatial clustering of applications with noise (DBSCAN). The DBSCAN model's performance is evaluated using homogeneity, completeness, and adjusted rand index with a predictive data distribution graph. The best results are achieved with 3,3′,5,5′-tetramethylbenzidine–potassium iodide colorimetric assay solution immediately after plasma treatment, with values of 0.894, 0.996, and 0.826. t-SNE is further conducted for the best-case scenario to evaluate the clustering efficacy and find the best combination of features to better present the results. Correspondingly, t-SNE enhances clustering efficacy and adeptly handles challenging points. The approach pioneers dynamic and comprehensive solutions, showcasing ML's precision and t-SNE's transformative visualization. Through this innovative fusion, complex relationships are unraveled, marking a paradigm shift in biomedical analytical methodologies.

在这项变革性研究中,采用了机器学习(ML)和 t 分布随机邻域嵌入(t-SNE)来解释冷大气等离子体(CAP)处理过的水的比色图像中的复杂模式。研究重点是 CAP 的治疗潜力,尤其是其生成活性氧和氮物种 (RONS) 的能力,这种能力在抗菌活性中发挥着至关重要的作用。从 RONS 诱导的氧化应激的色度表达中提取了 RGB、HSV、LAB、YCrCb 和灰度色彩空间,并将这些特征用于无监督 ML,采用基于密度的带噪声应用空间聚类(DBSCAN)。DBSCAN 模型的性能使用同质性、完整性和调整后的兰德指数以及预测数据分布图进行评估。在血浆处理后立即使用 3,3′,5,5′-四甲基联苯胺-碘化钾比色测定溶液时,结果最佳,其值分别为 0.894、0.996 和 0.826。相应地,t-SNE 增强了聚类效果,并能巧妙地处理挑战点。这种方法开创了动态综合解决方案,展示了 ML 的精确性和 t-SNE 的变革性可视化。通过这种创新的融合,复杂的关系得以解开,标志着生物医学分析方法的范式转变。
{"title":"Unveiling the Potential: Can Machine Learning Cluster Colorimetric Images of Cold Atmospheric Plasma Treatment?","authors":"Gizem Dilara Ozdemir,&nbsp;Mehmet Akif Ozdemir,&nbsp;Mustafa Sen,&nbsp;Utku Kürşat Ercan","doi":"10.1002/aisy.202400029","DOIUrl":"https://doi.org/10.1002/aisy.202400029","url":null,"abstract":"<p>In this transformative study, machine learning (ML) and t-distributed stochastic neighbor embedding (t-SNE) are employed to interpret intricate patterns in colorimetric images of cold atmospheric plasma (CAP)-treated water. The focus is on CAP's therapeutic potential, particularly its ability to generate reactive oxygen and nitrogen species (RONS) that play a crucial role in antimicrobial activity. RGB, HSV, LAB, YCrCb, and grayscale color spaces are extracted from the colorimetric expression of oxidative stress induced by RONS, and these features are used for unsupervised ML, employing density-based spatial clustering of applications with noise (DBSCAN). The DBSCAN model's performance is evaluated using homogeneity, completeness, and adjusted rand index with a predictive data distribution graph. The best results are achieved with 3,3′,5,5′-tetramethylbenzidine–potassium iodide colorimetric assay solution immediately after plasma treatment, with values of 0.894, 0.996, and 0.826. t-SNE is further conducted for the best-case scenario to evaluate the clustering efficacy and find the best combination of features to better present the results. Correspondingly, t-SNE enhances clustering efficacy and adeptly handles challenging points. The approach pioneers dynamic and comprehensive solutions, showcasing ML's precision and t-SNE's transformative visualization. Through this innovative fusion, complex relationships are unraveled, marking a paradigm shift in biomedical analytical methodologies.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 9","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fully Additively 3D Manufactured Conductive Deformable Sensors for Pressure Sensing 用于压力传感的全快速三维制造导电可变形传感器
IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-06-27 DOI: 10.1002/aisy.202300901
Carlo Massaroni, Loy Vitali, Daniela Lo Presti, Sergio Silvestri, Emiliano Schena

Additive manufacturing technologies increasingly revolutionize current production techniques for object manufacturing. Particularly, fused deposition modeling (FDM) strongly impacts production processes by enabling the cost-effective and efficient creation of structures with complex designs and innovative geometries. The use of conductive filaments in FDM printing is paving the way for the advancement of entirely printed sensors and circuits, although this domain is still in its early stages. In this article, the design and production of bilayer deformable pressure sensors fabricated using conductive thermoplastic polyurethane are investigated. The potential to vary the mechanical and electrical characteristics of FDM-printed components by adjusting printing parameters is explored. The influence of different levels of material infill (20%, 50%, and 100%) and different contact geometries between layers (domes, pyramids, and cylinders) is studied. Electromechanical tests are carried out to characterize the sensor, applying pressures up to 22 kPa. The 3D-printed pressure sensors demonstrate tunable mechanical and electrical sensitivities at different infill values, with the highest value of −6.3 kPa−1 achieved by using a pyramid layer at 100% infill. Sensor outputs registered during cyclic tests show reproducible responses with a wide range of sensitivity, paving the way for applicability in recording both static and periodic pressure changes.

快速成型制造技术日益彻底改变了当前的物体制造技术。特别是熔融沉积建模(FDM),它能以低成本、高效率的方式制造出具有复杂设计和创新几何形状的结构,从而对生产工艺产生了重大影响。在 FDM 印刷中使用导电长丝为推进完全印刷传感器和电路铺平了道路,尽管这一领域仍处于早期阶段。本文研究了使用导电热塑性聚氨酯制造的双层可变形压力传感器的设计和生产。文章探讨了通过调整打印参数来改变 FDM 打印元件的机械和电气特性的可能性。研究了不同材料填充水平(20%、50% 和 100%)和层间不同接触几何形状(圆顶、金字塔和圆柱)的影响。为确定传感器的特性,还进行了机电测试,压力最高达 22 kPa。三维打印压力传感器在不同填充值下显示出可调的机械和电气灵敏度,其中使用填充率为 100% 的金字塔层时达到的最高值为 -6.3 kPa-1。在循环测试中记录的传感器输出显示出具有广泛灵敏度的可重现响应,为记录静态和周期性压力变化铺平了道路。
{"title":"Fully Additively 3D Manufactured Conductive Deformable Sensors for Pressure Sensing","authors":"Carlo Massaroni,&nbsp;Loy Vitali,&nbsp;Daniela Lo Presti,&nbsp;Sergio Silvestri,&nbsp;Emiliano Schena","doi":"10.1002/aisy.202300901","DOIUrl":"https://doi.org/10.1002/aisy.202300901","url":null,"abstract":"<p>Additive manufacturing technologies increasingly revolutionize current production techniques for object manufacturing. Particularly, fused deposition modeling (FDM) strongly impacts production processes by enabling the cost-effective and efficient creation of structures with complex designs and innovative geometries. The use of conductive filaments in FDM printing is paving the way for the advancement of entirely printed sensors and circuits, although this domain is still in its early stages. In this article, the design and production of bilayer deformable pressure sensors fabricated using conductive thermoplastic polyurethane are investigated. The potential to vary the mechanical and electrical characteristics of FDM-printed components by adjusting printing parameters is explored. The influence of different levels of material infill (20%, 50%, and 100%) and different contact geometries between layers (domes, pyramids, and cylinders) is studied. Electromechanical tests are carried out to characterize the sensor, applying pressures up to 22 kPa. The 3D-printed pressure sensors demonstrate tunable mechanical and electrical sensitivities at different infill values, with the highest value of −6.3 kPa<sup>−1</sup> achieved by using a pyramid layer at 100% infill. Sensor outputs registered during cyclic tests show reproducible responses with a wide range of sensitivity, paving the way for applicability in recording both static and periodic pressure changes.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 8","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202300901","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Picotaur: A 15 mg Hexapedal Robot with Electrostatically Driven, 3D-Printed Legs Picotaur:15 毫克六面体机器人,带静电驱动的 3D 打印腿
IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-06-27 DOI: 10.1002/aisy.202400196
Sukjun Kim, Aaron M. Johnson, Sarah Bergbreiter

Dynamic and agile locomotion in legged robots enables them to overcome obstacles and navigate complex and unstructured terrain. However, the leg mechanisms and actuators needed for versatile locomotion are much more challenging to manufacture and integrate in sub-gram scale robots. Herein, Picotaur, a 15.4 mg hexapedal robot with legs that enable various locomotion tasks such as turning, climbing 3D-printed stairs, and pushing loads for the first time at these size scales, is presented. 3D printing with two-photon polymerization enables the manufacture of electrostatically driven 2 degrees of freedom legs on a robot body made from a flexible printed circuit board. Based on simple control inputs, Picotaur can achieve alternating tripod gaits, reaching speeds up to 57 mm (7.2 body lengths) per second, as well as pronking gaits to tackle a wider variety of terrain. This approach to manufacturing and controlling legged robots at smaller scales provides a path forward toward robots that can be used for practical applications ranging from inspection to exploration and rival the performance of insects at similar size scales.

腿部机器人的动态和敏捷运动使其能够克服障碍,并在复杂和非结构化的地形中航行。然而,在亚克级机器人中制造和集成多功能运动所需的腿部机构和致动器却具有很大的挑战性。本文介绍的 Picotaur 是一种 15.4 毫克的六面体机器人,它的腿部可实现各种运动任务,如转弯、攀爬 3D 打印楼梯和推动负载等,这在这些尺寸尺度的机器人中尚属首次。利用双光子聚合技术进行三维打印,可以在柔性印刷电路板制成的机器人身体上制造出静电驱动的双自由度腿。只需简单的控制输入,Picotaur 就能实现交替的三脚架步态,速度可达每秒 57 毫米(7.2 个体长),还能实现发音步态,以应对更多地形。这种以较小尺度制造和控制有腿机器人的方法,为机器人提供了一条前进的道路,使其可以用于从检查到探索的各种实际应用,其性能可以与具有类似大小尺度的昆虫相媲美。
{"title":"Picotaur: A 15 mg Hexapedal Robot with Electrostatically Driven, 3D-Printed Legs","authors":"Sukjun Kim,&nbsp;Aaron M. Johnson,&nbsp;Sarah Bergbreiter","doi":"10.1002/aisy.202400196","DOIUrl":"https://doi.org/10.1002/aisy.202400196","url":null,"abstract":"<p>Dynamic and agile locomotion in legged robots enables them to overcome obstacles and navigate complex and unstructured terrain. However, the leg mechanisms and actuators needed for versatile locomotion are much more challenging to manufacture and integrate in sub-gram scale robots. Herein, Picotaur, a 15.4 mg hexapedal robot with legs that enable various locomotion tasks such as turning, climbing 3D-printed stairs, and pushing loads for the first time at these size scales, is presented. 3D printing with two-photon polymerization enables the manufacture of electrostatically driven 2 degrees of freedom legs on a robot body made from a flexible printed circuit board. Based on simple control inputs, Picotaur can achieve alternating tripod gaits, reaching speeds up to 57 mm (7.2 body lengths) per second, as well as pronking gaits to tackle a wider variety of terrain. This approach to manufacturing and controlling legged robots at smaller scales provides a path forward toward robots that can be used for practical applications ranging from inspection to exploration and rival the performance of insects at similar size scales.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 10","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400196","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1