Pub Date : 2017-03-01DOI: 10.4172/2161-0398.1000241
B. Moumni, A. B. Jaballah
In this work, a correlation between oxidant concentration and the morphological changes of silicon nanowires formed by a two-step silver-assist electroless etching method is established. It reveals that a textured silicon surface appears for samples etched at relatively H2O2 concentration lower than 2%. However, The dynamic and kinetics of silicon nanowires for different H2O2 concentration (5%, 7% and 8%) are studied by scanning electron microscopy. We found that the thickness of etched silicon nanowires as a function of time fallows a linear law. The length of silicon nanowires is not only H2O2 concentration dependent but a critical is necessary to overcome length saturation. We prove also that the oxidation rate of silicon facing Ag particles can limit the dynamic of wire formation, due to the generation of silicon hexafluoride ion (SiF6)2-.
{"title":"Correlation Between Oxidant Concentration and Morphological Properties of Silicon Nanowires Obtained by Silver-Assist Electroless Etching","authors":"B. Moumni, A. B. Jaballah","doi":"10.4172/2161-0398.1000241","DOIUrl":"https://doi.org/10.4172/2161-0398.1000241","url":null,"abstract":"In this work, a correlation between oxidant concentration and the morphological changes of silicon nanowires formed by a two-step silver-assist electroless etching method is established. It reveals that a textured silicon surface appears for samples etched at relatively H2O2 concentration lower than 2%. However, The dynamic and kinetics of silicon nanowires for different H2O2 concentration (5%, 7% and 8%) are studied by scanning electron microscopy. We found that the thickness of etched silicon nanowires as a function of time fallows a linear law. The length of silicon nanowires is not only H2O2 concentration dependent but a critical is necessary to overcome length saturation. We prove also that the oxidation rate of silicon facing Ag particles can limit the dynamic of wire formation, due to the generation of silicon hexafluoride ion (SiF6)2-.","PeriodicalId":94103,"journal":{"name":"Journal of physical chemistry & biophysics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83565400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-22DOI: 10.4172/2161-0398.1000237
S. ShabirBhat, P. Masih, Aziz Mk, A. A.A.
In this paper, an effort has been made to study the isotope coefficient in high TC Superconductors by using the variation of isotopic coefficient with the number of CuO2 layers and the variation of isotope coefficients on transition temperature TC . The Hamiltonian for CuO2 layers using BCS type model and extra term of interlayer interaction between CuO2 layers has been considered. Expressions for isotope effect (α) and transition temperature (TC) are obtained and numerically calculated for experimental values by using Green’s function technique.
{"title":"Variation of Isotope Coefficient with Number of CuO2 Layers in High TC Superconductors","authors":"S. ShabirBhat, P. Masih, Aziz Mk, A. A.A.","doi":"10.4172/2161-0398.1000237","DOIUrl":"https://doi.org/10.4172/2161-0398.1000237","url":null,"abstract":"In this paper, an effort has been made to study the isotope coefficient in high TC Superconductors by using the variation of isotopic coefficient with the number of CuO2 layers and the variation of isotope coefficients on transition temperature TC . The Hamiltonian for CuO2 layers using BCS type model and extra term of interlayer interaction between CuO2 layers has been considered. Expressions for isotope effect (α) and transition temperature (TC) are obtained and numerically calculated for experimental values by using Green’s function technique.","PeriodicalId":94103,"journal":{"name":"Journal of physical chemistry & biophysics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77261215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-22DOI: 10.4172/2161-0398.1000236
Kouadri Boudjelthia W, Hammadi K, Kouidri M, Djebli N
This work is part of the valorisation of the methanolic extract and aqueous solutions of Berberis vulgaris and Zygophyllum geslini as antidiabetic plants; widely used in Algeria and more specifically in the region of the West as a remedy for diabetes. The method applied to measure the antioxidant activity is that of trapping of free radicals to the help of DPPH after quantified the total polyphenols revealing an important content with a powerful antioxidant activity in which the percentage of inhibition radical is of (83.71%), (55.35%), (88.22%) and (75.89%) for 2 mg/l of the methanolic extracts and in aqueous of the two plants respectively. While it has been advocated to the test of the α-amylase in vitro for the assessment of the effect antihyperglycemic agent, the results obtained revealed a capacity of remarkable inhibition on the activity of the enzyme with a slight peak for the methanolic extracts of Berberis vulgaris (89.81%).
{"title":"Evaluation of Antidiabetic Activity of Two Plants Berberis vulgaris and Zygophyllum geslini","authors":"Kouadri Boudjelthia W, Hammadi K, Kouidri M, Djebli N","doi":"10.4172/2161-0398.1000236","DOIUrl":"https://doi.org/10.4172/2161-0398.1000236","url":null,"abstract":"This work is part of the valorisation of the methanolic extract and aqueous solutions of Berberis vulgaris and Zygophyllum geslini as antidiabetic plants; widely used in Algeria and more specifically in the region of the West as a remedy for diabetes. The method applied to measure the antioxidant activity is that of trapping of free radicals to the help of DPPH after quantified the total polyphenols revealing an important content with a powerful antioxidant activity in which the percentage of inhibition radical is of (83.71%), (55.35%), (88.22%) and (75.89%) for 2 mg/l of the methanolic extracts and in aqueous of the two plants respectively. While it has been advocated to the test of the α-amylase in vitro for the assessment of the effect antihyperglycemic agent, the results obtained revealed a capacity of remarkable inhibition on the activity of the enzyme with a slight peak for the methanolic extracts of Berberis vulgaris (89.81%).","PeriodicalId":94103,"journal":{"name":"Journal of physical chemistry & biophysics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81554726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-10DOI: 10.4172/2161-0398.1000235
J. Otsuka
Although the life has been a mystery for most physicists since the problem of Maxwell's demon, this mystery is resolved by considering the following characteristics of an organism; the self-reproduction by taking material and energy sources from the outside on the basis of its genetic information, and the selection of self-reproduced organisms to maintain and further improve the genetic information. According to the knowledge of molecular biology revealed recently, the molecular route to accomplish the self-reproduction is evaluated energetically, and a new thermodynamic quantity of biological activity is proposed for characterizing the state of an organism in terms of acquired energy, stored energy and systematization. This quantity is not only compatible with the law of thermodynamics but also reflects the changes in genome and in the mode of gene expression. Thus, the biological activity becomes a useful measure for analyzing various biological phenomena quantitatively. This is illustrated for the large-scale evolution by generating new genes from gene duplication and for the estimation of the energy required for the development of a multicellular organism. The origin of life is also discussed from the aspect of biological activity and the extended view of evolution.
{"title":"The Concept of Biological Activity and Its Application to Biological Phenomena","authors":"J. Otsuka","doi":"10.4172/2161-0398.1000235","DOIUrl":"https://doi.org/10.4172/2161-0398.1000235","url":null,"abstract":"Although the life has been a mystery for most physicists since the problem of Maxwell's demon, this mystery is resolved by considering the following characteristics of an organism; the self-reproduction by taking material and energy sources from the outside on the basis of its genetic information, and the selection of self-reproduced organisms to maintain and further improve the genetic information. According to the knowledge of molecular biology revealed recently, the molecular route to accomplish the self-reproduction is evaluated energetically, and a new thermodynamic quantity of biological activity is proposed for characterizing the state of an organism in terms of acquired energy, stored energy and systematization. This quantity is not only compatible with the law of thermodynamics but also reflects the changes in genome and in the mode of gene expression. Thus, the biological activity becomes a useful measure for analyzing various biological phenomena quantitatively. This is illustrated for the large-scale evolution by generating new genes from gene duplication and for the estimation of the energy required for the development of a multicellular organism. The origin of life is also discussed from the aspect of biological activity and the extended view of evolution.","PeriodicalId":94103,"journal":{"name":"Journal of physical chemistry & biophysics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84622630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.4172/2161-0398.1000227
J. Donnelly, Hernández Fe
The exact mechanism of binding of (-)-trans-Δ9-tetrahydrocannabinol (the main psychoactive component of marijuana) to the cannabinoid receptor, CB1, is unknown. Conformational information of the cannabinoids may give insight to this mechanism and the elicited effects of consumption. Herein, we report on the theoretical conformational study of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), the psychoactive and a non-psychoactive compound found in marijuana, respectively, using electronic circular dichroism (ECD) and two-photon circular dichroism (TPCD). The compounds were optimized in vacuo and in the receptor site using DFT and B3LYP with the 6-311G** basis set and spectra were calculated using the same level of theory, but with the 6-311++G** basis set. First, we present and discuss the comparison of experimental and theoretical ECD spectra of (-)-trans-Δ9-THC and CBD in methanol solution in order to corroborate our theoretical approach. Second, we show, theoretically, the enhanced sensitivity of TPCD compared with ECD to conformational changes of cannabinoids upon docking, giving rise to a potential application in vivo. Finally, the comparative analysis of the theoretical TPCD spectra of Δ9-THC and CBD show distinct fingerprints in the far-UV region for two conformers of each molecule, which may help to understand the specific binding mechanisms of these species to the cannabinoid receptors and to describe the difference in psychological effects upon consumption. Our results show the complementarity of these two spectroscopic techniques and the potential of TPCD to determine the conformational changes of cannabinoids upon docking to the CB1 receptor.
{"title":"Conformational Study of Cannabinoid Docking to Cannabinoid Receptor 1 (CB1) via Linear and Nonlinear Circular Dichroism","authors":"J. Donnelly, Hernández Fe","doi":"10.4172/2161-0398.1000227","DOIUrl":"https://doi.org/10.4172/2161-0398.1000227","url":null,"abstract":"The exact mechanism of binding of (-)-trans-Δ9-tetrahydrocannabinol (the main psychoactive component of marijuana) to the cannabinoid receptor, CB1, is unknown. Conformational information of the cannabinoids may give insight to this mechanism and the elicited effects of consumption. Herein, we report on the theoretical conformational study of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), the psychoactive and a non-psychoactive compound found in marijuana, respectively, using electronic circular dichroism (ECD) and two-photon circular dichroism (TPCD). The compounds were optimized in vacuo and in the receptor site using DFT and B3LYP with the 6-311G** basis set and spectra were calculated using the same level of theory, but with the 6-311++G** basis set. First, we present and discuss the comparison of experimental and theoretical ECD spectra of (-)-trans-Δ9-THC and CBD in methanol solution in order to corroborate our theoretical approach. Second, we show, theoretically, the enhanced sensitivity of TPCD compared with ECD to conformational changes of cannabinoids upon docking, giving rise to a potential application in vivo. Finally, the comparative analysis of the theoretical TPCD spectra of Δ9-THC and CBD show distinct fingerprints in the far-UV region for two conformers of each molecule, which may help to understand the specific binding mechanisms of these species to the cannabinoid receptors and to describe the difference in psychological effects upon consumption. Our results show the complementarity of these two spectroscopic techniques and the potential of TPCD to determine the conformational changes of cannabinoids upon docking to the CB1 receptor.","PeriodicalId":94103,"journal":{"name":"Journal of physical chemistry & biophysics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79985649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.4172/2161-0398.1000228
J. Zhang, G. Chen, X. Gong
Recent theoretical studies have identified carbon-nitrogen cages are potentially stable high energy density materials. Two such C6N6H12 cages were proposed and investigated using the density functional theory comparison with two similar common cage compounds hexaazaisowurtzitane and cubane. The structure and energetic property were researched. Stability is approached in two ways: (1) stability of one isomer versus another based on the relative energy, (2) thermal stability determined by the bond breaking energies. Taking into consideration of the stability and detonation performance, two C6N6H12 cages may be candidate as potential high energy density compounds.
{"title":"Theoretical Insight into the Structure, Energetic Property and Thermal Stability of C6N6H12 Cages","authors":"J. Zhang, G. Chen, X. Gong","doi":"10.4172/2161-0398.1000228","DOIUrl":"https://doi.org/10.4172/2161-0398.1000228","url":null,"abstract":"Recent theoretical studies have identified carbon-nitrogen cages are potentially stable high energy density materials. Two such C6N6H12 cages were proposed and investigated using the density functional theory comparison with two similar common cage compounds hexaazaisowurtzitane and cubane. The structure and energetic property were researched. Stability is approached in two ways: (1) stability of one isomer versus another based on the relative energy, (2) thermal stability determined by the bond breaking energies. Taking into consideration of the stability and detonation performance, two C6N6H12 cages may be candidate as potential high energy density compounds.","PeriodicalId":94103,"journal":{"name":"Journal of physical chemistry & biophysics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84333871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.4172/2161-0398.1000242
L. Zhong, Heng-Li Tong, Z. Meng, Huan Xi, Q. Gong
Context: All Chinese herbal medicines should be processed before they are used in clinics offering Traditional Chinese Medicine (TCM). Ginger juice is one of the process assistants and a widely-applied agent in processing many herbal medicines. Objective: In this study, the ginger juice was investigated with its processing mechanism according to its common processing function on herbal medicines, which included Rhizoma pinelliae (RP, the tuber of Pinellia ternata (Thunb.) Breit.), officinal magnolia bark (OMB, the root bark of Coptis chinensis Franch.), and Rhizoma coptidis (RC, the rhizoma of Magnolia officinalis Rehd. et Wils). Materials and Methods: The composition, especially the essential oil, of the raw ingredients and ginger juiceprocessed products and their gastrointestinal effect on model rats with functional dyspepsia (FD) were compared, the relationship between the changes of composition and pharmaceutical effects was analysed. Results: The gastric residue rate of the rats in the drug-treated group was significantly lower than in the control group (P<0.05), while the intestinal propulsive rates were markedly higher (P<0.05). The motilin and gastrin level in serum of the drug-treated groups had significantly increased (P<0.05) compared with the control group. Compared with the raw product group, there was an apparent reduction in gastric residual rate for ginger juice processed Rhizoma Pinelliae (GJRP)and ginger juice processed Rhizoma Coptidis (GJRC) (P<0.05). The GJ processed products groups showed a common increase in the intestinal propulsive rate (P<0.05), the motilin level of GJRP and ginger juice processed officinal magnolia bark (GJOMB) groups was significantly increased (P<0.05) and gastrin levels of all gingerprocessed groups were significantly increased (P<0.05). Meanwhile, eight types of common components were found in ginger juice, ginger juice-processed RP, OMB, and RC, in which farnesene, nerolidol, dragosantol, and a-elemene, each with pharmacological activity showed a positive relationship with gastrointestinal function of processed drugs through Pearson’s correlation analysis. Discussion and conclusion: This work provided a better understanding of ginger juice processing mechanisms and a guide to research into the common processing features of processing assistants in Chinese herbal medicine.
背景:所有中草药在提供中医(TCM)的诊所使用之前都应该经过加工。姜汁是一种加工助剂,在许多中草药的加工中被广泛应用。目的:根据姜汁对半夏根茎(RP)、半夏块茎(Thunb)等中草药的加工作用,探讨姜汁的加工机理。白玉兰树皮(OMB, Coptis chinensis france .)和黄连(RC, magnolia officinalis Rehd.)。外星人会)。材料与方法:比较生姜原料及姜汁制品的成分,特别是精油的成分组成及其对功能性消化不良模型大鼠的胃肠作用,分析其成分变化与药理作用的关系。结果:给药组大鼠胃残率显著低于对照组(P<0.05),肠道推进率显著高于对照组(P<0.05)。与对照组相比,各药物治疗组血清胃动素、胃泌素水平均显著升高(P<0.05)。与原料组相比,半夏姜汁和黄连姜汁的胃残率均显著降低(P<0.05)。GJ制品组肠道推进率普遍升高(P<0.05), GJRP和姜汁厚朴(GJOMB)组胃动素水平显著升高(P<0.05),各姜加工组胃泌素水平均显著升高(P<0.05)。同时,在姜汁、姜汁加工的RP、OMB和RC中发现8种常见成分,其中具有药理活性的法尼烯、橙花醇、龙糖醇和a-榄香烯通过Pearson相关分析与加工药物的胃肠功能呈正相关。讨论与结论:本研究为进一步了解姜汁加工机理提供了依据,并为研究中草药加工助剂的共同加工特征提供了指导。
{"title":"The Common Features and Mechanisms of Ginger Juice Processing Technology Based on the Composition and Gastrointestinal Effects of Chinese Herbs","authors":"L. Zhong, Heng-Li Tong, Z. Meng, Huan Xi, Q. Gong","doi":"10.4172/2161-0398.1000242","DOIUrl":"https://doi.org/10.4172/2161-0398.1000242","url":null,"abstract":"Context: All Chinese herbal medicines should be processed before they are used in clinics offering Traditional Chinese Medicine (TCM). Ginger juice is one of the process assistants and a widely-applied agent in processing many herbal medicines. Objective: In this study, the ginger juice was investigated with its processing mechanism according to its common processing function on herbal medicines, which included Rhizoma pinelliae (RP, the tuber of Pinellia ternata (Thunb.) Breit.), officinal magnolia bark (OMB, the root bark of Coptis chinensis Franch.), and Rhizoma coptidis (RC, the rhizoma of Magnolia officinalis Rehd. et Wils). Materials and Methods: The composition, especially the essential oil, of the raw ingredients and ginger juiceprocessed products and their gastrointestinal effect on model rats with functional dyspepsia (FD) were compared, the relationship between the changes of composition and pharmaceutical effects was analysed. Results: The gastric residue rate of the rats in the drug-treated group was significantly lower than in the control group (P<0.05), while the intestinal propulsive rates were markedly higher (P<0.05). The motilin and gastrin level in serum of the drug-treated groups had significantly increased (P<0.05) compared with the control group. Compared with the raw product group, there was an apparent reduction in gastric residual rate for ginger juice processed Rhizoma Pinelliae (GJRP)and ginger juice processed Rhizoma Coptidis (GJRC) (P<0.05). The GJ processed products groups showed a common increase in the intestinal propulsive rate (P<0.05), the motilin level of GJRP and ginger juice processed officinal magnolia bark (GJOMB) groups was significantly increased (P<0.05) and gastrin levels of all gingerprocessed groups were significantly increased (P<0.05). Meanwhile, eight types of common components were found in ginger juice, ginger juice-processed RP, OMB, and RC, in which farnesene, nerolidol, dragosantol, and a-elemene, each with pharmacological activity showed a positive relationship with gastrointestinal function of processed drugs through Pearson’s correlation analysis. Discussion and conclusion: This work provided a better understanding of ginger juice processing mechanisms and a guide to research into the common processing features of processing assistants in Chinese herbal medicine.","PeriodicalId":94103,"journal":{"name":"Journal of physical chemistry & biophysics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82543906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.4172/2161-0398.1000250
J. Zuberek, A. Stelmachowska
eIF4E, a key factor in the cap-dependent translation initiation, binds cap structure at the 5’ end of mRNA by stacking interaction involving two of its eight conserved tryptophan residues. In this paper, we examined individual contributions of tryptophan residues to the near-UV Circular Dichroism spectra to identify structural similarities and differences in cap binding motif among members of eIF4E family. The near-UV CD spectrum of human eIF4E1a in its apo form, resulting mainly from 1Lb transition and dominated by two vibrionic bands, is conserved among eIF4Es. Based on comparison of CD spectra for eIF4E mutants, we showed that tryptophans involved in stacking interaction give strongest individual contributions, which allow identification of their different orientation with respect to the cap. This indicates that near-UV CD is a quick and powerful tool to analyse tryptophan conformation in eIF4E proteins, and their changes upon binding modified cap analogues.
{"title":"Tryptophan Residues from Cap Binding Slot in eIF4E Family Members: Their Contributions to Near-UV Circular Dichroism Spectra","authors":"J. Zuberek, A. Stelmachowska","doi":"10.4172/2161-0398.1000250","DOIUrl":"https://doi.org/10.4172/2161-0398.1000250","url":null,"abstract":"eIF4E, a key factor in the cap-dependent translation initiation, binds cap structure at the 5’ end of mRNA by stacking interaction involving two of its eight conserved tryptophan residues. In this paper, we examined individual contributions of tryptophan residues to the near-UV Circular Dichroism spectra to identify structural similarities and differences in cap binding motif among members of eIF4E family. The near-UV CD spectrum of human eIF4E1a in its apo form, resulting mainly from 1Lb transition and dominated by two vibrionic bands, is conserved among eIF4Es. Based on comparison of CD spectra for eIF4E mutants, we showed that tryptophans involved in stacking interaction give strongest individual contributions, which allow identification of their different orientation with respect to the cap. This indicates that near-UV CD is a quick and powerful tool to analyse tryptophan conformation in eIF4E proteins, and their changes upon binding modified cap analogues.","PeriodicalId":94103,"journal":{"name":"Journal of physical chemistry & biophysics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80811253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.4172/2161-0398.1000226
Tesfalem Belay Woldeamanuale
The electronic structure and geometry optimization of ferrocene and cobaltocene molecules are calculated using DFT/B3LYP with the basis set of 6-31G (d). The Eigen values, Eigen vector and population analysis of the molecules show that the first 13 molecular orbitals in ferrocene and 12 in cobaltocene have contribution from 2pz orbitals of carbon of (C5H5)- and 4s, 4p and 3d orbitals of iron and cobalt respectively. We found that the extent of involvement of metal orbitals in the two cases is different. In ferrocene the maximum involvement out of 4s and 4p orbital is in the order 4pz>4py>4s>4px and out of 3d orbitals the order of involvement is 3dyz>3dxz>3d2z>3dx2-y2>3dxy. The involvement of corresponding orbital in cobaltocene with respect to the 4s and 4p orbitals is in the order of 4s>4pz>4py>4px and in 3d orbitals the order is 3dx2-y2>3dxz>3d2z>3dx2-y2 and 4py>4px>4s>4pz molecules. The total involvement of 3d, 4s and 4porbitals of metal and 2pz orbitals of the ten carbon atoms of both ligands of (C5H5)- in ferrocene and cobaltocene respectively are 42.2528 and 40.2388 hence we can conclude that ferrocene is more stable than cobaltocene. Similar results are found from calculation of parameters like dipole moment, HOMO-LUMO gap and Mullikan charge distribution. The population analysis shows that only 2pz orbitals of carbon of (C5H5)- and 3d orbitals of metal provide electrons to MOs of ferrocene and cobaltocene.
{"title":"Density Functional Study of Molecular Orbitals of Ferrocene and Cobaltocene Molecules","authors":"Tesfalem Belay Woldeamanuale","doi":"10.4172/2161-0398.1000226","DOIUrl":"https://doi.org/10.4172/2161-0398.1000226","url":null,"abstract":"The electronic structure and geometry optimization of ferrocene and cobaltocene molecules are calculated using DFT/B3LYP with the basis set of 6-31G (d). The Eigen values, Eigen vector and population analysis of the molecules show that the first 13 molecular orbitals in ferrocene and 12 in cobaltocene have contribution from 2pz orbitals of carbon of (C5H5)- and 4s, 4p and 3d orbitals of iron and cobalt respectively. We found that the extent of involvement of metal orbitals in the two cases is different. In ferrocene the maximum involvement out of 4s and 4p orbital is in the order 4pz>4py>4s>4px and out of 3d orbitals the order of involvement is 3dyz>3dxz>3d2z>3dx2-y2>3dxy. The involvement of corresponding orbital in cobaltocene with respect to the 4s and 4p orbitals is in the order of 4s>4pz>4py>4px and in 3d orbitals the order is 3dx2-y2>3dxz>3d2z>3dx2-y2 and 4py>4px>4s>4pz molecules. The total involvement of 3d, 4s and 4porbitals of metal and 2pz orbitals of the ten carbon atoms of both ligands of (C5H5)- in ferrocene and cobaltocene respectively are 42.2528 and 40.2388 hence we can conclude that ferrocene is more stable than cobaltocene. Similar results are found from calculation of parameters like dipole moment, HOMO-LUMO gap and Mullikan charge distribution. The population analysis shows that only 2pz orbitals of carbon of (C5H5)- and 3d orbitals of metal provide electrons to MOs of ferrocene and cobaltocene.","PeriodicalId":94103,"journal":{"name":"Journal of physical chemistry & biophysics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87123825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.4172/2161-0398.1000246
Adewale A Raji, I. Ajayi, S. Khan, J. Iqbal
Diabetes mellitus is a world health problem with high mortality and morbidity due to the complications; as a result of increased level of glucose concentration. The search for new antidiabetic drugs from natural products has been on increase. Though discovery of drug is time consuming with numerous challenges, therefore, in silico screening is now being used for the preclinical search and development of drugs within limited time. In this study, fatty acids determined from P. biglobosa seeds were screened in silico via molecular docking against α-glucosidase, ALR1 and ALR2 enzymes linked to type 2 diabetes mellitus complications using AutoDock Vina. These enzymes play different roles in glucose metabolism and associated to diabetes complications development. The results obtained from the docking studies revealed that docked ligands (fatty acid) bind firmly to the enzymes with the binding energy in the range of -4.12 Kcal mol-1 to -13.61 Kcal mol-1. Inhibition constant obtained for α-glucosidase was in micromolar and nanomolar for both ALR1 and ALR2 enzymes. Docking analysis showed different orientations of the ligands inside the active pocket of the enzymes, of all the ligands, linoleic acid forms perfect orientation with different amino acid residues of all the enzymes via hydrogen bonding formation when compared to the rest of fatty acids.
{"title":"In Silco Screening of Parkia biglobosa Fatty Acids as Inhibitors of Α-Glucosidase, Aldehyde Reductase (ALR1) and Aldose Reductase (ALR2) Enzymes","authors":"Adewale A Raji, I. Ajayi, S. Khan, J. Iqbal","doi":"10.4172/2161-0398.1000246","DOIUrl":"https://doi.org/10.4172/2161-0398.1000246","url":null,"abstract":"Diabetes mellitus is a world health problem with high mortality and morbidity due to the complications; as a result of increased level of glucose concentration. The search for new antidiabetic drugs from natural products has been on increase. Though discovery of drug is time consuming with numerous challenges, therefore, in silico screening is now being used for the preclinical search and development of drugs within limited time. In this study, fatty acids determined from P. biglobosa seeds were screened in silico via molecular docking against α-glucosidase, ALR1 and ALR2 enzymes linked to type 2 diabetes mellitus complications using AutoDock Vina. These enzymes play different roles in glucose metabolism and associated to diabetes complications development. The results obtained from the docking studies revealed that docked ligands (fatty acid) bind firmly to the enzymes with the binding energy in the range of -4.12 Kcal mol-1 to -13.61 Kcal mol-1. Inhibition constant obtained for α-glucosidase was in micromolar and nanomolar for both ALR1 and ALR2 enzymes. Docking analysis showed different orientations of the ligands inside the active pocket of the enzymes, of all the ligands, linoleic acid forms perfect orientation with different amino acid residues of all the enzymes via hydrogen bonding formation when compared to the rest of fatty acids.","PeriodicalId":94103,"journal":{"name":"Journal of physical chemistry & biophysics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90718587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}